
Spooky Boundaries at a Distance:

Exploring Transversality and Stationarity with Deep Learning

Mahdi Ebrahimi Kahou1 Jesús Fernández-Villaverde2 Sebastián Gómez Cardona1 Jesse Perla1 Jan Rosa1

May 22, 2022

1University of British Columbia, Vancouver School of Economics

2University of Pennsylvania

Motivation

Motivation

In the long run we are all dead; J.M. Keynes

• Most dynamic models require economic assumptions eliminating explosive solutions (transversality,

no-bubble, no-ponzi schemes, Blanchard-Khan conditions, etc.):

• These are variations on “boundary conditions” for forward looking behavior of agents.

• Without those economic conditions, problems are not well-posed and have multiplicity.

• Deterministic, stochastic, sequential, recursive formulations all require conditions in some form.

• Steady states/forward-looking boundary conditions are the key limitation on increasing

dimensionality:

• Otherwise, researchers routinely solve initial value problems with millions of equations.

• Equivalently, conditions for recursive formulations manifest as requiring accurate solution on the entire

domain, even though one may only care about the solution from a single initial condition.

• Key trade-off: Can we avoid precisely calculating a stationary distribution/steady-state/... –which is

never reached– and still have accurate short/medium-run dynamics disciplined by transversality/etc.?

1

This paper

• Show –numerically– that deep learning solutions to many dynamic, forward looking, models

automatically fulfill the long run boundary conditions we need (transversality, no-bubble, etc.).

• Solve classic models with known solutions (asset pricing and neoclassical growth) and show excellent

short/medium term dynamics –even when non-stationary or with steady-state multiplicity.

• Only empirical, but still provide theoretical intuition on why these results hold: the deep learning

theory is not quite ready to formally prove everything in this environment.

• Suggests these methods may solve higher-dimensional problems while avoiding the key computational

limitation—with the only trade-off being loss of precision for equilibria after “we are all dead.”

But first, we need to be very precise on what deep learning solutions mean in this context.

2

Background: Deep learning for

functional equations

Models as functional equations

Many theoretical models in economics can be written as functional equations:

• Take some function(s) f ∈ F where f : X → Y (e.g. asset price, investment choice, best-response,

etc.).

• Domain X could be state (e.g. dividends, capital, opponents state) or time if sequential.

• The “model” is ℓ : F × X → R (e.g., Euler and Bellman residuals, equilibrium FOCs).

• Normalize so that a solution is the “zero” of the residuals, i.e. 0 ∈ R, at each x ∈ X .

Then a solution is an f ∗ ∈ F where ℓ(f ∗, x) = 0 for all x ∈ X .

3

Example: one formulation of neoclassical growth

• Capital, k, consumption c , utility u(c), discount rate β, depreciation δ, production function f (k).

• Domain: x =
[
k
]
and X = R+.

• Solve for k ′(·) and c(·): So f : R → R2 and Y = R2
+.

• Skipping to lagrangian. . . residuals are the euler equation and feasibility, so R = R2:

ℓ(
[
k ′(·) c(·)

]
︸ ︷︷ ︸

≡f

, k︸︷︷︸
≡x

) =

[
u′(c ′(k))− βu′(c(k ′(k))) (f ′(k ′(k)) + 1− δ)

f (k)− c(k)− k ′(k) + (1− δ)k

]

• Finally, a solution if the f ∗ which has zero residuals on domain X .

4

How to solve globally?

• Find approximate f̂ which only holds approximately on X .

• Choose a class of approximate solutions which aligns with ℓ and F solutions.

• Potentially bound or emphasize precision in regions of economic interest in X .

5

Interpolation solutions for solving functional equations

Classic approach: use class of functions with finite parameters and interpolate a finite number of points

1. Pick finite set of N points Xtrain ⊂ X (e.g., a grid).

2. Choose approximation f̂ (·; θ) ∈ H(Θ) with parameters Θ ⊆ RM (e.g., polynomials, splines).

3. Fit with nonlinear least-squares for a general M ⋛ N

min
θ∈Θ

∑
x∈Xtrain

ℓ(f̂ (·; θ), x)2

• If M = N and H(Θ) functions span RN can solve nonlinear system (e.g., Chebyshev collocation).

