Spooky Boundaries at a Distance:

Exploring Transversality and Stationarity with Deep Learning

Mahdi Ebrahimi Kahou ${ }^{1}$ Jesús Fernández-Villaverde ${ }^{2} \quad$ Sebastián Gómez Cardona ${ }^{1}$ Jesse Perla ${ }^{1}$ Jan Rosa ${ }^{1}$ May 22, 2022
${ }^{1}$ University of British Columbia, Vancouver School of Economics
${ }^{2}$ University of Pennsylvania

Motivation

Motivation

In the long run we are all dead; J.M. Keynes

- Most dynamic models require economic assumptions eliminating explosive solutions (transversality, no-bubble, no-ponzi schemes, Blanchard-Khan conditions, etc.):
- These are variations on "boundary conditions" for forward looking behavior of agents.
- Without those economic conditions, problems are not well-posed and have multiplicity.
- Deterministic, stochastic, sequential, recursive formulations all require conditions in some form.
- Steady states/forward-looking boundary conditions are the key limitation on increasing dimensionality:
- Otherwise, researchers routinely solve initial value problems with millions of equations.
- Equivalently, conditions for recursive formulations manifest as requiring accurate solution on the entire domain, even though one may only care about the solution from a single initial condition.
- Key trade-off: Can we avoid precisely calculating a stationary distribution/steady-state/... -which is never reached- and still have accurate short/medium-run dynamics disciplined by transversality/etc.?

This paper

- Show -numerically- that deep learning solutions to many dynamic, forward looking, models automatically fulfill the long run boundary conditions we need (transversality, no-bubble, etc.).
- Solve classic models with known solutions (asset pricing and neoclassical growth) and show excellent short/medium term dynamics -even when non-stationary or with steady-state multiplicity.
- Only empirical, but still provide theoretical intuition on why these results hold: the deep learning theory is not quite ready to formally prove everything in this environment.
- Suggests these methods may solve higher-dimensional problems while avoiding the key computational limitation-with the only trade-off being loss of precision for equilibria after "we are all dead."

But first, we need to be very precise on what deep learning solutions mean in this context.

Background: Deep learning for functional equations

Models as functional equations

Many theoretical models in economics can be written as functional equations:

- Take some function(s) $f \in \mathcal{F}$ where $f: \mathcal{X} \rightarrow \mathcal{Y}$ (e.g. asset price, investment choice, best-response, etc.).
- Domain \mathcal{X} could be state (e.g. dividends, capital, opponents state) or time if sequential.
- The "model" is $\ell: \mathcal{F} \times \mathcal{X} \rightarrow \mathcal{R}$ (e.g., Euler and Bellman residuals, equilibrium FOCs).
- Normalize so that a solution is the "zero" of the residuals, i.e. $\mathbf{0} \in \mathcal{R}$, at each $x \in \mathcal{X}$.

Then a solution is an $f^{*} \in \mathcal{F}$ where $\ell\left(f^{*}, x\right)=\mathbf{0}$ for all $x \in \mathcal{X}$.

Example: one formulation of neoclassical growth

- Capital, k, consumption c, utility $u(c)$, discount rate β, depreciation δ, production function $f(k)$.
- Domain: $x=[k]$ and $\mathcal{X}=\mathbb{R}_{+}$.
- Solve for $k^{\prime}(\cdot)$ and $c(\cdot)$: So $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ and $\mathcal{Y}=\mathbb{R}_{+}^{2}$.
- Skipping to lagrangian... residuals are the euler equation and feasibility, so $\mathcal{R}=\mathbb{R}^{2}$:

$$
\ell(\underbrace{\left[\begin{array}{ll}
k^{\prime}(\cdot) & c(\cdot)
\end{array}\right]}_{\equiv f}, \underbrace{k}_{\equiv x})=\left[\begin{array}{c}
u^{\prime}\left(c^{\prime}(k)\right)-\beta u^{\prime}\left(c\left(k^{\prime}(k)\right)\right)\left(f^{\prime}\left(k^{\prime}(k)\right)+1-\delta\right) \\
f(k)-c(k)-k^{\prime}(k)+(1-\delta) k
\end{array}\right]
$$

- Finally, a solution if the f^{*} which has zero residuals on domain \mathcal{X}.

How to solve globally?

- Find approximate \hat{f} which only holds approximately on \mathcal{X}.
- Choose a class of approximate solutions which aligns with ℓ and \mathcal{F} solutions.
- Potentially bound or emphasize precision in regions of economic interest in \mathcal{X}.

