Reinforcement Learning

§§ UNIVERSITY of PENNSYLVANIA

Jestis Fernandez-Villaverde! and Galo Nufio?

August 7, 2023
LUniversity of Pennsylvania

2Banco de Espafia

A short introduction

Reinforcement learning

e Main idea: Algorithms that use training information that evaluates the actions taken instead of

deciding whether the action was correct.

e Purely evaluative feedback to assess how good the action taken was, but not whether it was the best

feasible action.

e Related with approximate dynamic programming.

:‘ Agent }
state reward action

5, R, A

? Rr+l []
< | Environment

r

y reinforcement learning?

o Useful when:

1. The dynamics of the state is unkown but simulation is easy: model-free vs. model-based reinforcement

learning.

2. Or the dimensionality is so high that we cannot store the information about the DP in a table.

e Work surprisingly well in a wide range of situations, although no methods that are guaranteed to

work.

e Key for success in economic applications: ability to simulate fast (link with massive parallelization).
Also, it complements very well with neural networks.

Comparison with alternative methods

e Similar (same?) ideas are called approximate dynamic programming or neuro-dynamic programming.
e Traditional dynamic programming: we optimize over best feasible actions.

e Supervised learning: purely instructive feedback that indicates best feasible action regardless of
action actually taken.

e Unsupervised learning: hard to use for optimal control problems.
e In practice, we mix different methods.

e Current research challenges:

1. How do we handle associate behavior effectively?

2. Zero- and few-shot learning.

Ideas go back to at least Edward Thorndike (1874-1949).

Grey Walter (1910 -1977)'s “mechanical tortoise” (1951).

Marvin Minsky (1927-2016)'s 1954 Ph.D. thesis.

Widrow, Gupta, and Maitra (1973): modified Least-Mean-Square (LMS) algorithm.

e Chris Watkins's development of Q-learning (1989).

References

/ INV
Reinforcement | '
Learning | j \ X
i " |

Richard S. Sutton and Andrew G. Barto / 77
y

Reinforcement Learning
and Optimal Control

c o

@ distributional-rl.org

Distributional Reinforcement Learning

Draft (under submission)

Marc G. Bellemare and Will Dabney and Mark Rowland

This textbook aims to provide an i ion to the ping field of distributional reil learning. The version
provided below is a draft, currently under review at MIT Press.

The draft is licensed under a Creative Commons license, see terms and conditions for details.

We are grateful to all the people who helped make this book a reality — a full list will be provided in the final version of
the book.

Distributional Reinforcement Learning

o Table of Contents

3 Learning the Return Distribution
4 Operators and Metrics

5 Distributional Dynamic P

6 Incremental Algorithms

7 Control

8 Statistical Functionals

9 Linear Function Approximation
10 Deep Reinforcement Learning
11 Two ications and a Conclusion
Notation

Bibliography,

=2

Approximate Dynamic
Prugrammlng

Selving the aif [k

- Warren B, Pawell

FWILEY

10

Two applications

e More than a general theory, reinforcement learning is a set of related ideas.

e Thus, | will present two applications taken from Sutton and Barto:
1. The multi-armed bandit problem.
2. Dynamic programming.

e Also, for more examples, see:

1. http://incompleteideas.net/book/code/code2nd.html (and the links therein).

2. https://www.deepmind.com/learning-resources/

introduction-to-reinforcement-learning-with-david-silver.

3. https://github.com/TikhonJelvis/RL-book/.

11

http://incompleteideas.net/book/code/code2nd.html
https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver
https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver
https://github.com/TikhonJelvis/RL-book/

Application |: The multi-armed
bandit problem

The multi-armed bandit problem

e You need to choose action a among k available options.
e Each option is associated with a probability distribution of payoffs.
e You want to maximize the expected (discounted) payoffs.

e But you do not know which action is best, you only have estimates of your value function (dual
control problem of identification and optimization).

e You can observe actions and period payoffs.
e Go back to the study of “sequential design of experiments” by Thompson (1933, 1934) and Bellman

(1956).

12

13

Theory vs. practice

e You can follow two pure strategies:

1. Follow greedy actions: actions with highest expected value. This is known as exploiting.

2. Follow non-greedy actions: actions with dominated expected value. This is known as exploring.

e This should remind you of a basic dynamic programming problem: what is the optimal mix of pure
strategies?

e If we impose enough structure on the problem (i.e., distributions of payoffs belong to some family,
stationarity, etc.), we can solve (either theoretically or applying standard solution techniques) the
optimal strategy (at least, up to some upper bound on computational capabilities).

e But these structures are too restrictive for practical purposes outside the pages of Econometrica.

14

A policy-based method |

e Proposed by Thathachar and Sastry (1985).

e A very simple method that uses the averages Q,(a) of rewards R;(a),i = {1, ..., n}, actually received:
1 n—1
Qu(a) = - 3 Ri(a)
i=1

e We start with Qu(a) = 0 for all k. Here (and later), we randomize among ties.

e We update Q,(a) thanks to the nice recursive update based on linearity of means:

Qni1(2) = Qula) + + [Ro(a) —~ Qu()]

Averages of actions not picked are not updated.

