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Motivation



Motivation

In the long run we are all dead; J.M. Keynes

• Most dynamic models require economic assumptions eliminating explosive solutions (transversality,

no-bubble, no-ponzi schemes, Blanchard-Khan conditions, etc.):

• These are variations on “boundary conditions” for forward looking behavior of agents.

• Without those economic conditions, problems are not well-posed and have multiplicity.

• Deterministic, stochastic, sequential, recursive formulations all require conditions in some form.

• Steady states/forward-looking boundary conditions are the key limitation on increasing

dimensionality:

• Otherwise, researchers routinely solve initial value problems with millions of equations.

• Equivalently, conditions for recursive formulations manifest as requiring accurate solution on the entire

domain, even though one may only care about the solution from a single initial condition.

• Key trade-off: Can we avoid precisely calculating a stationary distribution/steady-state/... –which is

never reached– and still have accurate short/medium-run dynamics disciplined by transversality/etc.?
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This paper

• Show –numerically– that deep learning solutions to many dynamic, forward looking, models

automatically fulfill the long run boundary conditions we need (transversality, no-bubble, etc.).

• Solve classic models with known solutions (asset pricing and neoclassical growth) and show excellent

short/medium term dynamics –even when non-stationary or with steady-state multiplicity.

• Only empirical, but still provide theoretical intuition on why these results hold: the deep learning

theory is not quite ready to formally prove everything in this environment.

• Suggests these methods may solve higher-dimensional problems while avoiding the key computational

limitation—with the only trade-off being loss of precision for equilibria after “we are all dead.”

But first, we need to be very precise on what deep learning solutions mean in this context.
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Background: Deep learning for

functional equations



Models as functional equations

Many theoretical models in economics can be written as functional equations:

• Take some function(s) f ∈ F where f : X → Y (e.g. asset price, investment choice, best-response,

etc.).

• Domain X could be state (e.g. dividends, capital, opponents state) or time if sequential.

• The “model” is ℓ : F × X → R (e.g., Euler and Bellman residuals, equilibrium FOCs).

• Normalize so that a solution is the “zero” of the residuals, i.e. 0 ∈ R, at each x ∈ X .

Then a solution is an f ∗ ∈ F where ℓ(f ∗, x) = 0 for all x ∈ X .
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Example: one formulation of neoclassical growth

• Capital, k, consumption c , utility u(c), discount rate β, depreciation δ, production function f (k).

• Domain: x =
[
k
]
and X = R+.

• Solve for k ′(·) and c(·): So f : R → R2 and Y = R2
+.

• Skipping to lagrangian. . . residuals are the euler equation and feasibility, so R = R2:

ℓ(
[
k ′(·) c(·)

]
︸ ︷︷ ︸

≡f

, k︸︷︷︸
≡x

) =

[
u′(c ′(k))− βu′(c(k ′(k))) (f ′(k ′(k)) + 1− δ)

f (k)− c(k)− k ′(k) + (1− δ)k

]

• Finally, a solution if the f ∗ which has zero residuals on domain X .
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How to solve globally?

• Find approximate f̂ which only holds approximately on X .

• Choose a class of approximate solutions which aligns with ℓ and F solutions.

• Potentially bound or emphasize precision in regions of economic interest in X .
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Interpolation solutions for solving functional equations

Classic approach: use class of functions with finite parameters and interpolate a finite number of points

1. Pick finite set of N points Xtrain ⊂ X (e.g., a grid).

2. Choose approximation f̂ (·; θ) ∈ H(Θ) with parameters Θ ⊆ RM (e.g., polynomials, splines).

3. Fit with nonlinear least-squares for a general M ⋛ N

min
θ∈Θ

∑
x∈Xtrain

ℓ(f̂ (·; θ), x)2

• If M = N and H(Θ) functions span RN can solve nonlinear system (e.g., Chebyshev collocation).

• If θ ∈ Θ is such that ℓ(f̂ (·; θ), x) = 0 for all x ∈ Xtrain we say it interpolates Xtrain.

4. Hope that f̂ (x ; θ) ≈ f ∗(x) for x ∈ X \ Xtrain. i.e., has low generalization error:
• For M ≥ N we usually interpolate exactly ( and hence f̂ (x ; θ) ≈ f ∗(x) for x ∈ Xtrain).

• In practice, we tinker with H,Θ and Xtrain until error no longer seems to be an issue.

