
Reinforcement Learning

Jesús Fernández-Villaverde1 and Galo Nuño2

August 7, 2023

1University of Pennsylvania

2Banco de España

A short introduction

Reinforcement learning

• Main idea: Algorithms that use training information that evaluates the actions taken instead of

deciding whether the action was correct.

• Purely evaluative feedback to assess how good the action taken was, but not whether it was the best

feasible action.

• Related with approximate dynamic programming.

1

4/28

Learning through Interaction

▸ Agent: The learner and decision maker.▸ Environment: The agent interacts with it.▸ State: State of the agent and the environment.▸ Action: The agent decides the next action on the basis of the current state.▸ Reward: Numerical response to the action chosen by the agent. The agent
aims to learn how to act so as to maximize the cumulative reward.▸ Trajectory: S0,A0,R1,S1,A1,R2,S2,A2,R3,S3, . . .▸ Example: A robot moves with probability 0.8 in the intended direction,

and at the right angles of it otherwise. The reward for non-terminal states
is R(s) = −0.04. All this is unknown to the robot. Optimal policies shown.

▸ RL is not supervised learning: Difficult to get examples of desired behavior.▸ RL is not unsupervised learning: No aim to find hidden structure.

2

Why reinforcement learning?

• Useful when:

1. The dynamics of the state is unkown but simulation is easy: model-free vs. model-based reinforcement

learning.

2. Or the dimensionality is so high that we cannot store the information about the DP in a table.

• Work surprisingly well in a wide range of situations, although no methods that are guaranteed to

work.

• Key for success in economic applications: ability to simulate fast (link with massive parallelization).

Also, it complements very well with neural networks.

3

Comparison with alternative methods

• Similar (same?) ideas are called approximate dynamic programming or neuro-dynamic programming.

• Traditional dynamic programming: we optimize over best feasible actions.

• Supervised learning: purely instructive feedback that indicates best feasible action regardless of

action actually taken.

• Unsupervised learning: hard to use for optimal control problems.

• In practice, we mix different methods.

• Current research challenges:

1. How do we handle associate behavior effectively?

2. Zero- and few-shot learning.

4

Some history

• Ideas go back to at least Edward Thorndike (1874-1949).

• Grey Walter (1910 -1977)’s “mechanical tortoise” (1951).

• Marvin Minsky (1927-2016)’s 1954 Ph.D. thesis.

• Widrow, Gupta, and Maitra (1973): modified Least-Mean-Square (LMS) algorithm.

• Chris Watkins’s development of Q-learning (1989).

5

6

References

7

8

9

10

Two applications

• More than a general theory, reinforcement learning is a set of related ideas.

• Thus, I will present two applications taken from Sutton and Barto:

1. The multi-armed bandit problem.

2. Dynamic programming.

• Also, for more examples, see:

1. http://incompleteideas.net/book/code/code2nd.html (and the links therein).

2. https://www.deepmind.com/learning-resources/

introduction-to-reinforcement-learning-with-david-silver.

3. https://github.com/TikhonJelvis/RL-book/.

11

http://incompleteideas.net/book/code/code2nd.html
https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver
https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver
https://github.com/TikhonJelvis/RL-book/

Application I: The multi-armed

bandit problem

The multi-armed bandit problem

• You need to choose action a among k available options.

• Each option is associated with a probability distribution of payoffs.

• You want to maximize the expected (discounted) payoffs.

• But you do not know which action is best, you only have estimates of your value function (dual

control problem of identification and optimization).

• You can observe actions and period payoffs.

• Go back to the study of “sequential design of experiments” by Thompson (1933, 1934) and Bellman

(1956).

12

13

Theory vs. practice

• You can follow two pure strategies:

1. Follow greedy actions: actions with highest expected value. This is known as exploiting.

2. Follow non-greedy actions: actions with dominated expected value. This is known as exploring.

• This should remind you of a basic dynamic programming problem: what is the optimal mix of pure

strategies?

• If we impose enough structure on the problem (i.e., distributions of payoffs belong to some family,

stationarity, etc.), we can solve (either theoretically or applying standard solution techniques) the

optimal strategy (at least, up to some upper bound on computational capabilities).

• But these structures are too restrictive for practical purposes outside the pages of Econometrica.

14

A policy-based method I

• Proposed by Thathachar and Sastry (1985).

• A very simple method that uses the averages Qn(a) of rewards Ri (a), i = {1, ..., n}, actually received:

Qn(a) =
1

n

n−1∑
i=1

Ri (a)

• We start with Q0(a) = 0 for all k . Here (and later), we randomize among ties.

