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The double descent phenomenon



Generalization vs. overfitting

The classical view: Enrico Fermi, 1953
| remember my friend Johnny von Neumann used to say, with four parameters | can fit an elephant, and

with five | can make him wiggle his trunk.

The modern view: Ruslan Salakhutdinov, 2017

The best way to solve the problem from practical standpoint is you build a very big system. If you
remove any of these regularizations like dropout or L2, basically you want to make sure you hit the zero
training error. Because if you don’t, you somehow waste the capacity of the model.
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Some recent results

e Bubeck and Sellke (2021).

e They prove that for a broad class of data distributions and model classes, overparametrization is
necessary if one wants to interpolate the data smoothly.

e Intuition: a tradeoff between the size of a model and its robustness.



Alternative architectures



Alternative architectures

e We have studied the basic, densely connected deep neural network.
e However, there is a rich set of alternative architectures.

e Particularly active area of research with important recent breakthroughs.
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Convolutional neural networ

Regular deep neural networks do not work well with a grid-like topology (e.g., 2-D images) because:

1. Large number of weights to train.

2. The method is not translation invariant because the weights are not shared across locations.

Natural analog in econometrics: spatial correlations.

Alternative: deal with specialized networks explicitly designed for these topologies.

Most popular approach: convolutional neural networks.
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Convolutional neural networks, Il

We reduce parameters by introducing a convolution (“filter”):

If ® gl(2) = / F(u)e(z — u)du

e Very similar in spirit to a simple Kalman filter.

Three components: Input, a kernel, and and output (or “feature map").

We train the kernel instead of the whole set of connections.

We can have different kernels and layer them.
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Convolutional neural networ

e Padding at boundaries to ensures the output is the same size as the input.
e Maxpooling as an extreme case of convolution.

e Notice how attractive convolutional neural networks are for computation with a GPU.
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Generative adversarial networks, |

Goodfellow et al. (2014).

A generator network generates candidates (e.g., images).

A discriminative network evaluates whether they are real or generated.

Both networks play a minimax problem.

Applications in economics: Athey et al. (2019) and Liang (2020).
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Generative adversarial networks, Il

e Looking for G* such that:
G* =arg m(gn max V(D, G)

where
V(D, G) = Exnpgon (3108 D(X)] + Eznp,(2)[1 — log D(G(2))]
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Generative adversarial networks, 111

e Then:
V(D, 6) = Exxpus, ()08 D(X)] + Eop 1 ~ log D(G(2))]
— [ pusa (x)1oB(D(x))d + [ p.(2)log(1 ~ D(G(2)))dz
x=G(2)=>z=G6"1(x)=dz= (Gfl)/ (x)dx

/!

= pg(x) = p- (G71(x)) (671) (x)

/pdata (x) log(D(x))dx + /pz (Gfl(x)) log(1 — D(x)) (Gfl)/ (x)dx

X X

(x) log(D(x))dx + / P (x)0g(1 — D(x))dx

X

Pata
_ / Pasta (%) log(D(x)) + pg(x) log(1 — D(x))dx
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real data

T ~ Pdata(T)
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Understanding the objective function, |

e Notice:
max V(D, G) = mgx/pdata (x) log(D(x)) + pg(x) log(1 — D(x))dx

X

o (s ()108(D(x) + i) og(1 ~ D)) = 0
Pdata ( ) (X) -0
D(x) D(x)
N D(X) - Pdata (X)

Pdata ( )+P ( )
e If the discriminator is optimal D}(x), the optimal generator makes:

Pdata (X)

Paara (x) = Pg(x) = Dalx) = - 20305
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Understanding the objective function, Il

e Now, let us work with C(G):

C(G) = max V(G,D)
= mDax/pdata (x) log(D(x)) + pg(x) log(1 — D(x))dx

— [ P (x)108 (D5:() + ps(x)log (1 ~ D (x))

X

_ Olog [ Paaa (x) Dlog [ Pe) N
= [ pase ()18 (p () + pg(x)> + pe(x) log (p )+ pg<x)> ¢
= /Xpdata (x) log (M) + pg(x) log <pd”(i(f,3(x)) dx — log(4)

)
2

KL [p (x)n""“a(x)j”g(x)} KL {pg(x)||”“mx);”g(x)] ~ log(4)