• More generally, our goal is to minimize ∥f̂ (·; θ)− f ∗∥S .

Deep learning here just enables “pick, choose, fit, hope” with more flexibility using economic insights.
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“Modern” ML is massively overparameterized

Deep learning here is highly-overparameterized H (i.e. M ≫ N) designed for good generalization:

• Complete flexibility in the choice of H from economic insights on problem structure ℓ and F :

• Composing H from multiple functions (e.g., “deep”er) tends to generalize better in practice.

• For example, if f : RQ → R could choose f̂ (x ; θ) ≡ W2 · σ(W1 · x + b1) + b2:

• W1 ∈ RP×Q , b1 ∈ RP ,W2 ∈ RP , and b2 ∈ R.
• σ(·) = max(0, ·) element-wise (i.e. ReLU activation in CS literature) but many others.

• θ ∈ Θ ≡ {b1,W1, b2,W2} and M = PQ + P + P + 1.

• Choose a big P. . . or add another “layer”: f̂ (x ; θ) ≡ W3 · σ(W2 · σ(W1 · x + b1) + b2) + b3.

• Let’s generically call these NN(θ) and explain structure when it matters.

• Software (e.g., PyTorch) makes it easy to experiment with different H (i.e., neural networks),

manage the θ, and get gradients required for optimization methods.

• But otherwise, the method and objective is the same as before, i.e. min
θ∈Θ

∑
x∈Xtrain

ℓ(f̂ (·; θ), x)2.
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Deep learning optimizes in a space of functions

• Since M ≫ N has an enormous number of solutions (e.g., θ1 and θ2),

1. Agree only on “data”: f̂ (x ; θ1) ≈ f̂ (x ; θ2) for x ∈ Xtrain.

2. Agree everywhere: f̂ (x ; θ1) ≈ f̂ (x ; θ2) for x ∈ X . Alternatively, ||f̂ (·; θ1)− f̂ (·; θ2)||S ≈ 0.

• Since individual θ are irrelevant it is helpful to think of optimization directly within H

min
f̂∈H

∑
x∈Xtrain

ℓ(f̂ , x)2 (1)

• Since M ≫ N, f̂ always interpolates and the objective value in (1) will always be ≈ 0.
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Deep learning and interpolation

• Counterintuitively: for M large enough, optimizers tend to converge towards something unique f̂

in equivalence class from some ∥ · ∥S define on x ∈ X (i.e., not just at interpolated “data”).

• Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm S

min
f̂∈H

||f̂ ||S

s.t. ℓ(f̂ , x) = 0, for x ∈ Xtrain

• CS and literature refers to this as the inductive bias: optimization process biased towards particular f̂ ,

• Characterizing S (e.g., Sobolev ?) is an active research area in CS at the heart of deep learning theory.

• Intuition is that it may choose the interpolating solutions which are flattest and have smallest derivatives.

• Is ∥f̂ − f ∗∥S small (i.e., does the min-norm solution generalize well)? Depends on G ,H,Xtrain.

In this paper: we describe how the minf̂∈H ||f̂ ||S solutions are also the ones which automatically fulfill

transversality/etc. in dynamic models—and hence are disciplined by long run boundary conditions.
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Smooth interpolation Examples
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Agenda

To explore how we can ignore events after “we are all dead”, we show deep learning solutions to

1. Classic linear-asset pricing model with/without a no-bubble condition.

2. Sequential formulation of the neoclassical growth model with transversality condition.

3. Equivalent for a recursive formulation of the neoclassical growth model.

4. (In paper many more: e.g. what if non-stationary? BGPs? etc.).

We can show numerical solutions while explaining theory from the economics, but there are current

limitations on theory from CS.
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Linear asset pricing



Sequential formulation

• Dividends, yt , take y0 as given and follow process:

yt+1 = c + (1 + g)yt

• Writing as a linear state-space model with xt+1 = Axt and yt = Gxt and

xt ≡
[
1 yt

]⊤
,A ≡

[
1 0

c 1 + g

]
,G ≡

[
0 1

]
• “Fundamental” price given xt is PDV with β ∈ (0, 1) and β(1 + g) < 1

pft ≡
∞∑
j=0

βjyt+j = G (I − βA)−1xt
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Recursive formulation

With standard transformation, all solutions pft fulfill the recursive equations

pt = Gxt + βpt+1 (2)

xt+1 = Axt (3)