• We update Qn(a) thanks to the nice recursive update based on linearity of means:

Qn+1(a) = Qn(a) +
1

n
[Rn(a)− Qn(a)]

Averages of actions not picked are not updated.

15

A policy-based method II

• How do we pick actions?

1. Pure greedy method: argmaxa Qt(a).

2. ϵ-greedy method. Mixed best action with a random trembling.

• Easy to generalize to more sophisticated strategies.

• In particular, we can connect with genetic algorithms (AlphaGo).

16

28 Chapter 2: Multi-armed Bandits

select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
"-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the Qt(a) converge to q⇤(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1� ", that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical e↵ectiveness of
the methods.

Exercise 2.1 In "-greedy action selection, for the case of two actions and " = 0.5, what is
the probability that the greedy action is selected? ⇤

2.3 The 10-armed Testbed

To roughly assess the relative e↵ectiveness of the greedy and "-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k -armed bandit problems with k = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, q⇤(a), a = 1, . . . , 10,

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)

Reward
distribution

1 2 63 54 7 8 9 10

Action
Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q⇤(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean q⇤(a) unit variance
normal distribution, as suggested by these gray distributions.

17

2.3. The 10-armed Testbed 29

were selected according to a normal (Gaussian) distribution with mean 0 and variance 1.
Then, when a learning method applied to that problem selected action At at time step t,
the actual reward, Rt, was selected from a normal distribution with mean q⇤(At) and
variance 1. These distributions are shown in gray in Figure 2.1. We call this suite of test
tasks the 10-armed testbed. For any learning method, we can measure its performance
and behavior as it improves with experience over 1000 time steps when applied to one of
the bandit problems. This makes up one run. Repeating this for 2000 independent runs,
each with a di↵erent bandit problem, we obtained measures of the learning algorithm’s
average behavior.

Figure 2.2 compares a greedy method with two "-greedy methods ("=0.01 and "=0.1),
as described above, on the 10-armed testbed. All the methods formed their action-value
estimates using the sample-average technique. The upper graph shows the increase in
expected reward with experience. The greedy method improved slightly faster than the
other methods at the very beginning, but then leveled o↵ at a lower level. It achieved a
reward-per-step of only about 1, compared with the best possible of about 1.55 on this
testbed. The greedy method performed significantly worse in the long run because it

 (greedy)

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Steps

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

Steps

1

1

"=0.1

"=0.01

"=0.1

"=0.01

"=0

 (greedy)"=0

Figure 2.2: Average performance of "-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with di↵erent bandit problems. All methods used sample
averages as their action-value estimates.

18

A more general update rule

• Let us think about a modified update rule with α ∈ (0, 1]:

Qn+1(a) = Qn(a) + α [Rn(a)− Qn(a)]

• This is equivalent, by recursive substitution, to:

Qn+1(a) = (1− α)nQ1(a) + α

n−1∑
i=1

α(1− α)n−iRi (a)

• Better rule to think about non-stationary problems.

• We can also have a time-varying αn(a), but, to ensure convergence with probability 1 as long as:
∞∑
i=1

αn(a) = ∞

∞∑
i=1

α2
n(a) = ∞

19

Improving the algorithm, I

• We can start with “optimistic” Q0 (i.e., a biased estimates of the returns) to induce exploration.

• Intuition: most initial choices will be “disappointing” and decision-maker will switch to alternatives.

• We can implement an upper-confidence-bound action selection:

argmax
a

[
Qn(a) + c

√
log n

Nn(a)

]

where Nn(a) is how many times action a has been picked before.

• Intuition: we pick non-greedy actions depending on the uncertainty of their estimate. All actions are

selected in some moment, but actions with lower value estimates, or that have already been selected

frequently, will be selected with lower frequency as n grows.

20

Optimistic choice

34 Chapter 2: Multi-armed Bandits

2.6 Optimistic Initial Values

All the methods we have discussed so far are dependent to some extent on the initial
action-value estimates, Q1(a). In the language of statistics, these methods are biased
by their initial estimates. For the sample-average methods, the bias disappears once all
actions have been selected at least once, but for methods with constant ↵, the bias is
permanent, though decreasing over time as given by (2.6). In practice, this kind of bias
is usually not a problem and can sometimes be very helpful. The downside is that the
initial estimates become, in e↵ect, a set of parameters that must be picked by the user, if
only to set them all to zero. The upside is that they provide an easy way to supply some
prior knowledge about what level of rewards can be expected.