Interpolation solutions for solving functional equations

Classic approach: use class of functions with finite parameters and interpolate a finite number of points

1. Pick finite set of N points $\mathcal{X}_{\text {train }} \subset \mathcal{X}$ (e.g., a grid).
2. Choose approximation $\hat{f}(\cdot ; \theta) \in \mathcal{H}(\Theta)$ with parameters $\Theta \subseteq \mathbb{R}^{M}$ (e.g., polynomials, splines).
3. Fit with nonlinear least-squares for a general $M \gtreqless N$

$$
\min _{\theta \in \Theta} \sum_{x \in \mathcal{X}_{\text {train }}} \ell(\hat{f}(\cdot ; \theta), x)^{2}
$$

- If $M=N$ and $\mathcal{H}(\Theta)$ functions span \mathbb{R}^{N} can solve nonlinear system (e.g., Chebyshev collocation).
- If $\theta \in \Theta$ is such that $\ell(\hat{f}(\cdot ; \theta), x)=0$ for all $x \in \mathcal{X}_{\text {train }}$ we say it interpolates $\mathcal{X}_{\text {train }}$.

4. Hope that $\hat{f}(x ; \theta) \approx f^{*}(x)$ for $x \in \mathcal{X} \backslash \mathcal{X}_{\text {train }}$. i.e., has low generalization error:

- For $M \geq N$ we usually interpolate exactly (and hence $\hat{f}(x ; \theta) \approx f^{*}(x)$ for $x \in \mathcal{X}_{\text {train }}$).
- In practice, we tinker with \mathcal{H}, Θ and $\mathcal{X}_{\text {train }}$ until error no longer seems to be an issue.
- More generally, our goal is to minimize $\left\|\hat{f}(\cdot ; \theta)-f^{*}\right\|_{s}$.

Deep learning here just enables "pick, choose, fit, hope" with more flexibility using economic insights.

"Modern" ML is massively overparameterized

Deep learning here is highly-overparameterized \mathcal{H} (i.e. $M \gg N$) designed for good generalization:

- Complete flexibility in the choice of \mathcal{H} from economic insights on problem structure ℓ and \mathcal{F} :
- Composing \mathcal{H} from multiple functions (e.g., "deep" er) tends to generalize better in practice.
- For example, if $f: \mathbb{R}^{Q} \rightarrow \mathbb{R}$ could choose $\hat{f}(x ; \theta) \equiv W_{2} \cdot \sigma\left(W_{1} \cdot x+b_{1}\right)+b_{2}$:
- $W_{1} \in \mathbb{R}^{P \times Q}, b_{1} \in \mathbb{R}^{P}, W_{2} \in \mathbb{R}^{P}$, and $b_{2} \in \mathbb{R}$.
- $\sigma(\cdot)=\max (0, \cdot)$ element-wise (i.e. ReLU activation in CS literature) but many others.
- $\theta \in \Theta \equiv\left\{b_{1}, W_{1}, b_{2}, W_{2}\right\}$ and $M=P Q+P+P+1$.
- Choose a big $P \ldots$ or add another "layer" : $\hat{f}(x ; \theta) \equiv W_{3} \cdot \sigma\left(W_{2} \cdot \sigma\left(W_{1} \cdot x+b_{1}\right)+b_{2}\right)+b_{3}$.
- Let's generically call these $N N(\theta)$ and explain structure when it matters.
- Software (e.g., PyTorch) makes it easy to experiment with different \mathcal{H} (i.e., neural networks), manage the θ, and get gradients required for optimization methods.
- But otherwise, the method and objective is the same as before, i.e. $\min _{\theta \in \Theta} \sum_{x \in \mathcal{X}} \mathcal{t r a i n} \ell(\hat{f}(\cdot ; \theta), x)^{2}$.

Deep learning optimizes in a space of functions

- Since $M \gg N$ has an enormous number of solutions (e.g., θ_{1} and θ_{2}),

1. Agree only on "data": $\hat{f}\left(x ; \theta_{1}\right) \approx \hat{f}\left(x ; \theta_{2}\right)$ for $x \in \mathcal{X}$ train.
2. Agree everywhere: $\hat{f}\left(x ; \theta_{1}\right) \approx \hat{f}\left(x ; \theta_{2}\right)$ for $x \in \mathcal{X}$. Alternatively, $\left\|\hat{f}\left(\cdot ; \theta_{1}\right)-\hat{f}\left(\cdot ; \theta_{2}\right)\right\|_{s} \approx 0$.

- Since individual θ are irrelevant it is helpful to think of optimization directly within \mathcal{H}

$$
\min _{\hat{f} \in \mathcal{H}} \sum_{x \in \mathcal{X} \text { train }} \ell(\hat{f}, x)^{2}
$$

- Since $M \gg N, \hat{f}$ always interpolates and the objective value in (1) will always be ≈ 0.