0 = lim
T→∞

βTpT (4)

x0 given (5)

That is, a system of two difference equations with one boundary and one initial condition

• The boundary condition (4) is an assumption necessary to be well-posed and have unique solutions

• It ensures that pt = pft by imposing long run boundary on forward-looking behavior

• But without this assumption there can be “rational bubbles” with pt ̸= pft , but fulfilling (2) and (3)

• Intuition: system of (pt , xt) difference (or differential) equations requires total of two boundaries or

initial values to have a unique solution (i.e., (5) not enough on its own)
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Solutions without a “no-bubble conditions”

• Rational bubble solutions in this deterministic asset pricing model are of the form:

pt = pft + ζ β−t . (6)

• For any ζ ≥ 0. The xt initial condition determined the pft solution.

• The “no bubble condition” chooses the ζ = 0 solution.

Lets analyze this with a “deep learning” solution, first by imposing the no-bubble condition.
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Interpolation formulation

Write pt as p(t) to allow interpolation between sparse t ∈ Xtrain points and collect (2) to (4)

min
p∈H

∥p∥S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ Xtrain

0 = lim
T→∞

βTp(T )

(7)

(8)

(9)

Where x(t) for t ∈ Xtrain is defined by x(0) initial condition and recurrence x(t + 1) = Ax(t) in (3)

• Recall: generalization comes from design of H and optimizer; not only model, i.e., (8) and (9).

• The norm ∥p∥S has “inductive bias” towards particular solutions for t ∈ [0,∞] \ Xtrain.
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Is the no-bubble condition still necessary?

• To analyze, drop the no-bubble condition and examine the class of solutions. Does (9) bind?

• In this case, we know the interpolating solutions to (8) without imposing (9)

p(t) = pf (t) + ζβ−t (10)

• Take some norm ∥.∥S of both sides and apply triangle inequality

0 ≤ ∥p∥S ≤ ∥pf ∥S + ζ ∥β−t∥S (11)

• Relative to classic methods the “deep learning” problem now has a ∥p∥S objective!

• From (11) for a large class of S , the norm minimizing ∥p∥S will be one where ζ = 0

• That is, p(t) = pf (t), the solution fulfills the no-bubble condition, and (9) is satisfied at the optima.

• What types of norms ∥p∥S would H and optimization induce? CS theory suggests variations Sobolev
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Minimum norm formulation

Given the no-bubble condition it is automatically fulfilled, could solve the following given some H and

compare to pf (t)

min
p∈H

∥p∥S

s.t. p(t)− Gx(t)− βp(t + 1) = 0 for t ∈ Xtrain

(12)

(13)

A reminder: in practice, given the Xtrain, we directly implement this as p(·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|Xtrain|
∑

t∈Xtrain

[p(t; θ)− Gx(t)− βp(t + 1; θ)]2 (14)

Since law of motion is deterministic, given x(0) we generate x(t) with x(t + 1) = Ax(t) for t ∈ Xtrain

• The Xtrain does not need to have contiguous t and |Xtrain| may be relatively small

• Most important: no steady state calculated, nor large T ∈ Xtrain required
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Results
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1. Pick Xtrain = [0, 1, 2, .., 30] and t > 30 is “extrapolation” where c = 0.01, g = −0.1, and y0 = 0.8

2. Choose p(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |θ| = 49.9K parameters.

3. Fit using L-BFGS and PyTorch in just a few seconds. Could use Adam/SGD/etc.

4. Pray’ers were answered, even without imposing no-bubble condition. Compare to analytic pf (t)

• Relative error ≡ p(t)−pf (t)

pf (t)
ranging from 0.0007% for t = 0 to 0.02% when extrapolating.

• These long run errors don’t affect the short-run accuracy (still small, even after we are all dead) 18



Contiguous vs. dense grid
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• Xtrain(Grid 1) = [0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 30] and Xtrain(Grid 2) = [0, 1, 4, 8, 12, 18, 24, 30]

• Small errors even with 8 data points (and ≈ 40K parameters). Even < 0.035% after we all are dead

• Contrary to popular wisdom about deep learning only being appropriate in high “data” environments

• Can use less “data” relative to alternatives
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Growing dividends
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• Pick same Xtrain but now c = 0.0, g = 0.02, and y0 = 0.8 (y(t) grows at rate g)

