
Advanced Topics in Deep Learning

Jesús Fernández-Villaverde1 and Galo Nuño2

August 7, 2023

1University of Pennsylvania

2Banco de España

The double descent phenomenon

Generalization vs. overfitting

The classical view: Enrico Fermi, 1953

I remember my friend Johnny von Neumann used to say, with four parameters I can fit an elephant, and

with five I can make him wiggle his trunk.

The modern view: Ruslan Salakhutdinov, 2017

The best way to solve the problem from practical standpoint is you build a very big system. If you

remove any of these regularizations like dropout or L2, basically you want to make sure you hit the zero

training error. Because if you don’t, you somehow waste the capacity of the model.

1

2

Some recent results

• Bubeck and Sellke (2021).

• They prove that for a broad class of data distributions and model classes, overparametrization is

necessary if one wants to interpolate the data smoothly.

• Intuition: a tradeoff between the size of a model and its robustness.

3

Alternative architectures

Alternative architectures

• We have studied the basic, densely connected deep neural network.

• However, there is a rich set of alternative architectures.

• Particularly active area of research with important recent breakthroughs.

4

x0

x1

x2

Input Values

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

5

Convolutional neural networks, I

• Regular deep neural networks do not work well with a grid-like topology (e.g., 2-D images) because:

1. Large number of weights to train.

2. The method is not translation invariant because the weights are not shared across locations.

• Natural analog in econometrics: spatial correlations.

• Alternative: deal with specialized networks explicitly designed for these topologies.

• Most popular approach: convolutional neural networks.

6

464 Chapter 14. Neural Networks for Images

0111

0010

0000

0010

5 0111

0010

0000

0010

1

OUTPUT

WEIGHTSWEIGHTS

0
1
0
1
1
1
0
0
1
0
0
0
0
0
0
0

0
1
0
1
1
1
0
0
1
0
0
0
0
0
0
0

X + +

0
0
1
0
0
1
1
1
0
0
1
0
0
0
0
0

0
1
0
1
1
1
0
0
1
0
0
0
0
0
0
0

X

Figure 14.1: Detecting patterns in 2d images using unstructured MLPs does not work well, because the method
is not translation invariant. We can design a weight vector to act as a matched filter for detecting the
desired cross-shape. This will give a strong response of 5 if the object is on the left, but a weak response of 1
if the object is shifted over to the right. Adapted from Figure 7.16 of [SAV20].

Figure 14.2: We can classify a digit by looking for certain discriminative features (image templates) occuring
in the correct (relative) locations. From Figure 5.1 of [Cho17]. Used with kind permission of Francois Chollet.

focus on the 2d case in this chapter.

14.2 Common layers

In this section, we discuss the basics of CNNs.

14.2.1 Convolutional layers

We start by describing the basics of convolution in 1d, and then in 2d, and then describe how they
are used as a key component of CNNs.

14.2.1.1 Convolution in 1d

The convolution between two functions, say f, g : RD → R, is defined as

[f ~ g](z) =

∫

RD
f(u)g(z − u)du (14.1)

Now suppose we replace the functions with finite-length vectors, which we can think of as functions
defined on a finite set of points. For example, suppose f is evaluated at the points {−L,−L +

Draft of “Probabilistic Machine Learning: An Introduction”. May 9, 2022

7

Convolutional neural networks, II

• We reduce parameters by introducing a convolution (“filter”):

[f ⊛ g](z) =

∫
f (u)g(z − u)du

• Very similar in spirit to a simple Kalman filter.

• Three components: Input, a kernel, and and output (or “feature map”).

• We train the kernel instead of the whole set of connections.

• We can have different kernels and layer them.

8

466 Chapter 14. Neural Networks for Images

Figure 14.5: Illustration of 2d cross correlation. Generated by code.probml.ai/book1/14.5. Adapted from
Figure 6.2.1 of [Zha+20].