Deep learning and interpolation

- Counterintuitively: for M large enough, optimizers tend to converge towards something unique \hat{f} in equivalence class from some $\|\cdot\|_{S}$ define on $x \in \mathcal{X}$ (i.e., not just at interpolated "data").
- Mental model: chooses min-norm interpolating solution for a (usually) unknown functional norm S

$$
\begin{aligned}
& \min _{\hat{f} \in \mathcal{H}}\|\hat{f}\|_{S} \\
& \text { s.t. } \ell(\hat{f}, x)=0, \quad \text { for } x \in \mathcal{X}_{\text {train }}
\end{aligned}
$$

- CS and literature refers to this as the inductive bias: optimization process biased towards particular \hat{f},
- Characterizing S (e.g., ${ }^{\Perp}$ Sobolev ?) is an active research area in CS at the heart of deep learning theory.
- Intuition is that it may choose the interpolating solutions which are flattest and have smallest derivatives.
- Is $\left\|\hat{f}-f^{*}\right\|_{S}$ small (i.e., does the min-norm solution generalize well)? Depends on $G, \mathcal{H}, \mathcal{X}_{\text {train }}$.

In this paper: we describe how the $\min _{\hat{f} \in \mathcal{H}}\|\hat{f}\|_{S}$ solutions are also the ones which automatically fulfill transversality/etc. in dynamic models-and hence are disciplined by long run boundary conditions.

Smooth interpolation Emper

Agenda

To explore how we can ignore events after "we are all dead", we show deep learning solutions to

1. Classic linear-asset pricing model with/without a no-bubble condition.
2. Sequential formulation of the neoclassical growth model with transversality condition.
3. Equivalent for a recursive formulation of the neoclassical growth model.
4. (In paper many more: e.g. what if non-stationary? BGPs? etc.).

We can show numerical solutions while explaining theory from the economics, but there are current limitations on theory from CS.

Linear asset pricing

Sequential formulation

- Dividends, y_{t}, take y_{0} as given and follow process:

$$
y_{t+1}=c+(1+g) y_{t}
$$

- Writing as a linear state-space model with $x_{t+1}=A x_{t}$ and $y_{t}=G x_{t}$ and

$$
x_{t} \equiv\left[\begin{array}{ll}
1 & y_{t}
\end{array}\right]^{\top}, A \equiv\left[\begin{array}{cc}
1 & 0 \\
c & 1+g
\end{array}\right], G \equiv\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

- "Fundamental" price given x_{t} is PDV with $\beta \in(0,1)$ and $\beta(1+g)<1$

$$
p_{t}^{f} \equiv \sum_{j=0}^{\infty} \beta^{j} y_{t+j}=G(I-\beta A)^{-1} x_{t}
$$

Recursive formulation

With standard transformation, all solutions p_{t}^{f} fulfill the recursive equations

$$
\begin{align*}
& p_{t}=G x_{t}+\beta p_{t+1} \tag{2}\\
& x_{t+1}=A x_{t} \tag{3}\\
& 0=\lim _{T \rightarrow \infty} \beta^{T} p_{T} \tag{4}\\
& x_{0} \text { given } \tag{5}
\end{align*}
$$

That is, a system of two difference equations with one boundary and one initial condition

- The boundary condition (4) is an assumption necessary to be well-posed and have unique solutions
- It ensures that $p_{t}=p_{t}^{f}$ by imposing long run boundary on forward-looking behavior
- But without this assumption there can be "rational bubbles" with $p_{t} \neq p_{t}^{f}$, but fulfilling (2) and (3)
- Intuition: system of $\left(p_{t}, x_{t}\right)$ difference (or differential) equations requires total of two boundaries or initial values to have a unique solution (i.e., (5) not enough on its own)

Solutions without a "no-bubble conditions"

- Rational bubble solutions in this deterministic asset pricing model are of the form:

$$
\begin{equation*}
p_{t}=p_{t}^{f}+\zeta \beta^{-t} \tag{6}
\end{equation*}
$$

- For any $\zeta \geq 0$. The x_{t} initial condition determined the p_{t}^{f} solution.
- The "no bubble condition" chooses the $\zeta=0$ solution.

Lets analyze this with a "deep learning" solution, first by imposing the no-bubble condition.

Interpolation formulation

Write p_{t} as $p(t)$ to allow interpolation between sparse $t \in \mathcal{X}_{\text {train }}$ points and collect (2) to (4)

$$
\begin{array}{ll}
\min _{p \in \mathcal{H}} & \|p\|_{S} \\
\text { s.t. } & p(t)-G x(t)-\beta p(t+1)=0 \quad \text { for } t \in \mathcal{X}_{\text {train }} \\
& 0=\lim _{T \rightarrow \infty} \beta^{T} p(T)
\end{array}
$$

Where $x(t)$ for $t \in \mathcal{X}_{\text {train }}$ is defined by $x(0)$ initial condition and recurrence $x(t+1)=A x(t)$ in (3)

- Recall: generalization comes from design of \mathcal{H} and optimizer; not only model, i.e., (8) and (9).
- The norm $\|p\|_{S}$ has "inductive bias" towards particular solutions for $t \in[0, \infty] \backslash \mathcal{X}_{\text {train }}$.