• If θ ∈ Θ is such that ℓ(f̂ (·; θ), x) = 0 for all x ∈ Xtrain we say it interpolates Xtrain.

4. Hope that f̂ (x ; θ) ≈ f ∗(x) for x ∈ X \ Xtrain. i.e., has low generalization error:
• For M ≥ N we usually interpolate exactly (and hence f̂ (x ; θ) ≈ f ∗(x) for x ∈ Xtrain).

• In practice, we tinker with H,Θ and Xtrain until error no longer seems to be an issue.

• More generally, our goal is to minimize ∥f̂ (·; θ)− f ∗∥S .

Deep learning here just enables “pick, choose, fit, hope” with more flexibility using economic insights.
6

“Modern” ML is massively overparameterized

Deep learning here is highly-overparameterized H (i.e. M ≫ N) designed for good generalization:

• Complete flexibility in the choice of H from economic insights on problem structure ℓ and F :

• Composing H from multiple functions (e.g., “deep”er) tends to generalize better in practice.

• For example, if f : RQ → R could choose f̂ (x ; θ) ≡ W2 · σ(W1 · x + b1) + b2:

• W1 ∈ RP×Q , b1 ∈ RP ,W2 ∈ RP , and b2 ∈ R.
• σ(·) = max(0, ·) element-wise (i.e. ReLU activation in CS literature) but many others.

• θ ∈ Θ ≡ {b1,W1, b2,W2} and M = PQ + P + P + 1.

• Choose a big P. . . or add another “layer”: f̂ (x ; θ) ≡ W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3.

• Let’s generically call these NN(θ) and explain structure when it matters.

• Software (e.g., PyTorch) makes it easy to experiment with different H (i.e., neural networks),

manage the θ, and get gradients required for optimization methods.

• But otherwise, the method and objective is the same as before, i.e. min
θ∈Θ

∑
x∈Xtrain

ℓ(f̂ (·; θ), x)2.

7

Deep learning optimizes in a space of functions

• Since M ≫ N has an enormous number of solutions (e.g., θ1 and θ2),

1. Agree only on “data”: f̂ (x ; θ1) ≈ f̂ (x ; θ2) for x ∈ Xtrain.

2. Agree everywhere: f̂ (x ; θ1) ≈ f̂ (x ; θ2) for x ∈ X . Alternatively, ||f̂ (·; θ1)− f̂ (·; θ2)||S ≈ 0.

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
f̂∈H

∑
x∈Xtrain

ℓ(f̂ , x)2 (1)

• Since M ≫ N, f̂ always interpolates and the objective value in (1) will always be ≈ 0.

8

Deep learning and interpolation

• Counterintuitively: for M large enough, optimizers tend to converge towards something unique f̂

in equivalence class from some ∥ · ∥S define on x ∈ X (i.e., not just at interpolated “data”).

• Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm S

min
f̂∈H

||f̂ ||S

s.t. ℓ(f̂ , x) = 0, for x ∈ Xtrain

• CS and literature refers to this as the inductive bias: optimization process biased towards particular f̂ ,

• Characterizing S (e.g., Sobolev ?) is an active research area in CS at the heart of deep learning theory.

• Intuition is that it may choose the interpolating solutions which are flattest and have smallest derivatives.

• Is ∥f̂ − f ∗∥S small (i.e., does the min-norm solution generalize well)? Depends on G ,H,Xtrain.

In this paper: we describe how the minf̂∈H ||f̂ ||S solutions are also the ones which automatically fulfill

transversality/etc. in dynamic models—and hence are disciplined by long run boundary conditions.
9

Smooth interpolation Examples

−1 0 1
x

1

2 DGP

Training data

Convex hull

−1 0 1
x

1

2 Parameters 49

Training data

Convex hull

−1 0 1
x

1

2 Parameters 541

Training data

Convex hull

−1 0 1
x

1

2 Parameters 12 K

Training data

Convex hull

10

Agenda

To explore how we can ignore events after “we are all dead”, we show deep learning solutions to

1. Classic linear-asset pricing model with/without a no-bubble condition.

2. Sequential formulation of the neoclassical growth model with transversality condition.

3. Equivalent for a recursive formulation of the neoclassical growth model.

4. (In paper many more: e.g. what if non-stationary? BGPs? etc.).