• Choose p(t; θ) = eϕtNN(t; θNN) where θ ≡ {ϕ, θNN} ∈ Θ is the parameter vector

• Here we used economic intuition of problem to design the H to generalize better

• Non-stationary but can figure out the growth. Short term errors are very small, long run manageable

• Bonus: learns the growth rate: ϕ ≈ ln(1 + g) and even extrapolates well! 20



Neoclassical growth in sequence

space



Sequential formulation (with a possible BGP)

max
{ct ,kt+1}∞

t=0

∞∑
t=0

βtu(ct)

s.t. kt+1 = z1−α
t f (kt) + (1− δ)kt − ct

zt+1 = (1 + g)zt

kt ≥ 0

0 = lim
T→∞

βTu′(cT )kT+1

k0, z0 given

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1)

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP zt
• Skip standard steps. . . Euler equation: u′(c(t)) = βu′(c(t + 1))

[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
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Interpolation formulation

min
q≡[ k c ]∈H

∥q∥S

s.t. u′(c(t)) = βu′(c(t + 1))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ Xtrain

k(t + 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t) for t ∈ Xtrain

k(0) = k0

0 = lim
T→∞

βTu′(c(T ))k(T + 1)

(15)

(16)

(17)

(18)

(19)

Where z(t) for t ∈ Xtrain is defined by z(0) initial condition and recurrence z(t + 1) = (1 + g)z(t)

• Choose now requires both k and c or one function q : R → R2 where q(t) ≡ [ k(t) c(t) ]

• Easiest is q(t; θ) = NN(t; θ) where q : R → R2. But PyTorch makes separate k, c easy as well

• Also, k(t) ≥ 0 and c(t) ≥ 0 built directly into H.

• Fit Minimize the residuals on Xtrain for sum of (16) to (18)

• Is the transversality condition (19) needed? Severe multiplicity previously without (15)

•
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Is the transversality condition necessary? Case of g = 0, z = 1

Sketch of the proof:

• Let q(t) = {k(t), c(t)} be the optimal solution.

• Let q̃(t) = {k̃(t), c̃(t)} be a solution that satisfies all the equations except transversality condition

(19).

There are two possible cases:

1. k̃(t + 1) → ∞, and k → kss =
(
β−1+δ−1

α

) 1
α−1 . Therefore any norm that measures curvature or level

of a function

0 ≤ ∥k∥S ≤ ∥k̃∥S

2. c̃(t) approaches zero.

• k̃(t) approaches
(
δ
) 1

α−1 ≫ kss =
(
β−1+δ−1

α

) 1
α−1

• Both k(t), and k̃(t) are monotone. Therefore any norm that measures curvature or level of a function

0 ≤ ∥k∥S ≤ ∥k̃∥S

TVC violation
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Is the transversality condition necessary? Case of g = 0, z = 1

Example: the violation of the transversality condition:

0 20 40 60 80 100
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css: Steady State

• The solution that violate the transversality are associate with “big” k(t)

• Make sure explosive/big variables are included in q(· : θ)
• If explosive/big variables are not included, the solutions violate the transversality condition.
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Minimum norm formulation

Any solution that violates the transversality condition has a bigger norm than the optimal solution.

Therefore, the transversality condition becomes redundant.

min
q≡[ k c ]∈H

∥q∥S

s.t. u′(c(t)) = βu′(c(t + 1))
[
z(t + 1)1−αf ′(k(t + 1)) + 1− δ

]
for t ∈ Xtrain

k(t + 1)(k , z) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t) for t ∈ Xtrain

k(0) = k0

Since law of motion for z(t) is deterministic, given z(0) we generate z(t) with z(t + 1) = (1 + g)z(t) for

t ∈ Xtrain.
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Minimum norm formulation

In practice, given the Xtrain, we directly implement this as q(·; θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|Xtrain|
∑

t∈Xtrain

[
βu′(c(t + 1; θ))

[
z(t + 1)1−αf ′(k(t + 1; θ)) + 1− δ

]
− u′(c(t; θ))

]2
+

[
z(t)1−αf (k(t; θ)) + (1− δ)k(t; θ)− c(t; θ)− k(t + 1; θ)

]2
+

[
k(0; θ)− k0

]2

Given z(0), z(t) for t ∈ Xtrain is generated by recurrence z(t + 1) = (1 + g)z(t)

• The Xtrain does not need to have contiguous t and |Xtrain| may be relatively small Sparse

• Most important: no steady state calculated, nor large T ∈ Xtrain required
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Results
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1. Pick Xtrain = [0, 1, 2, .., 30] and t > 30 is “extrapolation” α = 1
3 , σ = 1, β = 0.9, g = 0.0, and

k0 = 0.4

2. Choose q(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |θ| = 49.9K parameters.

3. Fit using L-BFGS and PyTorch in just a few seconds.

4. Pray’ers were answered, even without imposing the transversality condition.
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Growing TFP
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• Pick same Xtrain but now α = 1
3 , σ = 1, β = 0.9, g = 0.02, z0 = 1.0 and k0 = 0.4.