Figure 14.6: Convolving a 2d image (left) with a 3× 3 filter (middle) produces a 2d response map (right).
The bright spots of the response map correspond to locations in the image which contain diagonal lines sloping
down and to the right. From Figure 5.3 of [Cho17]. Used with kind permission of Francois Chollet.

14.2.1.2 Convolution in 2d

In 2d, Equation (14.4) becomes

[W~X](i, j) =

H−1∑

u=0

W−1∑

v=0

wu,vxi+u,j+v (14.5)

where the 2d filter W has size H ×W . For example, consider convolving a 3 × 3 input X with a
2× 2 kernel W to compute a 2× 2 output Y:

Y =

(
w1 w2

w3 w4

)
~

x1 x2 x3

x4 x5 x6

x7 x8 x9

 (14.6)

=

(
(w1x1 + w2x2 + w3x4 + w4x5) (w1x2 + w2x3 + w3x5 + w4x6)
(w1x4 + w2x5 + w3x7 + w4x8) (w1x5 + w2x6 + w3x8 + w4x9)

)
(14.7)

Draft of “Probabilistic Machine Learning: An Introduction”. May 9, 2022

9

Convolutional neural networks, III

• Padding at boundaries to ensures the output is the same size as the input.

• Maxpooling as an extreme case of convolution.

• Notice how attractive convolutional neural networks are for computation with a GPU.

10

468 Chapter 14. Neural Networks for Images

00111

01010

0000

0000

010

0111

00010

00111

010

0010

01111

00010

0000

00010

01010

00111

00010

0000

0111

0010

0010

0000

010

0111

0010

0111

010

0010

0111

0010

0000

0010

0010

0111

0010

0010

1110

0101

0010

0000

010

0111

0100

1110

010

0010

1111

0100

0000

0100

0101

1110

0100

0010

11110

01011

0010

0000

010

0111

01010

11100

010

0010

11111

01010

0000

01010

01011

11110

01000

0010

2
2
2
0

0
1
0
0

2
2
2
0

2
5
2
1

Zeros
outside

OUTPUT

Figure 14.7: Same-convolution (using zero-padding) ensures the output is the same size as the input. Adapted
from Figure 8.3 of [SAV20].

i

j

f

f

h

w

= 3

= 3 Zero Padding

(a)

Sw = 2

Sh = 2

(b)

Figure 14.8: Illustration of padding and strides in 2d convolution. (a) We apply “same convolution” to a
5× 7 input (with zero padding) using a 3× 3 filter to create a 5× 7 output. (b) Now we use a stride of 2, so
the output has size 3× 4. Adapted from Figures 14.3–14.4 of [Gér19].

In general, if the input has size xh × xw, we use a kernel of size fh × fw, we use zero padding on
each side of size ph and pw, then the output has the following size [DV16]:

(xh + 2ph − fh + 1)× (xw + 2pw − fw + 1) (14.10)

For example, consider Figure 14.8a. We have p = 1, f = 3, xh = 5 and xw = 7, so the output has
size

(5 + 2− 3 + 1)× (7 + 2− 3 + 1) = 5× 7 (14.11)

If we set 2p = f − 1, then the output will have the same size as the input.

Draft of “Probabilistic Machine Learning: An Introduction”. May 9, 2022

11

46

Figure 5.3: Convolutional layer in a typical deep network

The layer performs the operation909

vj +
3∑

i=1

Ai ∗ wij = Bj

where Ai for i ∈ {1, 2, 3} denotes the ith channel of the input image and Bj910

for j ∈ {1, . . . , c} denotes the jth channel of the output image, and the kernel911

wij ∈ Rk×k is the convolutional kernel. The scalar vj ∈ R denotes the bias.912

Effectively, there are 3c different kernels in one layer and the convolutional913

layer sums up the result of convolutions on all the input channels and adds a914

bias to create each output channel.915

5.4 Translational equivariance using convolutions916

We now discuss the most important reason for using convolutions in deep917

networks. Let us take our 1-dimensional signal x and translate it by ∆ units to918

the right919

x′(t+ ∆) := x(t).