Is the no-bubble condition still necessary?

- To analyze, drop the no-bubble condition and examine the class of solutions. Does (9) bind?
- In this case, we know the interpolating solutions to (8) without imposing (9)

$$
\begin{equation*}
p(t)=p^{f}(t)+\zeta \beta^{-t} \tag{10}
\end{equation*}
$$

- Take some norm $\|\cdot\|_{S}$ of both sides and apply triangle inequality

$$
\begin{equation*}
0 \leq\|p\|_{S} \leq\left\|p^{f}\right\|_{S}+\zeta\left\|\beta^{-t}\right\|_{S} \tag{11}
\end{equation*}
$$

- Relative to classic methods the "deep learning" problem now has a $\|p\|_{S}$ objective!
- From (11) for a large class of S, the norm minimizing $\|p\|_{S}$ will be one where $\zeta=0$
- That is, $p(t)=p^{f}(t)$, the solution fulfills the no-bubble condition, and (9) is satisfied at the optima.
- What types of norms $\|p\|_{S}$ would \mathcal{H} and optimization induce? CS theory suggests variations Sobolev

Minimum norm formulation

Given the no-bubble condition it is automatically fulfilled, could solve the following given some \mathcal{H} and compare to $p^{f}(t)$

$$
\begin{array}{ll}
\min _{p \in \mathcal{H}} & \|p\|_{S} \\
\text { s.t. } & p(t)-G x(t)-\beta p(t+1)=0 \quad \text { for } t \in \mathcal{X}_{\text {train }} \tag{13}
\end{array}
$$

A reminder: in practice, given the $\mathcal{X}_{\text {train }}$, we directly implement this as $p(\cdot ; \theta) \in \mathcal{H}(\Theta)$ and fit with

$$
\begin{equation*}
\min _{\theta \in \Theta} \frac{1}{\left|\mathcal{X}_{\text {train }}\right|} \sum_{t \in \mathcal{X}_{\text {train }}}[p(t ; \theta)-G x(t)-\beta p(t+1 ; \theta)]^{2} \tag{14}
\end{equation*}
$$

Since law of motion is deterministic, given $x(0)$ we generate $x(t)$ with $x(t+1)=A x(t)$ for $t \in \mathcal{X}_{\text {train }}$

- The $\mathcal{X}_{\text {train }}$ does not need to have contiguous t and $\left|\mathcal{X}_{\text {train }}\right|$ may be relatively small
- Most important: no steady state calculated, nor large $T \in \mathcal{X}_{\text {train }}$ required

Results

1. Pick $\mathcal{X}_{\text {train }}=[0,1,2, . ., 30]$ and $t>30$ is "extrapolation" where $c=0.01, g=-0.1$, and $y_{0}=0.8$
2. Choose $p(t ; \theta)=N N(t ; \theta)$ where "NN" has 4 hidden layers of 128 nodes. $|\theta|=49.9 \mathrm{~K}$ parameters.
3. Fit using L-BFGS and PyTorch in just a few seconds. Could use Adam/SGD/etc.
4. Pray'ers were answered, even without imposing no-bubble condition. Compare to analytic $p^{f}(t)$

- Relative error $\equiv \frac{p(t)-\rho^{f}(t)}{p^{f}(t)}$ ranging from 0.0007% for $t=0$ to 0.02% when extrapolating.
- These long run errors don't affect the short-run accuracy (still small, even after we are all dead)

Contiguous vs. dense grid

- $\mathcal{X}_{\text {train }}($ Grid 1$)=[0,1,2,4,6,8,12,16,20,24,30]$ and $\mathcal{X}_{\text {train }}($ Grid 2$)=[0,1,4,8,12,18,24,30]$
- Small errors even with 8 data points (and $\approx 40 \mathrm{~K}$ parameters). Even $<0.035 \%$ after we all are dead
- Contrary to popular wisdom about deep learning only being appropriate in high "data" environments
- Can use less "data" relative to alternatives

Growing dividends

- Pick same $\mathcal{X}_{\text {train }}$ but now $c=0.0, g=0.02$, and $y_{0}=0.8(y(t)$ grows at rate $g)$
- Choose $p(t ; \theta)=e^{\phi t} N N\left(t ; \theta_{N N}\right)$ where $\theta \equiv\left\{\phi, \theta_{N N}\right\} \in \Theta$ is the parameter vector
- Here we used economic intuition of problem to design the \mathcal{H} to generalize better
- Non-stationary but can figure out the growth. Short term errors are very small, long run manageable
- Bonus: learns the growth rate: $\phi \approx \ln (1+g)$ and even extrapolates well!