• Choose q(t; θ) = eϕtNN(t; θNN) where θ ≡ {ϕ, θNN} ∈ Θ is the parameter vector

• Here we used economic intuition of problem to design the H to generalize better

• Non-stationary but can figure out the BGP. Short term errors are very small.

• Bonus: learns the growth rate: ϕ ≈ ln(1 + g) and even extrapolates well! 28



Recursive version of the

neoclassical growth model



The neoclassical growth model (with a possible BGP)

Skipping the Bellman formulation and going to the first order conditions in the state space , i.e. (k, z)

u′(c(k , z)) = βu(c(k ′(k , z), z ′))
[
z ′1−αf ′(k ′(k, z)) + 1− δ

]
k ′(k , z) = z1−αf (k) + (1− δ)k − c(k, z)

z ′ = (1 + g)z

k ′ ≥ 0

0 = lim
T→∞

βTu′(cT )kT+1 ∀(k0, z0)

• Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1)

• Cobb-Douglas production function: f (k) = kα, α ∈ (0, 1) before scaling by TFP z

29



Interpolation formulation

min
k′∈H

∥k ′∥S

s.t. u′
(
c
(
k , z ; k ′)) = βu′

(
c
(
k ′(k , z), (1 + g)z ; k ′))×[

((1 + g)z)1−αf ′(k ′(k , z)) + 1− δ
]

for (k, z) ∈ Xtrain

0 = lim
T→∞

βTu′(c(T ))k(T + 1) for all (k0, z0) ∈ Xtrain

(20)

(21)

(22)

where

c(k , z ; k ′) ≡ z1−αf (k) + (1− δ)k − k ′(k, z) (23)

• Choose now k ′ : R2 → R , k ′(k , z ; θ) = NN(k , z ; θ) , k ′(k, z) ≥ 0 built direclty into H
• Fit Minimize the residuals on Xtrain for sum of (21)

• Is the transversality condition (22) needed? multiplicity happens without it. 30



Is the transversality condition necessary? Case of g = 0, z = 1

Still working on the proof, however the idea at the moment is

• For a fixed period of time T , and fixed capital k0 any function the violates the transversality has to

have larger derivatives to back up the growth to
(
δ
) 1

1−α and consequently larger norm.

• Minimizing norms like Sobolev that measures big derivatives should get rid of the solutions that

violate the transversality condition.
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Minimum norm formulation

min
k′∈H

∥k ′∥S

s.t. u′
(
c
(
k , z ; k ′)) = βu′

(
c
(
k ′(k, z), (1 + g)z ; k ′))×[

((1 + g)z)1−αf ′(k ′(k , z)) + 1− δ
]

for (k, z) ∈ Xtrain

Where c(·) is defined via equation (23).

In practice, given Xtrain, we directly implement this as k ′(:, θ) ∈ H(Θ) and fit with

min
θ∈Θ

1

|Xtrain|
∑

(k,z)∈Xtrain

[
− u′

(
c
(
k , z ; k ′(.; θ)

))
+ βu′

(
c
(
k ′(k , z ; θ), (1 + g)z ; k ′(.; θ)

))
×

[
((1 + g)z)1−αf ′(k ′(k, z); θ) + 1− δ

]]2
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Results
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1. Pick Xtrain = [0.8, 2.5]× {1} and k0 = 0.4 ̸∈ Xtrain is “extrapolation” α = 1
3 , σ = 1, β = 0.9,

g = 0.0

2. Choose k ′(k, z ; θ) = NN(k , z ; θ) where “NN” has 4 hidden layers of 128 nodes. |θ| = 49.9K

parameters.

3. Fit using L-BFGS and PyTorch in just a few seconds.

4. Pray’ers were answered, even without imposing Transversality condition.
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Growing TFP
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• Pick Xtrain = [0.8, 3.5]× [0.8, 1.8] but now α = 1
3 , σ = 1, β = 0.9, g = 0.02, z0 = 1, and

k0 = 0.4 ̸∈ Xtrain.