You will see from the definition of convolution in (5.1) that the convolution920

also gets translated921

(x′ ∗ w)k =

∞∑

τ=0

x′τwk−τ

=

∞∑

τ=0

xτ−∆wk−τ

=
∞∑

s=−∆

xswk−s−∆ (s = τ −∆)

= (x ∗ w)k−∆.

(5.3)

12

Generative adversarial networks, I

• Goodfellow et al. (2014).

• A generator network generates candidates (e.g., images).

• A discriminative network evaluates whether they are real or generated.

• Both networks play a minimax problem.

• Applications in economics: Athey et al. (2019) and Liang (2020).

13

644 Chapter 19. Learning with Fewer Labeled Examples

Labeled image, class 2

Unlabeled image
•••

Figure 19.12: Diagram of the semi-supervised GAN framework. The discriminator is trained to output the
class of labeled datapoints (red), a “fake” label for outputs from the generator (yellow), and any label for
unlabeled data (green).

In more detail, let pθ(y|x) denote the critic with C + 1 outputs corresponding to C classes plus a
“fake” class, and let G(z) denote the generator which takes as input samples from the prior distribution
p(z). Let us assume that we are using the standard cross-entropy GAN loss as originally proposed in
[Goo+14]. Then the critic’s loss is

−Ex,y∼p(x,y) log pθ(y|x)−Ex∼p(x) log[1−pθ(y = C+1|x)]−Ez∼p(z) log pθ(y = C+1|G(z)) (19.39)

This tries to maximize the probability of the correct class for the labeled examples, to minimize the
probability of the fake class for real unlabeled examples, and to maximize the probability of the fake
class for generated examples. The generator’s loss is simpler, namely

Ez∼p(z) log pθ(y = C + 1|G(z)) (19.40)

A diagram visualizing the semi-supervised GAN framework is shown in Figure 19.12.

19.3.6.3 Normalizing flows

Normalizing flows (described in more detail in the sequel to this book, [Mur23]) are a tractable
way to define deep generative models. More precisely, they define an invertible mapping fθ : X → Z,
with parameters θ, from the data space X to the latent space Z. The density in data space can be
written starting from the density in the latent space using the change of variables formula:

p(x) = p(f(x)) ·
∣∣∣∣det

(
∂f

∂x

)∣∣∣∣ . (19.41)

We can extend this to semi-supervised learning, as proposed in [Izm+20]. For class labels
y ∈ {1 . . . C}, we can specify the latent distribution, conditioned on a label k, as Gaussian with mean
µk and covariance Σk: p(z|y = k) = N (z|µk,Σk). The marginal distribution of z is then a Gaussian
mixture. The likelihood for labeled data is then

pX (x|y = k) = N (f(x)|µk,Σk) ·
∣∣∣∣det

(
∂f

∂x

)∣∣∣∣ , (19.42)

Draft of “Probabilistic Machine Learning: An Introduction”. May 9, 2022

14

Generative adversarial networks, II

• Looking for G∗ such that:

G∗ = argmin
G

max
D

V (D,G)

where

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz (z)[1− logD(G (z))]

15

Generative adversarial networks, III

• Then:
V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz (z)[1− logD(G (z))]

=

∫

x

pdata (x) log(D(x))dx +

∫

z

pz(z) log(1− D(G (z)))dz

x = G (z)⇒ z = G−1(x)⇒ dz =
(
G−1

)′
(x)dx

⇒ pg (x) = pz
(
G−1(x)

) (
G−1

)′
(x)

∫

x

pdata (x) log(D(x))dx +

∫

x

pz
(
G−1(x)

)
log(1− D(x))

(
G−1

)′
(x)dx

=

∫

x

pdata (x) log(D(x))dx +

∫

x

pg (x) log(1− D(x))dx

=

∫

x

pdata (x) log(D(x)) + pg (x) log(1− D(x))dx

16

Generative Adversarial Networks

Credit: Mark Chang
17

Training
Generative Adversarial Networks

Credit: Mark Chang

18

Understanding the objective function, I

• Notice:

max
D

V (D,G) = max
D

∫

x

pdata (x) log(D(x)) + pg (x) log(1− D(x))dx

∂

∂D(x)
(pdata (x) log(D(x)) + pg (x) log(1− D(x))) = 0

⇒ pdata (x)