We can show numerical solutions while explaining theory from the economics, but there are current

limitations on theory from CS.

11

Linear asset pricing

Sequential formulation

• Dividends, yt , take y0 as given and follow process:

yt+1 = c + (1 + g)yt

• Writing as a linear state-space model with xt+1 = Axt and yt = Gxt and

xt ≡
[
1 yt

]⊤
,A ≡

[
1 0

c 1 + g

]
,G ≡

[
0 1

]
• “Fundamental” price given xt is PDV with β ∈ (0, 1) and β(1 + g) < 1

pft ≡
∞∑
j=0

βjyt+j = G (I − βA)−1xt

12

Recursive formulation

With standard transformation, all solutions pft fulfill the recursive equations

pt = Gxt + βpt+1 (2)

xt+1 = Axt (3)

0 = lim
T→∞

βTpT (4)

x0 given (5)

That is, a system of two difference equations with one boundary and one initial condition

• The boundary condition (4) is an assumption necessary to be well-posed and have unique solutions

• It ensures that pt = pft by imposing long run boundary on forward-looking behavior

• But without this assumption there can be “rational bubbles” with pt ̸= pft , but fulfilling (2) and (3)

• Intuition: system of (pt , xt) difference (or differential) equations requires total of two boundaries or

initial values to have a unique solution (i.e., (5) not enough on its own)

13

Solutions without a “no-bubble conditions”

• Rational bubble solutions in this deterministic asset pricing model are of the form:

pt = pft + ζ β−t . (6)

• For any ζ ≥ 0. The xt initial condition determined the pft solution.

• The “no bubble condition” chooses the ζ = 0 solution.

Lets analyze this with a “deep learning” solution, first by imposing the no-bubble condition.

14

Interpolation formulation

Write pt as p(t) to allow interpolation between sparse t ∈ Xtrain points and collect (2) to (4)

min
p∈H

∥p∥S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ Xtrain

0 = lim
T→∞

βTp(T)

(7)

(8)

(9)

Where x(t) for t ∈ Xtrain is defined by x(0) initial condition and recurrence x(t + 1) = Ax(t) in (3)

• Recall: generalization comes from design of H and optimizer; not only model, i.e., (8) and (9).

• The norm ∥p∥S has “inductive bias” towards particular solutions for t ∈ [0,∞] \ Xtrain.

15

Is the no-bubble condition still necessary?

• To analyze, drop the no-bubble condition and examine the class of solutions. Does (9) bind?

• In this case, we know the interpolating solutions to (8) without imposing (9)

p(t) = pf (t) + ζβ−t (10)

• Take some norm ∥.∥S of both sides and apply triangle inequality

0 ≤ ∥p∥S ≤ ∥pf ∥S + ζ ∥β−t∥S (11)

• Relative to classic methods the “deep learning” problem now has a ∥p∥S objective!

• From (11) for a large class of S , the norm minimizing ∥p∥S will be one where ζ = 0

• That is, p(t) = pf (t), the solution fulfills the no-bubble condition, and (9) is satisfied at the optima.

• What types of norms ∥p∥S would H and optimization induce? CS theory suggests variations Sobolev

16

Minimum norm formulation

Given the no-bubble condition it is automatically fulfilled, could solve the following given some H and

compare to pf (t)

min
p∈H

∥p∥S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ Xtrain

(12)

(13)

A reminder: in practice, given the Xtrain, we directly implement this as p(·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|Xtrain|
∑

t∈Xtrain

[p(t; θ)− Gx(t)− βp(t + 1; θ)]2 (14)

Since law of motion is deterministic, given x(0) we generate x(t) with x(t + 1) = Ax(t) for t ∈ Xtrain

• The Xtrain does not need to have contiguous t and |Xtrain| may be relatively small

• Most important: no steady state calculated, nor large T ∈ Xtrain required
17

Results

0 20 40
t

0.85

0.90

0.95

1.00

1.05

Prices

p: approximate
pf

0 20 40
t

0.0020

0.0015

0.0010

0.0005

0.0000
Relative error

Extrapolation
Interpolation

1. Pick Xtrain = [0, 1, 2, .., 30] and t > 30 is “extrapolation” where c = 0.01, g = −0.1, and y0 = 0.8

2. Choose p(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |θ| = 49.9K parameters.

3. Fit using L-BFGS and PyTorch in just a few seconds. Could use Adam/SGD/etc.

4. Pray’ers were answered, even without imposing no-bubble condition. Compare to analytic pf (t)

• Relative error ≡ p(t)−pf (t)

pf (t)
ranging from 0.0007% for t = 0 to 0.02% when extrapolating.

