Spooky Boundaries at a Distance: Exploring Transversality and Stationarity with Deep Learning

Mahdi Ebrahimi Kahou¹ Jesús Fernández-Villaverde² Sebastián Gómez Cardona¹ Jesse Perla¹ Jan Rosa¹ May 22, 2022

¹University of British Columbia, Vancouver School of Economics

²University of Pennsylvania

Motivation

In the long run we are all dead; J.M. Keynes

- Most dynamic models require **economic assumptions** eliminating explosive solutions (transversality, no-bubble, no-ponzi schemes, Blanchard-Khan conditions, etc.):
 - These are variations on "boundary conditions" for forward looking behavior of agents.
 - Without those economic conditions, problems are not well-posed and have multiplicity.
 - Deterministic, stochastic, sequential, recursive formulations all require conditions in some form.
- Steady states/forward-looking boundary conditions are the key limitation on increasing dimensionality:
 - Otherwise, researchers routinely solve initial value problems with millions of equations.
 - Equivalently, conditions for recursive formulations manifest as requiring accurate solution on the entire domain, even though one may only care about the solution from a single initial condition.
- Key trade-off: Can we avoid precisely calculating a stationary distribution/steady-state/... -which is never reached- and still have accurate short/medium-run dynamics disciplined by transversality/etc.?

- Show –numerically– that deep learning solutions to many dynamic, forward looking, models automatically fulfill the long run boundary conditions we need (transversality, no-bubble, etc.).
- Solve classic models with known solutions (asset pricing and neoclassical growth) and show excellent short/medium term dynamics -even when **non-stationary** or with **steady-state multiplicity**.
- Only empirical, but still provide theoretical intuition on why these results hold: the deep learning theory is not quite ready to formally prove everything in this environment.
- Suggests these methods may solve higher-dimensional problems while avoiding the key computational limitation—with the only trade-off being loss of precision for equilibria after "we are all dead."

But first, we need to be very precise on what deep learning solutions mean in this context.

Background: Deep learning for functional equations

Many theoretical models in economics can be written as functional equations:

- Take some function(s) f ∈ F where f : X → Y (e.g. asset price, investment choice, best-response, etc.).
- Domain \mathcal{X} could be state (e.g. dividends, capital, opponents state) or time if sequential.
- The "model" is $\ell : \mathcal{F} \times \mathcal{X} \to \mathcal{R}$ (e.g., Euler and Bellman residuals, equilibrium FOCs).
- Normalize so that a solution is the "zero" of the residuals, i.e. $0 \in \mathcal{R}$, at each $x \in \mathcal{X}$.

Then a solution is an $f^* \in \mathcal{F}$ where $\ell(f^*, x) = \mathbf{0}$ for all $x \in \mathcal{X}$.

Example: one formulation of neoclassical growth

- Capital, k, consumption c, utility u(c), discount rate β , depreciation δ , production function f(k).
- Domain: $x = \begin{bmatrix} k \end{bmatrix}$ and $\mathcal{X} = \mathbb{R}_+$.
- Solve for $k'(\cdot)$ and $c(\cdot)$: So $f : \mathbb{R} \to \mathbb{R}^2$ and $\mathcal{Y} = \mathbb{R}^2_+$.
- Skipping to lagrangian... residuals are the euler equation and feasibility, so $\mathcal{R} = \mathbb{R}^2$:

$$\ell(\underbrace{\left[k'(\cdot) \quad c(\cdot)\right]}_{\equiv f}, \underbrace{k}_{\equiv x}) = \begin{bmatrix} u'(c'(k)) - \beta u'(c(k'(k))) \left(f'(k'(k)) + 1 - \delta\right) \\ f(k) - c(k) - k'(k) + (1 - \delta)k \end{bmatrix}$$

• Finally, a solution if the f^* which has zero residuals on domain \mathcal{X} .

- Find approximate \hat{f} which only holds approximately on \mathcal{X} .
- Choose a class of approximate solutions which aligns with ℓ and ${\mathcal F}$ solutions.
- Potentially bound or emphasize precision in regions of economic interest in \mathcal{X} .