Neoclassical growth in sequence space

Sequential formulation (with a possible BGP)

$$
\begin{aligned}
\max _{\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}} & \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\
\text { s.t. } & k_{t+1}=z_{t}^{1-\alpha} f\left(k_{t}\right)+(1-\delta) k_{t}-c_{t} \\
& z_{t+1}=(1+g) z_{t} \\
& k_{t} \geq 0 \\
& 0=\lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}\right) k_{T+1} \\
& k_{0}, z_{0} \text { given }
\end{aligned}
$$

- Preferences: $u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}, \sigma>0, \lim _{c \rightarrow 0} u^{\prime}(c)=\infty$, and $\beta \in(0,1)$
- Cobb-Douglas production function: $f(k)=k^{\alpha}, \alpha \in(0,1)$ before scaling by TFP z_{t}
- Skip standard steps... Euler equation: $u^{\prime}(c(t))=\beta u^{\prime}(c(t+1))\left[z(t+1)^{1-\alpha} f^{\prime}(k(t+1))+1-\delta\right]$

Interpolation formulation

$$
\begin{align*}
\min _{q \equiv[k c] \in \mathcal{H}} & \|q\| s \tag{15}\\
\text { s.t. } & u^{\prime}(c(t))=\beta u^{\prime}(c(t+1))\left[z(t+1)^{1-\alpha} f^{\prime}(k(t+1))+1-\delta\right] \quad \text { for } t \in \mathcal{X}_{\text {train }} \tag{16}\\
& k(t+1)=z(t)^{1-\alpha} f(k(t))+(1-\delta) k(t)-c(t) \quad \text { for } t \in \mathcal{X}_{\text {train }} \tag{17}\\
& k(0)=k_{0} \tag{18}\\
& 0=\lim _{T \rightarrow \infty} \beta^{T} u^{\prime}(c(T)) k(T+1) \tag{19}
\end{align*}
$$

Where $z(t)$ for $t \in \mathcal{X}_{\text {train }}$ is defined by $z(0)$ initial condition and recurrence $z(t+1)=(1+g) z(t)$

- Choose now requires both k and c or one function $q: \mathbb{R} \rightarrow \mathbb{R}^{2}$ where $q(t) \equiv[k(t) c(t)]$
- Easiest is $q(t ; \theta)=N N(t ; \theta)$ where $q: \mathbb{R} \rightarrow \mathbb{R}^{2}$. But PyTorch makes separate k, c easy as well
- Also, $k(t) \geq 0$ and $c(t) \geq 0$ built directly into \mathcal{H}.
- Fit Minimize the residuals on $\mathcal{X}_{\text {train }}$ for sum of (16) to (18)
- Is the transversality condition (19) needed? Severe multiplicity previously without (15)

Is the transversality condition necessary? Case of $\mathrm{g}=0, \mathrm{z}=1$

Sketch of the proof:

- Let $q(t)=\{k(t), c(t)\}$ be the optimal solution.
- Let $\tilde{q}(t)=\{\tilde{k}(t), \tilde{c}(t)\}$ be a solution that satisfies all the equations except transversality condition (19).

There are two possible cases:

1. $\tilde{k}(t+1) \rightarrow \infty$, and $k \rightarrow k_{\text {SS }}=\left(\frac{\beta^{-1}+\delta-1}{\alpha}\right)^{\frac{1}{\alpha-1}}$. Therefore any norm that measures curvature or level of a function

$$
0 \leq\|k\|_{s} \leq\|\tilde{k}\|_{S}
$$

2. $\tilde{c}(t)$ approaches zero.

- $\tilde{k}(t)$ approaches $(\delta)^{\frac{1}{\alpha-1}} \gg k_{\mathrm{ss}}=\left(\frac{\beta^{-1}+\delta-1}{\alpha}\right)^{\frac{1}{\alpha-1}}$
- Both $k(t)$, and $\tilde{k}(t)$ are monotone. Therefore any norm that measures curvature or level of a function

$$
0 \leq\|k\|_{S} \leq\|\tilde{k}\|_{S}
$$

Is the transversality condition necessary? Case of $\mathrm{g}=0, \mathrm{z}=1$

Example: the violation of the transversality condition:

- The solution that violate the transversality are associate with "big" $k(t)$
- Make sure explosive/big variables are included in $q(\cdot: \theta)$
- If explosive/big variables are not included, the solutions violate the transversality condition.