• These long run errors don’t affect the short-run accuracy (still small, even after we are all dead) 18

Contiguous vs. dense grid

0 10 20 30 40 50
t

0.85

0.90

0.95

1.00

1.05

p

psol

p : approx full grid
p : approx sparse grid 1
p : approx sparse grid 2

0 10 20 30 40 50
t

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005
Relative error

Extrapolation, full grid
Interpolation, full grid
Extrapolation, sparse grid 2
Interpolation, sparse grid 2
Extrapolation, sparse grid 1
Interpolation, sparse grid 1

• Xtrain(Grid 1) = [0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 30] and Xtrain(Grid 2) = [0, 1, 4, 8, 12, 18, 24, 30]

• Small errors even with 8 data points (and ≈ 40K parameters). Even < 0.035% after we all are dead

• Contrary to popular wisdom about deep learning only being appropriate in high “data” environments

• Can use less “data” relative to alternatives
19

Growing dividends

0 20 40
t

1.0

1.5

2.0

2.5

Prices

p: approximate
pf

0 20 40
t

0.00

0.01

0.02

Relative error

Extrapolation
Interpolation

• Pick same Xtrain but now c = 0.0, g = 0.02, and y0 = 0.8 (y(t) grows at rate g)

• Choose p(t; θ) = eϕtNN(t; θNN) where θ ≡ {ϕ, θNN} ∈ Θ is the parameter vector

• Here we used economic intuition of problem to design the H to generalize better

• Non-stationary but can figure out the growth. Short term errors are very small, long run manageable

• Bonus: learns the growth rate: ϕ ≈ ln(1 + g) and even extrapolates well! 20

Neoclassical growth in sequence

space

Sequential formulation (with a possible BGP)

max
{ct ,kt+1}∞

t=0

∞∑
t=0

βtu(ct)

s.t. kt+1 = z1−α
t f (kt) + (1− δ)kt − ct

zt+1 = (1 + g)zt

kt ≥ 0

0 = lim
T→∞

βTu′(cT)kT+1

k0, z0 given

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1)

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP zt
• Skip standard steps. . . Euler equation: u′(c(t)) = βu′(c(t + 1))

[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
21

Interpolation formulation

min
q≡[k c]∈H

∥q∥S

s.t. u′(c(t)) = βu′(c(t + 1))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ Xtrain

k(t + 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t) for t ∈ Xtrain

k(0) = k0

0 = lim
T→∞

βTu′(c(T))k(T + 1)

(15)

(16)

(17)

(18)

(19)

Where z(t) for t ∈ Xtrain is defined by z(0) initial condition and recurrence z(t + 1) = (1 + g)z(t)

• Choose now requires both k and c or one function q : R → R2 where q(t) ≡ [k(t) c(t)]

• Easiest is q(t; θ) = NN(t; θ) where q : R → R2. But PyTorch makes separate k, c easy as well

• Also, k(t) ≥ 0 and c(t) ≥ 0 built directly into H.

• Fit Minimize the residuals on Xtrain for sum of (16) to (18)

• Is the transversality condition (19) needed? Severe multiplicity previously without (15)

•

22

Is the transversality condition necessary? Case of g = 0, z = 1

Sketch of the proof:

• Let q(t) = {k(t), c(t)} be the optimal solution.

• Let q̃(t) = {k̃(t), c̃(t)} be a solution that satisfies all the equations except transversality condition

(19).

There are two possible cases:

1. k̃(t + 1) → ∞, and k → kss =
(
β−1+δ−1

α

) 1
α−1 . Therefore any norm that measures curvature or level

of a function

0 ≤ ∥k∥S ≤ ∥k̃∥S

2. c̃(t) approaches zero.