D(x)
− pg (x)

1− D(x)
= 0

⇒ D(x) =
pdata (x)

pdata (x) + pg (x)

• If the discriminator is optimal D∗G (x), the optimal generator makes:

pdata (x) = pg (x)⇒ D∗G (x) =
pdata (x)

pdata (x) + pg (x)

19

Understanding the objective function, II

• Now, let us work with C (G):

C (G) = max
D

V (G ,D)

= max
D

∫

x

pdata (x) log(D(x)) + pg (x) log(1− D(x))dx

=

∫

x

pdata (x) log (D
∗
G (x)) + pg (x) log (1− D∗G (x)) dx

=

∫

x

pdata (x) log

(
pdata (x)

pdata (x) + pg (x)

)
+ pg (x) log

(
pg (x)

pdata (x) + pg (x)

)
dx

=

∫

x

pdata (x) log

(
pdata (x)

pdata (x)+pg (x)
2

)
+ pg (x) log

(
pg (x)

pdata (x)+pg (x)
2

)
dx − log(4)

= KL

[
pdata (x)∥

pdata (x) + pg (x)

2

]
+ KL

[
pg (x)∥

pdata (x) + pg (x)

2

]
− log(4)

20

Understanding the objective function, III

• Working with this expression:

C (G) = KL

[
pdata (x)∥

pdata (x) + pg (x)

2

]
+ KL

[
pg (x)∥

pdata (x) + pg (x)

2

]
− log(4) ≥ 0

min
G

C (G) = 0 + 0− log(4) = − log(4)

KL

[
pdata (x)∥

pdata (x) + pg (x)

2

]
= 0

when pdata (x) =
pdata (x) + pg (x)

2

⇒ pdata (x) = pg (x)

21

KL (Kullback-Leibler) divergence

• Jensen-Shannon divergency (symmetric KL):

JSD(P∥Q) =
1

2
DKL(P∥M) +

1

2
DKL(Q∥M)

M =
1

2
(P + Q)

• Given G ,maxD V (G ,D):

= −2 log(2) + 2 JSD (Pdata (x)∥PG (x))

• The optimal G minimizes JSD at = 0:

PG (x) = Pdata(x)

22

Practical implementation

• Given G ,we compute maxD V (G ,D) by

1. Sample
{
x1, xm

}
from Pdata .

2. Sample
{
x∗1, , x∗m} from generator PG .

• And, then, we maximize:

V ′ =
1

m
∑m

i=1 logD (x i)
+

1

m
∑m

i=1 log (1− D (x∗i))

• The binary classifier:

• Output is D(x), which minimizes cross-entropy.

• If x is a positive example → Minimizes − logD(x).

• If x is a negative example → Minimizes − log(1− D(x)).

23

Other architectures

• Bayesian neural networks.

• Recurrent neural networks: they built an internal state (memory) that can be used to process variable

length sequences of inputs. Useful for time series

• Hopfield network (modern versions often known as dense associative memories).

• Boltzmann machines: stochastic version of a Hopfield network.

• Transformers: an attention-mechanism looks at an input sequence and picks, at each step, the parts

of the sequence that are important for the task at hand.

• Self-organizing maps (SOM).

24

25

26

Data augmentation

Data augmentation

• How do we increase the observations to train a network efficiently?

1. Synthetic Data: Rotations, translations, adding noise.

2. Few-shot learning (Wang et al., 2020).

3. Transfer learning.

4. Janossy pooling: expressing a permutation-invariant function as the average of a permutation-sensitive

function applied to all reorderings of the input sequence.

• How can this work?

• Remember that neural networks are, themselves, rotation-invariant.