Interpolation solutions for solving functional equations

Classic approach: use class of functions with finite parameters and interpolate a finite number of points

- 1. **Pick** finite set of *N* points $\mathcal{X}_{train} \subset \mathcal{X}$ (e.g., a grid).
- 2. Choose approximation $\hat{f}(\cdot; \theta) \in \mathcal{H}(\Theta)$ with parameters $\Theta \subseteq \mathbb{R}^{M}$ (e.g., polynomials, splines).
- 3. Fit with nonlinear least-squares for a general $M \ge N$

$$\min_{\theta \in \Theta} \sum_{x \in \mathcal{X}_{\text{train}}} \ell(\hat{f}(\cdot; \theta), x)^2$$

- If M = N and $\mathcal{H}(\Theta)$ functions span \mathbb{R}^N can solve nonlinear system (e.g., Chebyshev collocation).
- If $\theta \in \Theta$ is such that $\ell(\hat{f}(\cdot; \theta), x) = 0$ for all $x \in \mathcal{X}_{\text{train}}$ we say it interpolates $\mathcal{X}_{\text{train}}$.
- 4. Hope that $\hat{f}(x; \theta) \approx f^*(x)$ for $x \in \mathcal{X} \setminus \mathcal{X}_{\text{train}}$. i.e., has low generalization error:
 - For $M \ge N$ we usually interpolate exactly (and hence $\hat{f}(x; \theta) \approx f^*(x)$ for $x \in \mathcal{X}_{\text{train}}$).
 - In practice, we tinker with \mathcal{H}, Θ and \mathcal{X}_{train} until error no longer seems to be an issue.
 - More generally, our goal is to minimize $\|\hat{f}(\cdot; \theta) f^*\|_S$.

Deep learning here just enables "pick, choose, fit, hope" with more flexibility using economic insights.

Deep learning here is highly-overparameterized \mathcal{H} (i.e. $M \gg N$) designed for good generalization:

- Complete flexibility in the choice of \mathcal{H} from economic insights on problem structure ℓ and \mathcal{F} :
- Composing \mathcal{H} from multiple functions (e.g., "deep" er) tends to generalize better in practice.
- For example, if $f : \mathbb{R}^Q \to \mathbb{R}$ could choose $\hat{f}(x; \theta) \equiv W_2 \cdot \sigma(W_1 \cdot x + b_1) + b_2$:
 - $W_1 \in \mathbb{R}^{P \times Q}, b_1 \in \mathbb{R}^P, W_2 \in \mathbb{R}^P$, and $b_2 \in \mathbb{R}$.
 - $\sigma(\cdot) = max(0, \cdot)$ element-wise (i.e. ReLU activation in CS literature) but many others.
 - $\theta \in \Theta \equiv \{b_1, W_1, b_2, W_2\}$ and M = PQ + P + P + 1.
 - Choose a big P... or add another "layer": $\hat{f}(x;\theta) \equiv W_3 \cdot \sigma(W_2 \cdot \sigma(W_1 \cdot x + b_1) + b_2) + b_3$.
 - Let's generically call these $NN(\theta)$ and explain structure when it matters.
- Software (e.g., PyTorch) makes it easy to experiment with different \mathcal{H} (i.e., neural networks), manage the θ , and get gradients required for optimization methods.
 - But otherwise, the method and objective is the same as before, i.e. $\min_{\theta \in \Theta} \sum_{x \in \mathcal{X}_{\text{train}}} \ell(\hat{f}(\cdot; \theta), x)^2.$

- Since $M \gg N$ has an enormous number of solutions (e.g., θ_1 and θ_2),
 - 1. Agree only on "data": $\hat{f}(x; \theta_1) \approx \hat{f}(x; \theta_2)$ for $x \in \mathcal{X}_{\text{train}}$.
 - 2. Agree everywhere: $\hat{f}(x;\theta_1) \approx \hat{f}(x;\theta_2)$ for $x \in \mathcal{X}$. Alternatively, $||\hat{f}(\cdot;\theta_1) \hat{f}(\cdot;\theta_2)||_{\mathcal{S}} \approx 0$.
- Since individual heta are irrelevant it is helpful to think of optimization directly within $\mathcal H$

$$\min_{\hat{f} \in \mathcal{H}} \sum_{x \in \mathcal{X}_{\text{train}}} \ell(\hat{f}, x)^2$$

(1)

• Since $M \gg N$, \hat{f} always interpolates and the objective value in (1) will always be ≈ 0 .