• k̃(t) approaches
(
δ
) 1

α−1 ≫ kss =
(
β−1+δ−1

α

) 1
α−1

• Both k(t), and k̃(t) are monotone. Therefore any norm that measures curvature or level of a function

0 ≤ ∥k∥S ≤ ∥k̃∥S

TVC violation

23

Is the transversality condition necessary? Case of g = 0, z = 1

Example: the violation of the transversality condition:

0 20 40 60 80 100
Time(t)

0

5

10

15

20

25

30

k̃(t)

k(t)

(δ)
1

α−1

kss :Steady State

0 20 40 60 80 100
Time(t)

0.0

0.2

0.4

0.6

0.8

1.0

c̃(t)

c(t)

css: Steady State

• The solution that violate the transversality are associate with “big” k(t)

• Make sure explosive/big variables are included in q(· : θ)
• If explosive/big variables are not included, the solutions violate the transversality condition.

24

Minimum norm formulation

Any solution that violates the transversality condition has a bigger norm than the optimal solution.

Therefore, the transversality condition becomes redundant.

min
q≡[k c]∈H

∥q∥S

s.t. u′(c(t)) = βu′(c(t + 1))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ Xtrain

k(t + 1)(k , z) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t) for t ∈ Xtrain

k(0) = k0

Since law of motion for z(t) is deterministic, given z(0) we generate z(t) with z(t + 1) = (1 + g)z(t) for

t ∈ Xtrain.

25

Minimum norm formulation

In practice, given the Xtrain, we directly implement this as q(·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|Xtrain|
∑

t∈Xtrain

[
βu′(c(t + 1; θ))

[
z(t + 1)1−αf ′(k(t + 1; θ)) + 1− δ

]
− u′(c(t; θ))

]2
+

[
z(t)1−αf (k(t; θ)) + (1− δ)k(t; θ)− c(t; θ)− k(t + 1; θ)

]2
+

[
k(0; θ)− k0

]2

Given z(0), z(t) for t ∈ Xtrain is generated by recurrence z(t + 1) = (1 + g)z(t)

• The Xtrain does not need to have contiguous t and |Xtrain| may be relatively small Sparse

• Most important: no steady state calculated, nor large T ∈ Xtrain required

26

Results

0 20 40
t

0.5

1.0

1.5

2.0

k and c

k: approximate
ksol

c: approximate
csol

0 20 40
t

0.001

0.000

0.001

0.002

0.003
Relative error

c extrapolation
k extrapolation
c interpolation
k interpolation

1. Pick Xtrain = [0, 1, 2, .., 30] and t > 30 is “extrapolation” α = 1
3 , σ = 1, β = 0.9, g = 0.0, and

k0 = 0.4

2. Choose q(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |θ| = 49.9K parameters.

3. Fit using L-BFGS and PyTorch in just a few seconds.

4. Pray’ers were answered, even without imposing the transversality condition.
27

Growing TFP

0 20 40
t

1

2

3

4

5
k and c

k: approximate
ksol

c: approximate
csol

0 20 40
t

0.000

0.005

0.010

Relative error

c extrapolation
k extrapolation
c interpolation
k interpolation

• Pick same Xtrain but now α = 1
3 , σ = 1, β = 0.9, g = 0.02, z0 = 1.0 and k0 = 0.4.

• Choose q(t; θ) = eϕtNN(t; θNN) where θ ≡ {ϕ, θNN} ∈ Θ is the parameter vector

• Here we used economic intuition of problem to design the H to generalize better

• Non-stationary but can figure out the BGP. Short term errors are very small.

• Bonus: learns the growth rate: ϕ ≈ ln(1 + g) and even extrapolates well! 28

Recursive version of the

neoclassical growth model

The neoclassical growth model (with a possible BGP)

Skipping the Bellman formulation and going to the first order conditions in the state space , i.e. (k, z)

u′(c(k , z)) = βu(c(k ′(k , z), z ′))
[
z ′1−αf ′(k ′(k, z)) + 1− δ

]
k ′(k , z) = z1−αf (k) + (1− δ)k − c(k, z)

z ′ = (1 + g)z

k ′ ≥ 0

0 = lim
T→∞

βTu′(cT)kT+1 ∀(k0, z0)

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1)