27

51

designer would like it to be invariant to. Compare this to the previous chapter:1020

by replacing fully-connected layers with convolutions and pooling we made1021

the model invariant to translations. In principle, we could have trained a fully-1022

connected deep network on a very large augmented dataset with translated1023

objects. In principle, this would make the fully-connected network invariant1024

to translations as well.1025

6.1.3 What kind of augmentation to use when?1026

In the example with regression, we saw that the regressor on the augmented1027

data was essentially linear and had much less discriminative power than a1028

polynomial regressor. This was of course by design, we chose to augment the1029

data. If the test data for the problem came from the polynomial instead of our1030

augmented distribution, the new classifier will perform poorly.1031

Figure 6.2: The second panel shows the original scene with a mirror flip (i.e., across the
horizontal axis) while the third panel shows the original scene after a water reflection
(i.e., flip across the vertical axis). The latter is an image that is very unlikely to occur
in the real world, so it is not a good idea to use it for training the model.

By being invariant to a larger set of nuisances than necessary, we are
wasting the parameters of the model and risk getting a large error if the
test data was not from the augmented distribution. By being invariant
to a smaller set of nuisances than necessary, we are risking the situation
that the test data will have some new nuisances which the classifier
will perform poorly on. It is important to bear in mind that we do not
always know what nuisances the model should be invariant to, the set
of transformations in data augmentations necessarily depends—often
critically—upon the application.

ä If you are building a classifier for
detecting cars, motorbikes, people
etc. for autonomous driving
application, do you want to be the
invariant to rotations?Data augmentation requires a lot of domain expertise and often plays a1032

huge role in the performance of a deep network. You should think about what1033

kind of augmentations you will apply to data for speech processing, or for data1034

from written text.1035

6.2 Loss functions1036

We next discuss the various loss functions that are typically used for training1037

neural networks. As usual, we are given a dataset1038

D =
{

(xi, yi)
}
i=1,...,n

.

28

Some algebra

• Group theory in math deals with how elements of a set compose with each other, not on what the

elements are per se.

• Group: a set G together with a binary operation that satisfies associativity, identity element, and

inverse element.

• Symmetric group S over a set G : group whose elements are all the bijections from G to itself, and

whose group operation is the composition of functions.

• Symmetric group is really powerful!

• More general point: importance of algebra and geometry in deep learning.

29

14 BRONSTEIN, BRUNA, COHEN & VELIČKOVIĆ

Figure 4: Left: an equilateral triangle with corners labelled by 1, 2, 3, and
all possible rotations and reflections of the triangle. The group D3 of rota-
tion/reflection symmetries of the triangle is generated by only two elements
(rotation by 60◦ R and reflection F) and is the same as the group Σ3 of per-
mutations of three elements. Right: the multiplication table of the group D3.
The element in the row g and column h corresponds to the element gh.

A group actionTechnically, what we define
here is a left group action.

ofG on a set Ω is defined as amapping (g, u) 7→ g.u associating
a group element g ∈ G and a point u ∈ Ω with some other point on Ω in a
way that is compatible with the group operations, i.e., g.(h.u) = (gh).u for
all g, h ∈ G and u ∈ Ω. We shall see numerous instances of group actions in
the following sections. For example, in the plane the Euclidean group E(2) is
the group of transformations of R2 that preserves Euclidean distancesDistance-preserving

transformations are called
isometries. According to

Klein’s Erlangen Programme,
the classical Euclidean

geometry arises from this
group.

, and
consists of translations, rotations, and reflections. The same group, however,
can also act on the space of images on the plane (by translating, rotating and
flipping the grid of pixels), as well as on the representation spaces learned
by a neural network. More precisely, if we have a group G acting on Ω, we
automatically obtain an action of G on the space X (Ω):

(g.x)(u) = x(g−1u). (3)

Due to the inverse on g, this is indeed a valid group action, in that we have
(g.(h.x))(u) = ((gh).x)(u).

The most important kind of group actions, which we will encounter repeat-
edly throughout this text, are linear group actions, also known as group
representations. The action on signals in equation (3) is indeed linear, in the

30

31

Deep learning and geometry

Deep learning and geometry, I

• Neural networks consist entirely of chains of tensor operations: we take x, we perform affine

transformations, and apply an activation function.