Minimum norm formulation

Any solution that violates the transversality condition has a bigger norm than the optimal solution. Therefore, the transversality condition becomes redundant.

$$
\begin{aligned}
\min _{q \equiv[k c\rfloor \in \mathcal{H}} & \|q\|_{S} \\
\text { s.t. } & u^{\prime}(c(t))=\beta u^{\prime}(c(t+1))\left[z(t+1)^{1-\alpha} f^{\prime}(k(t+1))+1-\delta\right] \quad \text { for } t \in \mathcal{X}_{\text {train }} \\
& k(t+1)(k, z)=z(t)^{1-\alpha} f(k(t))+(1-\delta) k(t)-c(t) \quad \text { for } t \in \mathcal{X}_{\text {train }} \\
& k(0)=k_{0}
\end{aligned}
$$

Since law of motion for $z(t)$ is deterministic, given $z(0)$ we generate $z(t)$ with $z(t+1)=(1+g) z(t)$ for $t \in \mathcal{X}_{\text {train }}$.

Minimum norm formulation

In practice, given the $\mathcal{X}_{\text {train }}$, we directly implement this as $q(\cdot ; \theta) \in \mathcal{H}(\Theta)$ and fit with

$$
\begin{array}{r}
\min _{\theta \in \Theta} \frac{1}{\left|\mathcal{X}_{\text {train }}\right|}
\end{array} \sum_{t \in \mathcal{X}_{\text {train }}}\left[\beta u^{\prime}(c(t+1 ; \theta))\left[z(t+1)^{1-\alpha} f^{\prime}(k(t+1 ; \theta))+1-\delta\right]-u^{\prime}(c(t ; \theta))\right]^{2}+,
$$

Given $z(0), z(t)$ for $t \in \mathcal{X}_{\text {train }}$ is generated by recurrence $z(t+1)=(1+g) z(t)$

- The $\mathcal{X}_{\text {train }}$ does not need to have contiguous t and $\left|\mathcal{X}_{\text {train }}\right|$ may be relatively small
- Most important: no steady state calculated, nor large $T \in \mathcal{X}_{\text {train }}$ required

Results

1. Pick $\mathcal{X}_{\text {train }}=[0,1,2, . ., 30]$ and $t>30$ is "extrapolation" $\alpha=\frac{1}{3}, \sigma=1, \beta=0.9, g=0.0$, and $k_{0}=0.4$
2. Choose $q(t ; \theta)=N N(t ; \theta)$ where "NN" has 4 hidden layers of 128 nodes. $|\theta|=49.9 \mathrm{~K}$ parameters.
3. Fit using L-BFGS and PyTorch in just a few seconds.
4. Pray'ers were answered, even without imposing the transversality condition.

Growing TFP

- Pick same $\mathcal{X}_{\text {train }}$ but now $\alpha=\frac{1}{3}, \sigma=1, \beta=0.9, g=0.02, z_{0}=1.0$ and $k_{0}=0.4$.
- Choose $q(t ; \theta)=e^{\phi t} N N\left(t ; \theta_{N N}\right)$ where $\theta \equiv\left\{\phi, \theta_{N N}\right\} \in \Theta$ is the parameter vector
- Here we used economic intuition of problem to design the \mathcal{H} to generalize better
- Non-stationary but can figure out the BGP. Short term errors are very small.
- Bonus: learns the growth rate: $\phi \approx \ln (1+g)$ and even extrapolates well!

Recursive version of the neoclassical growth model

The neoclassical growth model (with a possible BGP)

Skipping the Bellman formulation and going to the first order conditions in the state space, i.e. (k, z)

$$
\begin{aligned}
& u^{\prime}(c(k, z))=\beta u\left(c\left(k^{\prime}(k, z), z^{\prime}\right)\right)\left[z^{1-\alpha} f^{\prime}\left(k^{\prime}(k, z)\right)+1-\delta\right] \\
& k^{\prime}(k, z)=z^{1-\alpha} f(k)+(1-\delta) k-c(k, z) \\
& z^{\prime}=(1+g) z \\
& k^{\prime} \geq 0 \\
& 0=\lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}\right) k_{T+1} \quad \forall\left(k_{0}, z_{0}\right)
\end{aligned}
$$

- Preferences: $u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}, \sigma>0, \lim _{c \rightarrow 0} u^{\prime}(c)=\infty$, and $\beta \in(0,1)$
- Cobb-Douglas production function: $f(k)=k^{\alpha}, \alpha \in(0,1)$ before scaling by TFP z