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP z

29

Interpolation formulation

min
k′∈H

∥k ′∥S

s.t. u′
(
c
(
k , z ; k ′)) = βu′

(
c
(
k ′(k , z), (1 + g)z ; k ′))×[

((1 + g)z)1−αf ′(k ′(k , z)) + 1− δ
]

for (k, z) ∈ Xtrain

0 = lim
T→∞

βTu′(c(T))k(T + 1) for all (k0, z0) ∈ Xtrain

(20)

(21)

(22)

where

c(k , z ; k ′) ≡ z1−αf (k) + (1− δ)k − k ′(k, z) (23)

• Choose now k ′ : R2 → R , k ′(k , z ; θ) = NN(k , z ; θ) , k ′(k, z) ≥ 0 built direclty into H
• Fit Minimize the residuals on Xtrain for sum of (21)

• Is the transversality condition (22) needed? multiplicity happens without it. 30

Is the transversality condition necessary? Case of g = 0, z = 1

Still working on the proof, however the idea at the moment is

• For a fixed period of time T , and fixed capital k0 any function the violates the transversality has to

have larger derivatives to back up the growth to
(
δ
) 1

1−α and consequently larger norm.

• Minimizing norms like Sobolev that measures big derivatives should get rid of the solutions that

violate the transversality condition.

31

Minimum norm formulation

min
k′∈H

∥k ′∥S

s.t. u′
(
c
(
k , z ; k ′)) = βu′

(
c
(
k ′(k, z), (1 + g)z ; k ′))×[

((1 + g)z)1−αf ′(k ′(k , z)) + 1− δ
]

for (k, z) ∈ Xtrain

Where c(·) is defined via equation (23).

In practice, given Xtrain, we directly implement this as k ′(:, θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|Xtrain|
∑

(k,z)∈Xtrain

[
− u′

(
c
(
k , z ; k ′(.; θ)

))
+ βu′

(
c
(
k ′(k , z ; θ), (1 + g)z ; k ′(.; θ)

))
×

[
((1 + g)z)1−αf ′(k ′(k, z); θ) + 1− δ

]]2
32

Results

0 20 40
t

0.50

0.75

1.00

1.25

1.50

1.75

2.00

k and c

k: approximate
ksol

c: approximate
csol

Grid

0 20 40
t

0.06

0.04

0.02

0.00

0.02

0.04

Relative error

c interpolation
c extrapolation
k interpolation
k extrapolation

1. Pick Xtrain = [0.8, 2.5]× {1} and k0 = 0.4 ̸∈ Xtrain is “extrapolation” α = 1
3 , σ = 1, β = 0.9,

g = 0.0

2. Choose k ′(k, z ; θ) = NN(k , z ; θ) where “NN” has 4 hidden layers of 128 nodes. |θ| = 49.9K

parameters.

3. Fit using L-BFGS and PyTorch in just a few seconds.

4. Pray’ers were answered, even without imposing Transversality condition.

33

Growing TFP

0 20 40
t

1

2

3

4

k and c

k: approximate
ksol

c: approximate
csol

0 20 40
t

0.02

0.01

0.00

Relative error

c interpolation
c extrapolation
k interpolation
k extrapolation

• Pick Xtrain = [0.8, 3.5]× [0.8, 1.8] but now α = 1
3 , σ = 1, β = 0.9, g = 0.02, z0 = 1, and

k0 = 0.4 ̸∈ Xtrain.

• Choose k ′(k, z ; θ) = zNN(k , k
z ; θ), same as before |θ| = 49.9K

• Here we used economic intuition of problem to design the H to generalize better

• Relative errors are very small inside the grid.

• Extraordinary extrapolation from both sides the grid for capital. robustness

34

The neoclassical growth model

with multiple steady states

Sequential formulation

max
{ct ,kt+1}∞

t=0

∞∑
t=0

βtu(ct)

s.t. kt+1 = f (kt) + (1− δ)kt − ct

kt ≥ 0

0 = lim
T→∞

βTu′(cT)kT+1

k0 given.

1. Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1).

2. “Butterfly production function”: f (k) = amax{kα, b1k
α − b2}, α ∈ (0, 1):

• There is a kink in the production function at k∗ ≡
(

b2
b1−1

) 1
α .

• This problem has two steady states.