15

A policy-based method II

e How do we pick actions?

1. Pure greedy method: arg max, Q:(a).

2. e-greedy method. Mixed best action with a random trembling.
e Easy to generalize to more sophisticated strategies.

e In particular, we can connect with genetic algorithms (AlphaGo).

16

Reward
distribution

—_

'
—_

4+(10)

17

Average
reward

0.5 4

=0 (greedy)

100% _,

80%

% 60% _|
Optimal

action 40%

20%

T T T 1
250 500 750 1000

Steps

0%

e=0 (greedy)

2‘50 5(‘)0 750 10‘00 18
Steps

A more general update rule

e Let us think about a modified update rule with o € (0, 1]:
Qnt1(a) = Qn(a) + a[Rn(a) — Qn(a)]

e This is equivalent, by recursive substitution, to:
n—1)
Qni1(3) = (1=)" Qu(a) + @Y _a(l —a)" 'Ri(a)
i=1

e Better rule to think about non-stationary problems.

e We can also have a time-varying «,(a), but, to ensure convergence with probability 1 as long as:

Z ap(a) = oo
i=1

Z a?(a) = o0
i=1

19

Improving the algorithm, |

e We can start with “optimistic” Q (i.e., a biased estimates of the returns) to induce exploration.

e Intuition: most initial choices will be “disappointing” and decision-maker will switch to alternatives.
e We can implement an upper-confidence-bound action selection:

log n
argmax | Qp(a) + ¢4 | ——

gr (a) No(3)
where N,(a) is how many times action a has been picked before.

e Intuition: we pick non-greedy actions depending on the uncertainty of their estimate. All actions are
selected in some moment, but actions with lower value estimates, or that have already been selected
frequently, will be selected with lower frequency as n grows.

20

Optimistic choice

100% —
Optimistic, greedy
21=>5, €¢=0
20% Q1=5,
% 60% Realistic, € -greedy
. @1=0, e=0.1
Optimal 2
action 40%
20% -
0% =7 T T T T 1
1 200 400 600 800 1000

Steps

21

Upper-confidence-bound choice

UCB c=2

Average
reward
0.5}

1 250 500 750 IObO
Steps

22

Improving the algorithm, II

e We can have a gradient bandit algorithms based on a softmax choice:

eH,,(a)
m(a) =P (A, =a) = ZZZI e
where
Ho1 (An) = Ho(An) +a(1 -7 (A)) (Ro(a) - Ry)

Hn+1 (a)

H,(a) — am, (a) (Rn (a) — Ry) for all a # A,

e This is a slightly hidden version of an SGD algorithm.

23

A comparison

151
UCB greedy with
optimistic
14¢ initialization

a=0.1
Average ;|

reward .
. gradient
over first ol Serreh
1000 steps

1.1}

1/128 1/64 1/32 1/16 1/8 1/4 12 1 2 4

E(XCQO 24

Application Il: Dynamic
programming

Dynamic programming

e How does all of this apply to more complex problems such as dynamic programming?

e A quick review of existing algorithms:
1. Policy function iteration.
2. Value function iteration.
3. Asynchronous versions of both.
4. Generalized policy iteration.

5. Projection and perturbation (different perspective).

25

Reinforcement learning dynamic programming algorithms, |

Monte Carlo prediction.

We just simulate an arbitrary policy and compute rewards.

Then, from time to time, we update the policy given our estimate of the value function.

As with the bandit problem, we can introduce some randomness in the policy function (e-greedy

policies).

Useful when:

1. Describing the environment is hard (or impossible!). Think about card games with all their alternatives.

2. We want to concentrate on the exploration of a subset of state values.

26

On-policy first-visit MC control (for c-soft policies), estimates 7 ~ 7,

Algorithm parameter: small ¢ > 0

Initialize:
7 < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following 7: Sp, Ao, R1,...,S7—1, Ar—1, R
G+ 0
Loop for each step of episode, t =T —1,T—-2,....0:
G+ vG + Ry
Unless the pair Sy, A; appears in Sy, Ag, S1, A1 ..., S —1,Ai_1:
Append G to Returns(Sy, Ay)
Q(St, Ay) < average(Returns(Sy, At))
A* « argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S:):
1—e+</|A(S; if a = A*
mlalSi) + { sl N e E

27

Off-policy MC control, for estimating m =~ m,

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) + 0

7(s) < argmax, Q(s,a) (with ties broken consistently)

Loop forever (for each episode):
b < any soft policy
Generate an episode using b: So, Ao, R, ..., St_1,Ar_1. Ry
G+ 0
W1
Loop for each step of episode, t =T —1,1T—-2,...,0:
G+ vG+ Ry
C(S;, Ar) + C(Se, Ar) + VV
Q(St, Ar) = Q(St, Ai) + 5,77 (G — Q(St, Ar)]
7w(St) « argmax, Q(S¢, a) (Wlth ties broken consistently)
If A, # W(St) then exit inner Loop (proceed to next episode)

W« W leg)

28

Reinforcement learning dynamic programming algorithms, 1l

e Temporal-difference (TD) learning:

VT (s) = V7 (st) + @ (rea + BV (se1) = V" (1))

e SARSA = On-policy TD control:
Q" (ar,st) = Q" (ac,5t) + v (res1 + BQ" (ae41,5041) — Q" (ar,st))
Definition of Q" (a¢,s¢).

e Q-learning = Off-policy TD control:

Q" (ar,5:) = Q" (ar,se) + (ft+1 +8 ER? Q" (ar41,5¢41) — Q" (at,st)>

29

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size o € (0, 1]
Initialize V(s), for all s € 8T, arbitrarily except that V(terminal) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
A + action given by 7 for S
Take action A, observe R, S’
V(S)« V(S5 +a [B +4V(S") — V(S)]
S+« 5

until S is terminal

30

Q-learning (off-policy TD control) for estimating 7 =~ m,

Algorithm parameters: step size « € (0,1], small £ > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A trom S using policy derived from @ (e.g., s-greedy)
Take action A, observe R, S’
Q(S,A4) + Q(S,A) + o[R + ymax, Q(5",a) — Q(S, A)]
S 5

until S is terminal

31

Sarsa (on-policy TD control) for estimating Q ~ q.

Algorithm parameters: step size o € (0, 1], small ¢ > 0

Initialize Q(s,a), for all s € 8T,a € A(s). arbitrarily except that Q(terminal,-) =

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., =-greedy)
Q(S, A) + Q(S A)+a[R+"Q(S’:A’) Q(S, ¢)]
S« ST A+ AL
until S is terminal

0

32

n-step Sarsa for estimating Q = ¢, or ¢,

Initialize Q(s,a) arbitrarily, for all s € 8,a € A

Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size o € (0,1], small € > 0, a positive integer n

All store and access operations (for Sy, Ay, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Aq ~ 7(-|Sp)
T+ o0
Loop for t =0,1,2,...:
| Ift <T, then:
Take action Ay
Observe and store the next reward as Ry and the next state as Syy1
If S; 44 is terminal, then:
T+t+1
else:
Select and store an action Agyq ~ 7(+[Si1)
T4+ t—mn+1 (7 is the time whose estimate is being updated)

|
|
|
|

|

|

|

|

|

| Ifr+n<T.then G+ G+1"Q(Srin. Arin) (Crirsn)
|

|
U

Itr>0:
G T g,
Q(ST AT) — Q(ST'AT) + [G - Q(S’F AT)]
If 7 is being learned, then ensure that 7(:|S;) is e-greedy wrt @
ntilr=T-1

Reinforcement learning dynamic programming algorithms, 11l

e Value-based methods: applications of deep learning.
e Policy-gradient methods: again, deep learning.

e Actor-critic methods.

34

Gradient Monte Carlo Algorithm for Estimating v =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : § x RY = R

Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,51.41,..., Ry, S using 7

Loop for each step of episode, t =0,1,...,1T — 1:
W — W + « [Gt = i’(St.W)} VlI:T(St.W)

35

Semi-gradient TD(0) for estimating ¢ =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function © : 8+ x R? — R such that #(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A ~ 7(-].9)
Take action A, observe R, .S’
w W+ a|R+ (S .w) — 6(S,w)|Vo(S,w)
S+ 5

until .S is terminal

36

Episodic Semi-gradient Sarsa for Estimating § = ¢,

Input: a differentiable action-value function parameterization ¢: 8 x A x R? — R
Algorithm parameters: step size a > 0, small £ > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A « initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If 57 is terminal:
w4 W+ o|R—q(S,A,w)|Vq(S, Aw)
Go to next episode
Choose A" as a function of ¢(5’,-, w) (e.g., e-greedy)
W w+a[R+4(5, A\, w) — (5. A, w)] Vi(S, A, w)
S« 5
A A

37

Semi-gradient TD(\) for estimating © =~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : 8% x R? — R such that ¢(terminal,-) = 0
Algorithm parameters: step size o > 0, trace decay rate A € [0, 1]

Initialize value-function weights w arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
z<+ 0 (a d-dimensional vector)
Loop for each step of episode:
| Choose A ~ 7(+]S)
| Take action A, observe R, S’
| z Az +Vo(S,w)
| 0+ R+~0(5.w)—0(Sw)
| W+ Ww+adz
| S+ 5

until S is terminal

38

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization m(a|s,)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode S, Ao, Ry, ..., S7—1, Ar—1, Ry, following 7 (|-, 0)
Loop for each step of the episode ¢t =0,1,...,7T — 1:
G+ Zg:tJrl VLR, (Gr)
0« 0+ ay' GV Inm(AS;,0)

39

One-step Actor—Critic (episodic), for estimating mg ~ .

Input: a differentiable policy parameterization 7 (als, 0)
Input: a differentiable state-value function parameterization o(s,w)
Parameters: step sizes a? >0, a%¥ > 0
Initialize policy parameter 8 € R? and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~7(]S,0)
Take action A, observe S’ R
§+— R+~0o(S"w) —0(S,w) (if S” is terminal, then ©(S”,w) = 0)

W w+aVoVi(S.w)
0+ 6+a°I5VInm(AlS,0)
IR

S+ 5

40