Initial action values can also be used as a simple way to encourage exploration. Suppose
that instead of setting the initial action values to zero, as we did in the 10-armed testbed,
we set them all to +5. Recall that the q⇤(a) in this problem are selected from a normal
distribution with mean 0 and variance 1. An initial estimate of +5 is thus wildly optimistic.
But this optimism encourages action-value methods to explore. Whichever actions are
initially selected, the reward is less than the starting estimates; the learner switches to
other actions, being “disappointed” with the rewards it is receiving. The result is that all
actions are tried several times before the value estimates converge. The system does a
fair amount of exploration even if greedy actions are selected all the time.

Figure 2.3 shows the performance on the 10-armed bandit testbed of a greedy method
using Q1(a) = +5, for all a. For comparison, also shown is an "-greedy method with
Q1(a) = 0. Initially, the optimistic method performs worse because it explores more,
but eventually it performs better because its exploration decreases with time. We call
this technique for encouraging exploration optimistic initial values. We regard it as
a simple trick that can be quite e↵ective on stationary problems, but it is far from
being a generally useful approach to encouraging exploration. For example, it is not
well suited to nonstationary problems because its drive for exploration is inherently

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 200 400 600 800 1000

Plays

optimistic, greedy
Q0 = 5, !!= 0

realistic, ! -greedy
Q0 = 0, !!= 0.11

1

Steps
1

Optimistic, greedy
Q1 =5, "=0

Realistic, -greedy"
Q1 =0, "=0.1

Figure 2.3: The e↵ect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, ↵ = 0.1.

21

Upper-confidence-bound choice

36 Chapter 2: Multi-armed Bandits

where ln t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would have
to be raised to in order to equal t), Nt(a) denotes the number of times that action a has
been selected prior to time t (the denominator in (2.1)), and the number c > 0 controls
the degree of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-root
term is a measure of the uncertainty or variance in the estimate of a’s value. The quantity
being max’ed over is thus a sort of upper bound on the possible true value of action a, with
c determining the confidence level. Each time a is selected the uncertainty is presumably
reduced: Nt(a) increments, and, as it appears in the denominator, the uncertainty term
decreases. On the other hand, each time an action other than a is selected, t increases but
Nt(a) does not; because t appears in the numerator, the uncertainty estimate increases.
The use of the natural logarithm means that the increases get smaller over time, but are
unbounded; all actions will eventually be selected, but actions with lower value estimates,
or that have already been selected frequently, will be selected with decreasing frequency
over time.

Results with UCB on the 10-armed testbed are shown in Figure 2.4. UCB often
performs well, as shown here, but is more di�cult than "-greedy to extend beyond bandits
to the more general reinforcement learning settings considered in the rest of this book.
One di�culty is in dealing with nonstationary problems; methods more complex than
those presented in Section 2.5 would be needed. Another di�culty is dealing with large
state spaces, particularly when using function approximation as developed in Part II of
this book. In these more advanced settings the idea of UCB action selection is usually
not practical.

1 250 500 750 1000

0

0.5

1

1.5

�-greedy � = 0.1

UCB c = 2

Average
reward

Steps

Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown,
UCB generally performs better than "-greedy action selection, except in the first k steps, when
it selects randomly among the as-yet-untried actions.

Exercise 2.8: UCB Spikes In Figure 2.4 the UCB algorithm shows a distinct spike
in performance on the 11th step. Why is this? Note that for your answer to be fully
satisfactory it must explain both why the reward increases on the 11th step and why it
decreases on the subsequent steps. Hint: if c = 1, then the spike is less prominent. ⇤

22

Improving the algorithm, II

• We can have a gradient bandit algorithms based on a softmax choice:

πn (a) = P (An = a) =
eHn(a)∑k
b=1 e

Hn(b)

where

Hn+1 (An) = Hn (An) + α (1− πn (An))
(
Rn (a)− Rn

)
Hn+1 (a) = Hn (a)− απn (a)

(
Rn (a)− Rn

)
for all a ̸= An

• This is a slightly hidden version of an SGD algorithm.

23

A comparison

42 Chapter 2: Multi-armed Bandits

2.10 Summary

We have presented in this chapter several simple ways of balancing exploration and
exploitation. The "-greedy methods choose randomly a small fraction of the time, whereas
UCB methods choose deterministically but achieve exploration by subtly favoring at each
step the actions that have so far received fewer samples. Gradient bandit algorithms
estimate not action values, but action preferences, and favor the more preferred actions
in a graded, probabilistic manner using a soft-max distribution. The simple expedient of
initializing estimates optimistically causes even greedy methods to explore significantly.