Deep learning and interpolation

- Counterintuitively: for *M* large enough, optimizers tend to converge towards something unique *f* in equivalence class from some || · ||_s define on x ∈ X (i.e., not just at interpolated "data").
- Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm S

$$egin{aligned} \min_{\hat{f}\in\mathcal{H}} & \|\hat{f}\|_{\mathcal{S}} \ ext{s.t.} \, \ell(\hat{f}, x) = 0, \quad ext{ for } x \in \mathcal{X}_{ ext{train}} \end{aligned}$$

- CS and literature refers to this as the inductive bias: optimization process biased towards particular \hat{f} ,
- Characterizing *S* (e.g., •• Sobolev ?) is an active research area in CS at the heart of deep learning theory.
- Intuition is that it may choose the interpolating solutions which are flattest and have smallest derivatives.
- Is $\|\hat{f} f^*\|_S$ small (i.e., does the min-norm solution generalize well)? Depends on $G, \mathcal{H}, \mathcal{X}_{\text{train}}$.

In this paper: we describe how the $\min_{\hat{f} \in \mathcal{H}} ||\hat{f}||_s$ solutions are also the ones which automatically fulfill transversality/etc. in dynamic models—and hence are disciplined by long run boundary conditions.

Smooth interpolation **••** Examples

To explore how we can ignore events after "we are all dead", we show deep learning solutions to

- 1. Classic linear-asset pricing model with/without a no-bubble condition.
- 2. Sequential formulation of the neoclassical growth model with transversality condition.
- 3. Equivalent for a recursive formulation of the neoclassical growth model.
- 4. (In paper many more: e.g. what if non-stationary? BGPs? etc.).

We can show numerical solutions while explaining theory from the economics, but there are current limitations on theory from CS.

Linear asset pricing

Sequential formulation

• Dividends, y_t , take y_0 as given and follow process:

$$y_{t+1} = c + (1+g)y_t$$

• Writing as a linear state-space model with $x_{t+1} = Ax_t$ and $y_t = Gx_t$ and

$$x_t \equiv \begin{bmatrix} 1 & y_t \end{bmatrix}^{\top}, A \equiv \begin{bmatrix} 1 & 0 \\ c & 1+g \end{bmatrix}, G \equiv \begin{bmatrix} 0 & 1 \end{bmatrix}$$

• "Fundamental" price given x_t is PDV with $\beta \in (0,1)$ and $\beta(1+g) < 1$

$$p_t^f \equiv \sum_{j=0}^\infty eta^j y_{t+j} = G(I - eta A)^{-1} x_t$$

Recursive formulation

With standard transformation, all solutions p_t^f fulfill the recursive equations

$$p_t = G x_t + \beta p_{t+1} \tag{2}$$

$$x_{t+1} = A x_t \tag{3}$$

$$0 = \lim_{T \to \infty} \beta^T \rho_T \tag{4}$$

$$x_0$$
 given (5)

That is, a system of two difference equations with one boundary and one initial condition

- The boundary condition (4) is an assumption necessary to be well-posed and have unique solutions
- It ensures that $p_t = p_t^f$ by imposing long run boundary on forward-looking behavior
- But without this assumption there can be "rational bubbles" with $p_t \neq p_t^f$, but fulfilling (2) and (3)
- Intuition: system of (*p_t*, *x_t*) difference (or differential) equations requires total of two boundaries or initial values to have a unique solution (i.e., (5) not enough on its own)

• Rational bubble solutions in this deterministic asset pricing model are of the form:

$$p_t = p_t^f + \zeta \ \beta^{-t}.$$

(6)

- For any $\zeta \ge 0$. The x_t initial condition determined the p_t^f solution.
- The "no bubble condition" chooses the $\zeta = 0$ solution.

Lets analyze this with a "deep learning" solution, first by imposing the no-bubble condition.

Write p_t as p(t) to allow interpolation between sparse $t \in \mathcal{X}_{\text{train}}$ points and collect (2) to (4)

$$\min_{p \in \mathcal{H}} ||p||s$$
s.t. $p(t) - Gx(t) - \beta p(t+1) = 0 \text{ for } t \in \mathcal{X}_{\text{train}}$

$$0 = \lim_{T \to \infty} \beta^T p(T)$$

(8) (9)

(7)

Where x(t) for $t \in \mathcal{X}_{\text{train}}$ is defined by x(0) initial condition and recurrence x(t+1) = Ax(t) in (3)

- Recall: generalization comes from design of \mathcal{H} and optimizer; not only model, i.e., (8) and (9).
- The norm $\|p\|_{S}$ has "inductive bias" towards particular solutions for $t \in [0,\infty] \setminus \mathcal{X}_{\text{train}}$.