Interpolation formulation

$$
\begin{array}{ll}
\min _{k^{\prime} \in \mathcal{H}} & \left\|k^{\prime}\right\|_{S} \\
\text { s.t. } & u^{\prime}\left(c\left(k, z ; k^{\prime}\right)\right)=\beta u^{\prime}\left(c\left(k^{\prime}(k, z),(1+g) z ; k^{\prime}\right)\right) \times \\
& {\left[((1+g) z)^{1-\alpha} f^{\prime}\left(k^{\prime}(k, z)\right)+1-\delta\right] \quad \text { for }(k, z) \in \mathcal{X}_{\text {train }}} \\
& 0=\lim _{T \rightarrow \infty} \beta^{T} u^{\prime}(c(T)) k(T+1) \text { for all }\left(k_{0}, z_{0}\right) \in \mathcal{X}_{\text {train }} \tag{22}
\end{array}
$$

where

$$
\begin{equation*}
c\left(k, z ; k^{\prime}\right) \equiv z^{1-\alpha} f(k)+(1-\delta) k-k^{\prime}(k, z) \tag{23}
\end{equation*}
$$

- Choose now $k^{\prime}: \mathbb{R}^{2} \rightarrow \mathbb{R}, k^{\prime}(k, z ; \theta)=N N(k, z ; \theta), k^{\prime}(k, z) \geq 0$ built direclty into \mathcal{H}
- Fit Minimize the residuals on $\mathcal{X}_{\text {train }}$ for sum of (21)
- Is the transversality condition (22) needed? multiplicity happens without it.

Is the transversality condition necessary? Case of $\mathrm{g}=0, \mathrm{z}=1$

Still working on the proof, however the idea at the moment is

- For a fixed period of time T, and fixed capital k_{0} any function the violates the transversality has to have larger derivatives to back up the growth to $(\delta)^{\frac{1}{1-\alpha}}$ and consequently larger norm.
- Minimizing norms like Sobolev that measures big derivatives should get rid of the solutions that violate the transversality condition.

Minimum norm formulation

$$
\begin{array}{ll}
\min _{k^{\prime} \in \mathcal{H}} & \left\|k^{\prime}\right\|_{S} \\
\text { s.t. } & u^{\prime}\left(c\left(k, z ; k^{\prime}\right)\right)=\beta u^{\prime}\left(c\left(k^{\prime}(k, z),(1+g) z ; k^{\prime}\right)\right) \times \\
& {\left[((1+g) z)^{1-\alpha} f^{\prime}\left(k^{\prime}(k, z)\right)+1-\delta\right] \quad \text { for }(k, z) \in \mathcal{X}_{\text {train }}}
\end{array}
$$

Where $c(\cdot)$ is defined via equation (23).
In practice, given $\mathcal{X}_{\text {train }}$, we directly implement this as $k^{\prime}(:, \theta) \in \mathcal{H}(\Theta)$ and fit with

$$
\begin{aligned}
\min _{\theta \in \Theta} \frac{1}{\left|\mathcal{X}_{\text {train }}\right|} \sum_{(k, z) \in \mathcal{X}_{\text {train }}}\left[-u^{\prime}\left(c\left(k, z ; k^{\prime}(. ; \theta)\right)\right)+\right. & \beta u^{\prime}\left(c\left(k^{\prime}(k, z ; \theta),(1+g) z ; k^{\prime}(. ; \theta)\right)\right) \times \\
& {\left.\left[((1+g) z)^{1-\alpha} f^{\prime}\left(k^{\prime}(k, z) ; \theta\right)+1-\delta\right]\right]^{2} }
\end{aligned}
$$

Results

1. Pick $\mathcal{X}_{\text {train }}=[0.8,2.5] \times\{1\}$ and $k_{0}=0.4 \notin \mathcal{X}_{\text {train }}$ is "extrapolation" $\alpha=\frac{1}{3}, \sigma=1, \beta=0.9$, $g=0.0$
2. Choose $k^{\prime}(k, z ; \theta)=N N(k, z ; \theta)$ where " $N N$ " has 4 hidden layers of 128 nodes. $|\theta|=49.9 K$ parameters.
3. Fit using L-BFGS and PyTorch in just a few seconds.

Growing TFP

- Pick $\mathcal{X}_{\text {train }}=[0.8,3.5] \times[0.8,1.8]$ but now $\alpha=\frac{1}{3}, \sigma=1, \beta=0.9, g=0.02, z_{0}=1$, and $k_{0}=0.4 \notin \mathcal{X}_{\text {train }}$.
- Choose $k^{\prime}(k, z ; \theta)=z N N\left(k, \frac{k}{z} ; \theta\right)$, same as before $|\theta|=49.9 K$
- Here we used economic intuition of problem to design the \mathcal{H} to generalize better
- Relative errors are very small inside the grid.
- Extraordinary extrapolation from both sides the grid for capital.