20



Understanding the objective function, Il

e Working with this expression:

C(6) = KL | pana (22T PN e [, P LIE P g > 0
m(::n C(G) =0+0—log(4) = — log(4)
KL |:pdata (X)pdata(x);'pg(x)} 0

when Pdata (X) — —Pdata (X)2+ pg(X)

= Pdata (X) = Pg(X)
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KL (Kullback-Leibler) divergence

e Jensen-Shannon divergency (symmetric KL):
1 1
JSD(P||Q) = 5 Dr(PIIM) + 7 D QM)
1

e Given G, maxp V(G, D):
= —2log(2) +2JSD (Pyata (x)[|Pc(x))

e The optimal G minimizes JSD at = 0:

PG(X) = Pdata(X)
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Practical implementation

e Given G,we compute maxp V(G, D) by
1. Sample {x',x"} from Pgata .

2. Sample {x*l.,.,x*’"} from generator Pg.

e And, then, we maximize:
1 n 1
my " log D (x') = my ", log (1 — D (x*7))

V' =

e The binary classifier:
e Output is D(x), which minimizes cross-entropy.
e If x is a positive example — Minimizes — log D(x).
e If x is a negative example — Minimizes — log(1 — D(x)).
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Other architectures

e Bayesian neural networks.

e Recurrent neural networks: they built an internal state (memory) that can be used to process variable
length sequences of inputs. Useful for time series

e Hopfield network (modern versions often known as dense associative memories).
e Boltzmann machines: stochastic version of a Hopfield network.

e Transformers: an attention-mechanism looks at an input sequence and picks, at each step, the parts
of the sequence that are important for the task at hand.

e Self-organizing maps (SOM).
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Data augmentation



Data augmentation

e How do we increase the observations to train a network efficiently?

[y

. Synthetic Data: Rotations, translations, adding noise.
2. Few-shot learning (Wang et al., 2020).
3. Transfer learning.

4. Janossy pooling: expressing a permutation-invariant function as the average of a permutation-sensitive
function applied to all reorderings of the input sequence.

e How can this work?

e Remember that neural networks are, themselves, rotation-invariant.
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Some algebra

e Group theory in math deals with how elements of a set compose with each other, not on what the
elements are per se.

e Group: a set G together with a binary operation that satisfies associativity, identity element, and
inverse element.

e Symmetric group S over a set G: group whose elements are all the bijections from G to itself, and
whose group operation is the composition of functions.

e Symmetric group is really powerful!

e More general point: importance of algebra and geometry in deep learning.
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Deep learning and geometry



Deep learning and geo |

e Neural networks consist entirely of chains of tensor operations: we take x, we perform affine
transformations, and apply an activation function.

Thus, these tensor operations are geometric transformations of x.

In other words: a neural network is a complex geometric transformation in a high-dimensional space.

e More in particular, deep neural networks look for convenient geometrical representations of
high-dimensional manifolds.
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Deep learning and geo

e This suggests there are some deep theoretical links among different architectures.

e "“Geometric unification” endeavor in the spirit of the Erlangen Program enunciated by Felix Klein:

common framework to think about different architectures.

e See:
1

2

https://fabianfuchsml.github.io/learningonsets/

https:
//www.youtube.com/watch?v=bIZB1hIJ4u8&t=368s&ab_channel=MachineLearningStreetTalk

https://geometricdeeplearning.com/
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https://fabianfuchsml.github.io/learningonsets/
https://www.youtube.com/watch?v=bIZB1hIJ4u8&t=368s&ab_channel=MachineLearningStreetTalk
https://www.youtube.com/watch?v=bIZB1hIJ4u8&t=368s&ab_channel=MachineLearningStreetTalk
https://geometricdeeplearning.com/
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The manifold hypo

e The manifold hypothesis: all natural data lies on a low-dimensional manifold within the
high-dimensional space where it is encoded (Cayton, 2005).
e Implications:

1. Deep learning only has to fit latent manifolds: simple, low-dimensional, highly structured subspaces

within their potential input space.
2. Thus, we only need a local coordinate system of the underlying manifold.

3. Within one of these manifolds, one can interpolate between two inputs via a continuous path along

which all points fall on the manifold.

4. Deep learning can account for complex data and generalize well if we sample from the right manifold.
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