Is the no-bubble condition still necessary?

- To analyze, drop the no-bubble condition and examine the class of solutions. Does (9) bind?
- In this case, we know the interpolating solutions to (8) without imposing (9)

 $p(t) = p^{f}(t) + \zeta \beta^{-t}$ (10)

• Take some norm $\|.\|_{S}$ of both sides and apply triangle inequality

$$0 \le \|p\|_{S} \le \|p^{f}\|_{S} + \zeta \|\beta^{-t}\|_{S}$$

(11)

- Relative to classic methods the "deep learning" problem now has a $\|p\|_S$ objective!
 - From (11) for a large class of S, the norm minimizing $\|p\|_S$ will be one where $\zeta = 0$
 - That is, $p(t) = p^{f}(t)$, the solution fulfills the no-bubble condition, and (9) is satisfied at the optima.
- What types of norms $\|p\|_S$ would \mathcal{H} and optimization induce? CS theory suggests variations Sobolev

Minimum norm formulation

Given the no-bubble condition it is automatically fulfilled, could solve the following given some \mathcal{H} and compare to $p^{f}(t)$

$$\begin{array}{l} \min_{p \in \mathcal{H}} & \|p\|_{\mathcal{S}} \\ \text{s.t.} & p(t) - G_{\mathsf{X}}(t) - \beta p(t+1) = 0 \quad \text{for } t \in \mathcal{X}_{\text{train}} \end{array}$$

A reminder: in practice, given the \mathcal{X}_{train} , we directly implement this as $p(\cdot; \theta) \in \mathcal{H}(\Theta)$ and fit with

$$\min_{\theta \in \Theta} \frac{1}{|\mathcal{X}_{\text{train}}|} \sum_{t \in \mathcal{X}_{\text{train}}} \left[p(t;\theta) - G_{x}(t) - \beta p(t+1;\theta) \right]^{2}$$
(14)

Since law of motion is deterministic, given x(0) we generate x(t) with x(t+1) = Ax(t) for $t \in \mathcal{X}_{train}$

- The $\mathcal{X}_{\text{train}}$ does not need to have contiguous t and $|\mathcal{X}_{\text{train}}|$ may be relatively small
- Most important: no steady state calculated, nor large $\mathcal{T} \in \mathcal{X}_{\mathrm{train}}$ required

(12)

(13)

Results

- 1. Pick $\mathcal{X}_{\text{train}} = [0, 1, 2, ..., 30]$ and t > 30 is "extrapolation" where c = 0.01, g = -0.1, and $y_0 = 0.8$
- 2. Choose $p(t; \theta) = NN(t; \theta)$ where "NN" has 4 hidden layers of 128 nodes. $|\theta| = 49.9K$ parameters.
- 3. Fit using L-BFGS and PyTorch in just a few seconds. Could use Adam/SGD/etc.
- 4. Pray'ers were answered, even without imposing no-bubble condition. Compare to analytic $p^{f}(t)$
 - Relative error $\equiv \frac{p(t)-p^{f}(t)}{p^{f}(t)}$ ranging from 0.0007% for t = 0 to 0.02% when extrapolating.
 - These long run errors don't affect the short-run accuracy (still small, even after we are all dead)

Contiguous vs. dense grid

- $\mathcal{X}_{train}(Grid 1) = [0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 30]$ and $\mathcal{X}_{train}(Grid 2) = [0, 1, 4, 8, 12, 18, 24, 30]$
- Small errors even with 8 data points (and \approx 40K parameters). Even < 0.035% after we all are dead
- Contrary to popular wisdom about deep learning only being appropriate in high "data" environments
 - Can use less "data" relative to alternatives

Growing dividends

- Pick same $\mathcal{X}_{\text{train}}$ but now c = 0.0, g = 0.02, and $y_0 = 0.8$ (y(t) grows at rate g)
- Choose $p(t; \theta) = e^{\phi t} NN(t; \theta_{NN})$ where $\theta \equiv \{\phi, \theta_{NN}\} \in \Theta$ is the parameter vector
 - Here we used economic intuition of problem to design the ${\mathcal H}$ to generalize better
- Non-stationary but can figure out the growth. Short term errors are very small, long run manageable
- Bonus: learns the growth rate: $\phi \approx \ln(1+g)$ and even extrapolates well!