• Thus, these tensor operations are geometric transformations of x.

• In other words: a neural network is a complex geometric transformation in a high-dimensional space.

• More in particular, deep neural networks look for convenient geometrical representations of

high-dimensional manifolds.

32

Deep learning and geometry, II

• This suggests there are some deep theoretical links among different architectures.

• “Geometric unification” endeavor in the spirit of the Erlangen Program enunciated by Felix Klein:

common framework to think about different architectures.

• See:

1. https://fabianfuchsml.github.io/learningonsets/

2. https:

//www.youtube.com/watch?v=bIZB1hIJ4u8&t=368s&ab_channel=MachineLearningStreetTalk

3. https://geometricdeeplearning.com/

33

https://fabianfuchsml.github.io/learningonsets/
https://www.youtube.com/watch?v=bIZB1hIJ4u8&t=368s&ab_channel=MachineLearningStreetTalk
https://www.youtube.com/watch?v=bIZB1hIJ4u8&t=368s&ab_channel=MachineLearningStreetTalk
https://geometricdeeplearning.com/

34

Geometric Deep Learning
Grids, Groups, Graphs,
Geodesics, and Gauges

Michael M. Bronstein1, Joan Bruna2, Taco Cohen3, Petar Veličković4

May 4, 2021

1Imperial College London / USI IDSIA / Twitter
2New York University
3Qualcomm AI Research. Qualcomm AI Research is an initiative of Qualcomm

Technologies, Inc.
4DeepMind

ar
X

iv
:2

10
4.

13
47

8v
2

 [
cs

.L
G

]
 2

 M
ay

 2
02

1

35

The manifold hypothesis

• The manifold hypothesis: all natural data lies on a low-dimensional manifold within the

high-dimensional space where it is encoded (Cayton, 2005).

• Implications:

1. Deep learning only has to fit latent manifolds: simple, low-dimensional, highly structured subspaces

within their potential input space.

2. Thus, we only need a local coordinate system of the underlying manifold.

3. Within one of these manifolds, one can interpolate between two inputs via a continuous path along

which all points fall on the manifold.

4. Deep learning can account for complex data and generalize well if we sample from the right manifold.

36

132 CHAPTER 5 Fundamentals of machine learning

This smoothness helps approximate latent manifolds, which follow the same
properties.

 Deep learning models tend to be structured in a way that mirrors the “shape” of
the information in their training data (via architecture priors). This is particu-
larly the case for image-processing models (discussed in chapters 8 and 9) and
sequence-processing models (chapter 10). More generally, deep neural net-
works structure their learned representations in a hierarchical and modular
way, which echoes the way natural data is organized.

TRAINING DATA IS PARAMOUNT

While deep learning is indeed well suited to manifold learning, the power to general-
ize is more a consequence of the natural structure of your data than a consequence of
any property of your model. You’ll only be able to generalize if your data forms a man-
ifold where points can be interpolated. The more informative and the less noisy your
features are, the better you will be able to generalize, since your input space will be
simpler and better structured. Data curation and feature engineering are essential to
generalization.

 Further, because deep learning is curve fitting, for a model to perform well it needs
to be trained on a dense sampling of its input space. A “dense sampling” in this context
means that the training data should densely cover the entirety of the input data
manifold (see figure 5.11). This is especially true near decision boundaries. With a
sufficiently dense sampling, it becomes possible to make sense of new inputs by inter-
polating between past training inputs without having to use common sense, abstract
reasoning, or external knowledge about the world—all things that machine learning
models have no access to.

Original latent space

Sparse sampling: the

model learned doesn’t

match the latent

space and leads to

incorrect interpolation.

Dense sampling:

the model learned

approximates the

latent space well,

and interpolation

leads to generalization.

Figure 5.11 A dense sampling of the input space is necessary in order to learn a model
capable of accurate generalization.

37