The neoclassical growth model with multiple steady states

Sequential formulation

$$
\begin{aligned}
\max _{\left\{c_{t}, k_{t+1}\right\}_{t=0}^{\infty}} & \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\
\text { s.t. } & k_{t+1}=f\left(k_{t}\right)+(1-\delta) k_{t}-c_{t} \\
& k_{t} \geq 0 \\
& 0=\lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}\right) k_{T+1} \\
& k_{0} \text { given. }
\end{aligned}
$$

1. Preferences: $u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}, \sigma>0, \lim _{c \rightarrow 0} u^{\prime}(c)=\infty$, and $\beta \in(0,1)$.
2. "Butterfly production function": $f(k)=a \max \left\{k^{\alpha}, b_{1} k^{\alpha}-b_{2}\right\}, \alpha \in(0,1)$:

- There is a kink in the production function at $k^{*} \equiv\left(\frac{b_{2}}{b_{1}-1}\right)^{\frac{1}{\alpha}}$.
- This problem has two steady states.

Results

1. Pick $\mathcal{X}_{\text {train }}=[0,1,2, . ., 30]$ and $t>30$ is "extrapolation" $\alpha=\frac{1}{3}, \sigma=1, \beta=0.9, g=0.0, a=0.5$, $b_{1}=3.0$, and $b_{2}=2.5$, for 100 different initial conditions in [0.5, 4.0].
2. Choose $q(t ; \theta)=N N(t ; \theta)$ where "NN" has 4 hidden layers of 128 nodes. $|\theta|=49.9 \mathrm{~K}$ parameters.
3. Fit using L-BFGS and PyTorch, each in just a few seconds.
4. Pray'ers were answered, even without imposing the transversality condition.

Conclusion

Conclusion

- Solving functional equations with deep learning is an extension of collocation/interpolation methods
- With massive overparameterization optimizers tend to choose those interpolating functions which are not explosive and with smaller gradients (i.e., inductive bias)
- In practice, those solutions automatically fulfill forward-looking assumptions (e.g. transversality) - e.g. in growth models, deep learning loves to take the "turnpike" even if fuzzy on when to exit
- If we solve models with deep-learning without (directly) imposing long run boundary conditions
- Can use very few "grid" points and avoids calculating steady-states and recursive equivalents
- Short/medium run errors are small, and long run errors after "we are all dead" are even manageable
- Long run errors do not affect transition dynamics even if non-stationarity and steady-state multiplicity
- Exploiting key trade-off: give up accuracy globally and at steady state for better transition dynamics
- Gives hope for solving high-dimensional models still disciplined by forward looking economic assumptions
- With ML frameworks (e.g., PyTorch) these methods are robust \& easier to implement than alternatives

Appendix

Let $f: \mathcal{X} \rightarrow \mathbb{R}$

$$
\|f\|_{k, p}=\left(\sum_{i=0}^{k} \int_{\mathcal{X}}\left|\frac{d^{i} f}{d x^{i}}(x)\right|^{p} d x\right)^{\frac{1}{p}}
$$

- Recently shown the optimizers penalize Sobolev norm: Ma, C., Ying, L. (2021)
- See you in the econometrics lunch

Smooth interpolation: Comparison with cubic splines

Approximation

Smooth interpolation: A simple dynamical system

Consider the following system

$$
K_{t+1}=\eta K_{t}
$$

This system have the following solutions

$$
K(t)=K_{0} \eta^{t}
$$

- Without specifying the initial condition, K_{0}, this is an ill-defined problem, i.e. there are infinity many solutions.
- The solution to:

$$
\begin{array}{cl}
\min _{K \in \mathcal{H}} & \|K\|_{S} \\
\text { s.t. } & K(t+1)-\eta K(t)=0 \quad \text { for } t=t_{1}, \ldots, t_{N}
\end{array}
$$

is $K(t)=0$.

Smooth interpolation: A simple dynamical system results

Three layers deep neural network, for $N=8,32$, and 128. Each trajectory corresponds to different random initialization of the optimization procedure (seed).

Sparse vs. dense grid

Left panel: Capital for three different $\mathcal{X}_{\text {train }}$. Right panel: Relative errors, dashed line relative errors in the extrapolation region.

- Full grid : $\mathcal{X}_{\text {train }}=[0,1,2, \ldots, 30]$ (Black).
- Grid 1: $\mathcal{X}_{\text {train }}=[0,1,2,4,6,8,12,16,20,24,30]$ (Blue).
- Grid 2: $\mathcal{X}_{\text {train }}=[0,1,4,8,12,18,24,30]($ Red $)$.

Sparse vs. dense grid

10 different $k_{0} \in[0.4,3.5]$. Left panel: trajectories for 3 different initial conditions. Right panel: relative errors for all 10 different trajectories.