Neoclassical growth in sequence space

Sequential formulation (with a possible BGP)

$$\max_{\{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t. $k_{t+1} = z_t^{1-\alpha} f(k_t) + (1-\delta)k_t - c_t$
 $z_{t+1} = (1+g)z_t$
 $k_t \ge 0$
 $0 = \lim_{T \to \infty} \beta^T u'(c_T)k_{T+1}$
 k_0, z_0 given

- Preferences: $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$, $\sigma > 0$, $\lim_{c\to 0} u'(c) = \infty$, and $\beta \in (0,1)$
- Cobb-Douglas production function: $f(k) = k^{\alpha}$, $\alpha \in (0, 1)$ before scaling by TFP z_t
- Skip standard steps... Euler equation: $u'(c(t)) = \beta u'(c(t+1))[z(t+1)^{1-\alpha}f'(k(t+1))+1-\delta]$

$$\begin{array}{ll}
\min_{q \equiv [k \ c] \in \mathcal{H}} & \|q\|_{S} & (15) \\
\text{s.t.} & u'(c(t)) = \beta u'(c(t+1))[z(t+1)^{1-\alpha}f'(k(t+1))+1-\delta] & \text{for } t \in \mathcal{X}_{\text{train}} & (16) \\
& k(t+1) = z(t)^{1-\alpha}f(k(t)) + (1-\delta)k(t) - c(t) & \text{for } t \in \mathcal{X}_{\text{train}} & (17) \\
& k(0) = k_{0} & (18) \\
& 0 = \lim_{T \to \infty} \beta^{T} u'(c(T))k(T+1) & (19)
\end{array}$$

Where z(t) for $t \in \mathcal{X}_{\text{train}}$ is defined by z(0) initial condition and recurrence z(t+1) = (1+g)z(t)

- Choose now requires both k and c or one function $q: \mathbb{R} \to \mathbb{R}^2$ where $q(t) \equiv [k(t) c(t)]$
 - Easiest is $q(t; \theta) = NN(t; \theta)$ where $q : \mathbb{R} \to \mathbb{R}^2$. But PyTorch makes separate k, c easy as well
 - Also, $k(t) \ge 0$ and $c(t) \ge 0$ built directly into \mathcal{H} .
- Fit Minimize the residuals on \mathcal{X}_{train} for sum of (16) to (18)
 - Is the transversality condition (19) needed? Severe multiplicity previously without (15)

Is the transversality condition necessary? Case of g = 0, z = 1

Sketch of the proof:

- Let $q(t) = \{k(t), c(t)\}$ be the optimal solution.
- Let \$\tilde{q}(t) = {\tilde{k}(t), \tilde{c}(t)}\$ be a solution that satisfies all the equations except transversality condition (19).

There are two possible cases:

1. $\tilde{k}(t+1) \to \infty$, and $k \to k_{ss} = \left(\frac{\beta^{-1} + \delta - 1}{\alpha}\right)^{\frac{1}{\alpha - 1}}$. Therefore any norm that measures curvature or level of a function

 $0 \le \|k\|_{\mathcal{S}} \le \|\tilde{k}\|_{\mathcal{S}}$

2. $\tilde{c}(t)$ approaches zero.

- $\tilde{k}(t)$ approaches $(\delta)^{\frac{1}{\alpha-1}} \gg k_{ss} = (\frac{\beta^{-1}+\delta-1}{\alpha})^{\frac{1}{\alpha-1}}$
- Both k(t), and $\tilde{k}(t)$ are monotone. Therefore any norm that measures curvature or level of a function

 $0 \le \|k\|_{\mathcal{S}} \le \|\tilde{k}\|_{\mathcal{S}}$

Is the transversality condition necessary? Case of g = 0, z = 1

Example: the violation of the transversality condition:

- The solution that violate the transversality are associate with "big" k(t)
- Make sure explosive/big variables are included in $q(\cdot : \theta)$
- If explosive/big variables are not included, the solutions violate the transversality condition.