• Choose k ′(k, z ; θ) = zNN(k , k
z ; θ), same as before |θ| = 49.9K

• Here we used economic intuition of problem to design the H to generalize better

• Relative errors are very small inside the grid.

• Extraordinary extrapolation from both sides the grid for capital. robustness
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The neoclassical growth model

with multiple steady states



Sequential formulation

max
{ct ,kt+1}∞

t=0

∞∑
t=0

βtu(ct)

s.t. kt+1 = f (kt) + (1− δ)kt − ct

kt ≥ 0

0 = lim
T→∞

βTu′(cT )kT+1

k0 given.

1. Preferences: u(c) = c1−σ−1
1−σ , σ > 0, limc→0 u

′(c) = ∞, and β ∈ (0, 1).

2. “Butterfly production function”: f (k) = amax{kα, b1k
α − b2}, α ∈ (0, 1):

• There is a kink in the production function at k∗ ≡
(

b2
b1−1

) 1
α .

• This problem has two steady states.
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Results
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k
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1. Pick Xtrain = [0, 1, 2, .., 30] and t > 30 is “extrapolation” α = 1
3 , σ = 1, β = 0.9, g = 0.0, a = 0.5,

b1 = 3.0, and b2 = 2.5, for 100 different initial conditions in [0.5, 4.0].

2. Choose q(t; θ) = NN(t; θ) where “NN” has 4 hidden layers of 128 nodes. |θ| = 49.9K parameters.

3. Fit using L-BFGS and PyTorch, each in just a few seconds.

4. Pray’ers were answered, even without imposing the transversality condition.
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Conclusion

• Solving functional equations with deep learning is an extension of collocation/interpolation methods

• With massive overparameterization optimizers tend to choose those interpolating functions which

are not explosive and with smaller gradients (i.e., inductive bias)

• In practice, those solutions automatically fulfill forward-looking assumptions (e.g. transversality)

• e.g. in growth models, deep learning loves to take the “turnpike” even if fuzzy on when to exit

• If we solve models with deep-learning without (directly) imposing long run boundary conditions

• Can use very few “grid” points and avoids calculating steady-states and recursive equivalents

• Short/medium run errors are small, and long run errors after “we are all dead” are even manageable

• Long run errors do not affect transition dynamics even if non-stationarity and steady-state multiplicity

• Exploiting key trade-off: give up accuracy globally and at steady state for better transition dynamics

• Gives hope for solving high-dimensional models still disciplined by forward looking economic assumptions

• With ML frameworks (e.g., PyTorch) these methods are robust & easier to implement than alternatives
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Sobolev semi-norms back

Let f : X → R

∥f ∥k,p =

( k∑
i=0

∫
X

∣∣d i f

dx i
(x)

∣∣pdx) 1
p

• Recently shown the optimizers penalize Sobolev norm: Ma, C., Ying, L. (2021)

• See you in the econometrics lunch
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Smooth interpolation: Comparison with cubic splines back
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Smooth interpolation: A simple dynamical system

Consider the following system

Kt+1 = ηKt .

This system have the following solutions

K (t) = K0η
t .

• Without specifying the initial condition, K0, this is an ill-defined problem, i.e. there are infinity many

solutions.

• The solution to:

min
K∈H

∥K∥S

s.t. K (t + 1)− ηK (t) = 0 for t = t1, . . . , tN

is K (t) = 0.
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Smooth interpolation: A simple dynamical system results back

Three layers deep neural network, for N = 8, 32, and 128. Each trajectory corresponds to different

random initialization of the optimization procedure (seed).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t

0.00

0.01 N=128

41



Sparse vs. dense grid
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Left panel: Capital for three different Xtrain. Right panel: Relative errors, dashed line relative errors in the

extrapolation region.

• Full grid : Xtrain = [0, 1, 2, ..., 30](Black).

• Grid 1: Xtrain = [0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 30](Blue).

• Grid 2: Xtrain = [0, 1, 4, 8, 12, 18, 24, 30](Red).

back
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Sparse vs. dense grid
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10 different k0 ∈ [0.4, 3.5]. Left panel: trajectories for 3 different initial conditions. Right panel: relative

errors for all 10 different trajectories. back 43
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