It is natural to ask which of these methods is best. Although this is a di�cult question
to answer in general, we can certainly run them all on the 10-armed testbed that we
have used throughout this chapter and compare their performances. A complication is
that they all have a parameter; to get a meaningful comparison we have to consider
their performance as a function of their parameter. Our graphs so far have shown the
course of learning over time for each algorithm and parameter setting, to produce a
learning curve for that algorithm and parameter setting. If we plotted learning curves
for all algorithms and all parameter settings, then the graph would be too complex and
crowded to make clear comparisons. Instead we summarize a complete learning curve
by its average value over the 1000 steps; this value is proportional to the area under the
learning curve. Figure 2.6 shows this measure for the various bandit algorithms from
this chapter, each as a function of its own parameter shown on a single scale on the
x-axis. This kind of graph is called a parameter study. Note that the parameter values
are varied by factors of two and presented on a log scale. Note also the characteristic
inverted-U shapes of each algorithm’s performance; all the algorithms perform best at
an intermediate value of their parameter, neither too large nor too small. In assessing

Average
reward

over first
1000 steps

1.5

1.4

1.3

1.2

1.1

1

�-greedy

UCB

gradient
bandit

greedy with
optimistic

initialization
α = 0.1

1 2 41/21/41/81/161/321/641/128

" ↵ c Q0

Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter.
Each point is the average reward obtained over 1000 steps with a particular algorithm at a
particular setting of its parameter.

24

Application II: Dynamic

programming

Dynamic programming

• How does all of this apply to more complex problems such as dynamic programming?

• A quick review of existing algorithms:

1. Policy function iteration.

2. Value function iteration.

3. Asynchronous versions of both.

4. Generalized policy iteration.

5. Projection and perturbation (different perspective).

25

Reinforcement learning dynamic programming algorithms, I

• Monte Carlo prediction.

• We just simulate an arbitrary policy and compute rewards.

• Then, from time to time, we update the policy given our estimate of the value function.

• As with the bandit problem, we can introduce some randomness in the policy function (ϵ-greedy

policies).

• Useful when:

1. Describing the environment is hard (or impossible!). Think about card games with all their alternatives.

2. We want to concentrate on the exploration of a subset of state values.

26

17/28

Monte Carlo Methods

▸ To ensure that each state-action pair is selected infinitely often so as to
produce reliable estimates, ε-soft policies are used, i.e. π(a∣s) ≥ ε/∣A(s)∣.
In particular, ε-greedy policies are used: Choose the action with maximal
estimated value with probability 1− ε, and a random one with probability ε.▸ The algorithm converges asymptotically to the optimal ε-greedy policy.

27

20/28

Monte Carlo Methods

▸ Episode-by-episode incremental implementation to improve efficiency.▸ The algorithm converges asymptotically to π∗, although the actions are
selected according to b.

28

Reinforcement learning dynamic programming algorithms, II

• Temporal-difference (TD) learning:

V n+1 (st) = V n (st) + α (rt+1 + βV n (st+1)− V n (st))

• SARSA ⇒ On-policy TD control:

Qn+1 (at,st) = Qn (at,st) + α (rt+1 + βQn (at+1,st+1)− Qn (at,st))

Definition of Qn (at,st).

• Q-learning ⇒ Off-policy TD control:

Qn+1 (at,st) = Qn (at,st) + α

(
rt+1 + βmax

at+1

Qn (at+1,st+1)− Qn (at,st)

)

29

21/28

Temporal-Difference Learning▸ Note that if s were always followed by s ′ and r , then vπ(s) = r + γvπ(s ′)
by the Bellman equation and, thus, 0 = r + γvπ(s ′) − vπ(s). We can try to
enforce this constraint by executing π one step from s and, then, update
the estimate of vπ(s) as

vπ(s) ← vπ(s) + α(r + γvπ(s ′) − vπ(s))
where α > 0 is the learning rate. Finally, repeat. This method converges
asymptotically if e.g. α(t) = O(1/N(s, t)). This result also holds for
stochastic transition models, since the number of times that s is followed
by s ′ in the sampled episodes is proportional to the transition probability.▸ TD learning does not require knowing the transition model.

30

23/28

Q-Learning and Sarsa▸ Q-learning: Off-policy adaptation of TD learning from state values to
optimal action values. Specifically, if s and a were always followed by s ′
and r , then q∗(s, a) = r + γmaxa′ q∗(s ′, a′) by the Bellman optimality
equation and, thus, 0 = r + γmaxa′ q∗(s ′, a′) − q∗(s, a) and, thus, we can
update the estimate of q∗(s, a) as

q∗(s, a) ← q∗(s, a) + α(r + γmax
a′ q∗(s ′, a′) − q∗(s, a)).