Any solution that violates the transversality condition has a **bigger norm** than the optimal solution. Therefore, the transversality condition becomes **redundant**.

$$\min_{q \equiv [k \ c] \in \mathcal{H}} \|q\|_{S}$$
s.t. $u'(c(t)) = \beta u'(c(t+1))[z(t+1)^{1-\alpha}f'(k(t+1)) + 1 - \delta]$ for $t \in \mathcal{X}_{\text{train}}$
 $k(t+1)(k,z) = z(t)^{1-\alpha}f(k(t)) + (1-\delta)k(t) - c(t)$ for $t \in \mathcal{X}_{\text{train}}$
 $k(0) = k_{0}$

Since law of motion for z(t) is deterministic, given z(0) we generate z(t) with z(t+1) = (1+g)z(t) for $t \in \mathcal{X}_{\text{train}}$.

Minimum norm formulation

In practice, given the \mathcal{X}_{train} , we directly implement this as $q(\cdot; \theta) \in \mathcal{H}(\Theta)$ and fit with

$$egin{split} \min_{ heta\in\Theta}rac{1}{|\mathcal{X}_{ ext{train}}|}\sum_{t\in\mathcal{X}_{ ext{train}}}\left[eta u'(c(t+1; heta))ig[z(t+1)^{1-lpha}f'(k(t+1; heta))+1-\deltaig]-u'(c(t; heta))ig]^2+ \left[z(t)^{1-lpha}f(k(t; heta))+(1-\delta)k(t; heta)-c(t; heta)-k(t+1; heta)
ight]^2+\left[k(0; heta)-k_0ig]^2 \end{split}$$

Given z(0), z(t) for $t \in \mathcal{X}_{\text{train}}$ is generated by recurrence z(t+1) = (1+g)z(t)

- The $\mathcal{X}_{\text{train}}$ does not need to have contiguous t and $|\mathcal{X}_{\text{train}}|$ may be relatively small \sim sparse
- Most important: no steady state calculated, nor large $\mathcal{T} \in \mathcal{X}_{\mathrm{train}}$ required

Results

- 1. Pick $\mathcal{X}_{\text{train}} = [0, 1, 2, ..., 30]$ and t > 30 is "extrapolation" $\alpha = \frac{1}{3}$, $\sigma = 1$, $\beta = 0.9$, g = 0.0, and $k_0 = 0.4$
- 2. Choose $q(t; \theta) = NN(t; \theta)$ where "NN" has 4 hidden layers of 128 nodes. $|\theta| = 49.9K$ parameters.
- 3. Fit using L-BFGS and PyTorch in just a few seconds.
- 4. Pray'ers were answered, even without imposing the transversality condition.

Growing TFP

- Pick same $\mathcal{X}_{\text{train}}$ but now $\alpha = \frac{1}{3}$, $\sigma = 1$, $\beta = 0.9$, g = 0.02, $z_0 = 1.0$ and $k_0 = 0.4$.
- Choose $q(t; \theta) = e^{\phi t} NN(t; \theta_{NN})$ where $\theta \equiv \{\phi, \theta_{NN}\} \in \Theta$ is the parameter vector
 - Here we used economic intuition of problem to design the ${\mathcal H}$ to generalize better
- Non-stationary but can figure out the BGP. Short term errors are very small.
- Bonus: learns the growth rate: $\phi \approx \ln(1+g)$ and even extrapolates well!

Recursive version of the neoclassical growth model

Skipping the Bellman formulation and going to the first order conditions in the state space, i.e. (k, z)

$$u'(c(k,z)) = \beta u(c(k'(k,z),z')) [z'^{1-\alpha} f'(k'(k,z)) + 1 - \delta]$$

$$k'(k,z) = z^{1-\alpha} f(k) + (1-\delta)k - c(k,z)$$

$$z' = (1+g)z$$

$$k' \ge 0$$

$$0 = \lim_{T \to \infty} \beta^T u'(c_T) k_{T+1} \quad \forall (k_0, z_0)$$

- Preferences: $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$, $\sigma > 0$, $\lim_{c \to 0} u'(c) = \infty$, and $\beta \in (0,1)$
- Cobb-Douglas production function: $f(k) = k^{\alpha}$, $\alpha \in (0,1)$ before scaling by TFP z