35

Results

0 10 20 30 40 50
t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k

capital paths

k approx
low steady state
high steady state

1. Pick Xtrain = [0, 1, 2, .., 30] and t > 30 is “extrapolation” α = 1
3 , σ = 1, β = 0.9, g = 0.0, a = 0.5,

b1 = 3.0, and b2 = 2.5, for 100 different initial conditions in [0.5, 4.0].

2. Choose q(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |θ| = 49.9K parameters.

3. Fit using L-BFGS and PyTorch, each in just a few seconds.

4. Pray’ers were answered, even without imposing the transversality condition.
36

Conclusion

Conclusion

• Solving functional equations with deep learning is an extension of collocation/interpolation methods

• With massive overparameterization optimizers tend to choose those interpolating functions which

are not explosive and with smaller gradients (i.e., inductive bias)

• In practice, those solutions automatically fulfill forward-looking assumptions (e.g. transversality)

• e.g. in growth models, deep learning loves to take the “turnpike” even if fuzzy on when to exit

• If we solve models with deep-learning without (directly) imposing long run boundary conditions

• Can use very few “grid” points and avoids calculating steady-states and recursive equivalents

• Short/medium run errors are small, and long run errors after “we are all dead” are even manageable

• Long run errors do not affect transition dynamics even if non-stationarity and steady-state multiplicity

• Exploiting key trade-off: give up accuracy globally and at steady state for better transition dynamics

• Gives hope for solving high-dimensional models still disciplined by forward looking economic assumptions

• With ML frameworks (e.g., PyTorch) these methods are robust & easier to implement than alternatives

37

Appendix

Sobolev semi-norms back

Let f : X → R

∥f ∥k,p =

(k∑
i=0

∫
X

∣∣d i f

dx i
(x)

∣∣pdx) 1
p

• Recently shown the optimizers penalize Sobolev norm: Ma, C., Ying, L. (2021)

• See you in the econometrics lunch

38

Smooth interpolation: Comparison with cubic splines back

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Approximation

y: test

yf : train

yf

Cubic Spline

Convex hull

39

Smooth interpolation: A simple dynamical system

Consider the following system

Kt+1 = ηKt .

This system have the following solutions

K (t) = K0η
t .

• Without specifying the initial condition, K0, this is an ill-defined problem, i.e. there are infinity many

solutions.

• The solution to:

min
K∈H

∥K∥S

s.t. K (t + 1)− ηK (t) = 0 for t = t1, . . . , tN

is K (t) = 0.

40

Smooth interpolation: A simple dynamical system results back

Three layers deep neural network, for N = 8, 32, and 128. Each trajectory corresponds to different

random initialization of the optimization procedure (seed).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=128

41

Sparse vs. dense grid

0 10 20 30 40 50
t

0.50

0.75

1.00

1.25

1.50

1.75

2.00

k

ksol

k : approx full grid
k : approx sparse grid 1
k : approx sparse grid 2

0 10 20 30 40 50
t

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

Relative error

Extrapolation, full grid
Interpolation, full grid
Extrapolation, sparse grid 2
Interpolation, sparse grid 2
Extrapolation, sparse grid 1
Interpolation, sparse grid 1

Left panel: Capital for three different Xtrain. Right panel: Relative errors, dashed line relative errors in the

extrapolation region.

• Full grid : Xtrain = [0, 1, 2, ..., 30](Black).

• Grid 1: Xtrain = [0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 30](Blue).

• Grid 2: Xtrain = [0, 1, 4, 8, 12, 18, 24, 30](Red).

back

42

Sparse vs. dense grid

0 20 40
t

1

2

3

4

k

k: approximate
ksol

0 20 40
t

0.06

0.04

0.02

0.00
Relative error

k interpolation
k extrapolation

0 20 40
t

0.5

1.0

1.5

2.0

2.5

c

c: approximate
csol

0 20 40
t

0.002

0.000

0.002

0.004

0.006

Relative error

c interpolation
c extrapolation

10 different k0 ∈ [0.4, 3.5]. Left panel: trajectories for 3 different initial conditions. Right panel: relative

errors for all 10 different trajectories. back 43

	Motivation
	Background: Deep learning for functional equations
	Linear asset pricing
	Neoclassical growth in sequence space
	Recursive version of the neoclassical growth model
	The neoclassical growth model with multiple steady states
	Conclusion
	Appendix