▸ The algorithm converges asymptotically to q∗ if e.g. an ε-greedy policy is
used to keep updating all the state-action pairs.

31

24/28

Q-Learning and Sarsa▸ Sarsa: On-policy adaptation of TD learning from state values to action
values. Specifically, if s and a were always followed by r , s ′ and a′ (hence
the name), then qπ(s, a) = r + γqπ(s ′, a′) by the Bellman equation and,
thus, 0 = r + γqπ(s ′, a′) − qπ(s, a) and, thus, we can update the estimate
of qπ(s, a) as

qπ(s, a) ← qπ(s, a) + α(r + γqπ(s ′, a′) − qπ(s, a)).

▸ The algorithm follows a generalized policy iteration approach. It converges
asymptotically to the optimal ε-greedy policy and, thus, to π∗ if ε = 1/t.

32

27/28

Q-Learning and Sarsa

33

Reinforcement learning dynamic programming algorithms, III

• Value-based methods: applications of deep learning.

• Policy-gradient methods: again, deep learning.

• Actor-critic methods.

34

5/18

Stochastic Gradient Descent▸ When a new example or observation vπ(St) arrives, update the weights as

wt+1 = wt − 1

2
α∇VE(w) = wt + α[vπ(St) − v̂(St ,wt)]∇v̂(St ,wt)

where α > 0 is the learning rate or step size. The update converges to a
local minimum of VE(w) with e.g. α = 1/t.▸ If we do not observe vπ(St) but a noisy version Ut of it (e.g., Gt or
Rt+1 + γv̂(St+1,wt)), then the update above with Ut in the place of vπ(St)
still converges to a local minimum of VE(w) as long as Ut is an unbiased
estimator of vπ(St), i.e. E[Ut ∣St] = vπ(St) for all t. For instance, Ut = Gt .

▸ Note that updating the parameters may change the value of every state,
not only of those visited, i.e. generalization.

35

6/18

Stochastic Gradient Descent▸ On the other hand, if Ut = Rt+1 + γv̂(St+1,wt) then Ut depends on wt and,
thus, it is not an unbiased estimator of vπ(St) and, thus, we do not have a
true SGD method but a semi-gradient method, which may still converge
but to a point near a local optimum of VE(w). SSGD is typically faster
than SGD, has less variance and allows online learning.▸ SSGD update rule:

wt+1 = wt + α[Rt+1 + γv̂(St+1,wt) − v̂(St ,wt)]∇v̂(St ,wt).

36

9/18

Semi-gradient Sarsa▸ To find an approximate solution to a RL problem, we need to consider
prediction and control steps (a.k.a. policy evaluation and improvement).▸ To this end, let q̂(s, a,w) be an approximation of qπ(s, a). Define the
objective function

VE(w) = ∑
s

µ(s)[qπ(s, a) − q̂(s, a,w)]2

and consider the SSGD update rule

wt+1 = wt + α[Rt+1 + γq̂(St+1,At+1,wt) − q̂(St ,At ,wt)]∇q̂(St ,At ,wt).

37

11/18

Sarsa(λ)▸ The eligibility trace zt indicates the eligibility of a component of wt for
undergoing updating. It does so by keeping track of which components
have contributed to recent state valuations, where recent is defined in
terms of γλ, where λ ∈ [0,1] is the trace decay parameter. That is, zt is a
short-term memory, as opposed to the long-term memory wt .

38

15/18

Policy Gradient Methods▸ Policy gradient theorem:

∇J(θ) ∝∑
s

µ(s)∑
a

qπ(s, a)∇π(a∣s, θ)
where the transition model is not involved, which is typically unknown.▸ If π is followed, then

∇J(θ) ∝ E[∑
a

qπ(St , a)∇π(a∣St , θ)] = E[∑
a

π(a∣St , θ)qπ(St , a)∇π(a∣St , θ)
π(a∣St , θ)]

= E[qπ(St ,At)∇π(At ∣St , θ)
π(At ∣St , θ)] = E[Gt

∇π(At ∣St , θ)
π(At ∣St , θ)] = E[Gt∇ lnπ(At ∣St , θ)].

▸ All this gives rise to the REINFORCE algorithm, which asymptotically
converges to a local optimum.

39

17/18

Policy Gradient Methods

▸ It can also be adapted to continuing tasks.

40