Interpolation formulation

$$\begin{split} \min_{\substack{k' \in \mathcal{H}}} & \|k'\|_{\mathcal{S}} \\ \text{s.t.} & u' \left(c \left(k, z; k' \right) \right) = \beta u' \left(c \left(k'(k, z), (1+g)z; k' \right) \right) \times \\ & \left[((1+g)z)^{1-\alpha} f'(k'(k, z)) + 1 - \delta \right] & \text{for } (k, z) \in \mathcal{X}_{\text{train}} \\ & 0 = \lim_{T \to \infty} \beta^T u'(c(T)) k(T+1) & \text{for all } (k_0, z_0) \in \mathcal{X}_{\text{train}} \end{split}$$

(20)

where

$$c(k,z;k') \equiv z^{1-\alpha}f(k) + (1-\delta)k - k'(k,z)$$

(23)

- Choose now $k':\mathbb{R}^2 o\mathbb{R}$, $k'(k,z;\theta)=\mathit{NN}(k,z;\theta)$, $k'(k,z)\geq 0$ built directly into $\mathcal H$
- Fit Minimize the residuals on \mathcal{X}_{train} for sum of (21)
 - Is the transversality condition (22) needed? multiplicity happens without it.

30

Still working on the proof, however the idea at the moment is

- For a fixed period of time T, and fixed capital k_0 any function the violates the transversality has to have larger derivatives to back up the growth to $(\delta)^{\frac{1}{1-\alpha}}$ and consequently larger norm.
- Minimizing norms like Sobolev that measures big derivatives should get rid of the solutions that violate the transversality condition.

Minimum norm formulation

$$\begin{split} \min_{k' \in \mathcal{H}} & \|k'\|_{\mathcal{S}} \\ \text{s.t.} & u' \Big(c\big(k, z; k'\big) \Big) = \beta u' \Big(c\big(k'(k, z), (1+g)z; k'\big) \Big) \times \\ & \big[((1+g)z)^{1-\alpha} f'(k'(k, z)) + 1 - \delta \big] \quad \text{for } (k, z) \in \mathcal{X}_{\text{train}} \end{split}$$

Where $c(\cdot)$ is defined via equation (23).

In practice, given $\mathcal{X}_{\text{train}}$, we directly implement this as $k'(:, \theta) \in \mathcal{H}(\Theta)$ and fit with

$$\begin{split} \min_{\theta \in \Theta} \frac{1}{|\mathcal{X}_{\text{train}}|} \sum_{(k,z) \in \mathcal{X}_{\text{train}}} \left[-u' \Big(c\big(k,z;k'(.;\theta)\big) \Big) + \beta u' \Big(c\big(k'(k,z;\theta),(1+g)z;k'(.;\theta)\big) \Big) \times \right] \\ & \left[((1+g)z)^{1-\alpha} f'(k'(k,z);\theta) + 1 - \delta \right] \end{split}$$

Results

1. Pick $\mathcal{X}_{\text{train}} = [0.8, 2.5] \times \{1\}$ and $k_0 = 0.4 \notin \mathcal{X}_{\text{train}}$ is "extrapolation" $\alpha = \frac{1}{3}$, $\sigma = 1$, $\beta = 0.9$, g = 0.0

- 2. Choose $k'(k, z; \theta) = NN(k, z; \theta)$ where "NN" has 4 hidden layers of 128 nodes. $|\theta| = 49.9K$ parameters.
- 3. Fit using L-BFGS and PyTorch in just a few seconds.

Growing TFP

- Pick $\mathcal{X}_{\text{train}} = [0.8, 3.5] \times [0.8, 1.8]$ but now $\alpha = \frac{1}{3}$, $\sigma = 1$, $\beta = 0.9$, g = 0.02, $z_0 = 1$, and $k_0 = 0.4 \notin \mathcal{X}_{\text{train}}$.
- Choose $k'(k, z; \theta) = zNN(k, \frac{k}{z}; \theta)$, same as before $|\theta| = 49.9K$
 - Here we used economic intuition of problem to design the ${\mathcal H}$ to generalize better
- Relative errors are very small inside the grid.
- Extraordinary extrapolation from both sides the grid for capital. •• robustness

The neoclassical growth model with multiple steady states

$$\max_{\substack{c_t, k_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t. $k_{t+1} = f(k_t) + (1-\delta)k_t - c_t$
 $k_t \ge 0$
 $0 = \lim_{T \to \infty} \beta^T u'(c_T)k_{T+1}$
 k_0 given.

1. Preferences: $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$, $\sigma > 0$, $\lim_{c \to 0} u'(c) = \infty$, and $\beta \in (0, 1)$.

- 2. "Butterfly production function": $f(k) = a \max\{k^{\alpha}, b_1k^{\alpha} b_2\}, \alpha \in (0, 1)$:
 - There is a kink in the production function at $k^* \equiv \left(\frac{b_2}{b_1-1}\right)^{\frac{1}{\alpha}}$.
 - This problem has two steady states.

Results

1. Pick $\mathcal{X}_{\text{train}} = [0, 1, 2, ..., 30]$ and t > 30 is "extrapolation" $\alpha = \frac{1}{3}, \sigma = 1, \beta = 0.9, g = 0.0, a = 0.5, \beta = 0.0, \beta$

 $b_1 = 3.0$, and $b_2 = 2.5$, for 100 different initial conditions in [0.5, 4.0].

- 2. Choose $q(t; \theta) = NN(t; \theta)$ where "NN" has 4 hidden layers of 128 nodes. $|\theta| = 49.9K$ parameters.
- 3. Fit using L-BFGS and PyTorch, each in just a few seconds.
- 4. Pray'ers were answered, even without imposing the transversality condition.

Conclusion

Conclusion

- Solving functional equations with deep learning is an extension of collocation/interpolation methods
- With massive overparameterization optimizers tend to choose those interpolating functions which are not explosive and with smaller gradients (i.e., inductive bias)
- In practice, those solutions automatically fulfill forward-looking assumptions (e.g. transversality)
 - e.g. in growth models, deep learning loves to take the "turnpike" even if fuzzy on when to exit
- If we solve models with deep-learning without (directly) imposing long run boundary conditions
 - Can use very few "grid" points and avoids calculating steady-states and recursive equivalents
 - Short/medium run errors are small, and long run errors after "we are all dead" are even manageable
 - Long run errors do not affect transition dynamics even if non-stationarity and steady-state multiplicity
- Exploiting key trade-off: give up accuracy globally and at steady state for better transition dynamics
 - Gives hope for solving high-dimensional models still disciplined by forward looking economic assumptions
 - With ML frameworks (e.g., PyTorch) these methods are robust & easier to implement than alternatives

Appendix

Let $f : \mathcal{X} \to \mathbb{R}$

$$\|f\|_{k,p} = \left(\sum_{i=0}^{k} \int_{\mathcal{X}} \left|\frac{d^{i}f}{dx^{i}}(x)\right|^{p} dx\right)^{\frac{1}{p}}$$

- Recently shown the optimizers penalize Sobolev norm: Ma, C., Ying, L. (2021)
- See you in the econometrics lunch

Smooth interpolation: Comparison with cubic splines was

Smooth interpolation: A simple dynamical system

Consider the following system

$$K_{t+1} = \eta K_t.$$

This system have the following solutions

 $K(t)=K_0\eta^t.$

- Without specifying the initial condition, K_0 , this is an ill-defined problem, i.e. there are infinity many solutions.
- The solution to:

$$\min_{K \in \mathcal{H}} ||K||_{S}$$
s.t. $K(t+1) - \eta K(t) = 0 \text{ for } t = t_1, \dots, t_N$

is K(t) = 0.

Smooth interpolation: A simple dynamical system results under the second

Three layers deep neural network, for N = 8, 32, and 128. Each trajectory corresponds to different random initialization of the optimization procedure (seed).

Sparse vs. dense grid

Left panel: Capital for three different \mathcal{X}_{train} . Right panel: Relative errors, dashed line relative errors in the extrapolation region.

- Full grid : $X_{train} = [0, 1, 2, ..., 30](Black).$
- Grid 1: $\mathcal{X}_{train} = [0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 30](Blue).$
- Grid 2: $\mathcal{X}_{train} = [0, 1, 4, 8, 12, 18, 24, 30](Red).$

Sparse vs. dense grid

10 different $k_0 \in [0.4, 3.5]$. Left panel: trajectories for 3 different initial conditions. Right panel: relative errors for all 10 different trajectories. k