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Functional equations



Functional equations

• A large class of problems in economics search for a function d that solves a functional equation:

H (d) = 0

• More formally:

1. Let J1 and J2 be two functional spaces and let H : J1 → J2 be an operator between these two spaces.

2. Let Ω ⊆ Rl .

3. Then, we need to find a function d : Ω → Rm such that H (d) = 0.

• Points to remember:

1. Regular equations are particular examples of functional equations.

2. 0 is the space zero, different in general that the zero in the reals.

3. This formalism deals both with market equilibrium and social planner problems.
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Example I: decision rules

• Take the basic stochastic neoclassical growth model:

maxE0

∞∑
t=0

βtu (ct)

ct + kt+1 = eztkα
t + (1− δ) kt , ∀ t > 0

zt = ρzt−1 + σεt , εt ∼ N (0, 1)

• The first-order condition:

u′ (ct) = βEt

{
u′ (ct+1)

(
1 + αezt+1kα−1

t+1 − δ
)}
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Example I: decision rules

• There is a decision rule (a.k.a. policy function) that gives the optimal choice of consumption and

capital tomorrow given the states today:

d =

{
d1 (kt , zt) = ct
d2 (kt , zt) = kt+1

• Then:

H = u′
(
d1 (kt , zt)

)
−βEt

{
u′
(
d1
(
d2 (kt , zt) , zt+1

)) (
1 + αezt+1

(
d2 (kt , zt)

)α−1 − δ
)}

= 0

• If we find d , and a transversality condition is satisfied, we are done!
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Example II: conditional expectations

• Let us go back to our Euler equation:

u′ (ct)− βEt

{
u′ (ct+1)

(
1 + αezt+1kα−1

t+1 − δ
)}

= 0

• Define now:

d =

{
d1 (kt , zt) = ct

d2 (kt , zt) = Et

{
u′ (ct+1)

(
1 + αezt+1kα−1

t+1 − δ
)}

• Why? Example: ZLB.

• Then:

H (d) = u′
(
d1 (kt , zt)

)
− βd2 (kt , zt) = 0
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Example III: value functions

• There is a recursive problem associated with the previous sequential problem:

V (kt , zt) = max
kt+1

{u (ct) + βEtV (kt+1, zt+1)}

ct = eztkα
t + (1− δ) kt − kt+1, ∀ t > 0

zt = ρzt−1 + σεt , εt ∼ N (0, 1)

• Then:

d (kt , zt) = V (kt , zt)

and

H (d) = d (kt , zt)−max
kt+1

{u (ct) + βEtd (kt+1, zt+1)} = 0
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Deep learning to solve functional equations

• General idea: substitute d (x) by dn (x, θ) where θ is an n − dim vector of coefficients to be

determined.

• We can “learn” this function with deep learning (notice: notation with just one layer):

d ∼= dn (x; θ) = θ0 +
M∑

m=1

θmϕ (zm)

where ϕ(·) is an arbitrary activation function and:

zm =
N∑

n=0

θn,mxn

• We need to sample the desired function and minimize a loss function.
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Outline

• Natural sampling: simulated paths of the economy.

• Natural loss function: the implied error in the equilibrium/optimality conditions, as loss function.

• Natural minimization algorithm: Stochastic gradient descent.

• However, you want to think about this more as a framework than a concrete set of instructions.

• Let us go over different applications. Enumeration, no exhaustive list.
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Examples of code

1. An LQ optimal control problem:

https://github.com/Mekahou/Fun-Stuff/blob/main/codes/linear%20quadratic%20DP%20DNN/3.

%20LQ_DP_DNN_Training_Main.ipynb

2. A Neoclassical growth model (discrete time):

https://colab.research.google.com/drive/1jbSti3LkxASZg04Bkod0EBJFXdf6xu9_?usp=sharing

3. A Neoclassical growth model (continuous time):

https://colab.research.google.com/drive/1rFfqbJYn26_nm-CS21Fbw_QV7ccM8XlT?usp=sharing

4. An OLG model:

https://github.com/sischei/DeepEquilibriumNets

5. A Krusell-Smith and a financial frictions HA code:

https://github.com/jesusfv/financial-frictions
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Dynamic programming



Solving high-dimensional dynamic programming problems (discrete time)

• Our goal is to solve the Bellman equation globally:

V (x) = max
α

r(x,α) + β ∗ EV (x′)

s.t. x′ = f (x,α)

G (x,α) ≤ 0

H(x,α) = 0

• Notice that framework is very general. Usually we will not have all these constraints.

• Think about the cases where we have many state variables. Trade-offs in terms of speed vs.

scalability.

9



Solving high-dimensional dynamic programming problems (continuous time)

• We can also write the equivalent continuous-time Hamilton-Jacobi-Bellman (HJB) equation globally:

ρV (x) = max
α

r(x,α) +∇xV (x)f (x,α) +
1

2
tr(σ(x))T∆xV (x)σ(x))

s.t. G (x,α) ≤ 0

H(x,α) = 0

• Solution algorithm is absolutely the same.

• When discrete vs. continuous?
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Neural networks

• We define four neural networks:

1. Ṽ (x;ΘV ) : RN → R to approximate the value function V (x).

2. α̃(x;Θα) : RN → RP to approximate the policy function α.

3. µ̃(x;Θµ) : RN → RL1 , and λ̃(x;Θλ) : RN → RL2 to approximate the Karush-Kuhn-Tucker (KKT)

multipliers µ and λ.

• To simplify notation, we accumulate all weights in the matrix Θ = (ΘV ,Θα,Θµ,Θλ).

• We could think about the approach as just one large neural network with multiple outputs.
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Error criterion I (discrete time)

• The Bellman error:

errB(x;Θ) ≡ r(x, α̃(s;Θα)) + β ∗ EṼ (x′;ΘV )− Ṽ (x;ΘV )

• The policy function error:

errα(x;Θ) ≡ ∂r(x, α̃(x;Θα)

∂α
+ β ∗ Dαf (x, α̃(x;Θ

α))TE∇x Ṽ (x′;ΘV )

− DαG (x, α̃(x;Θα))T µ̃(x;Θµ)− DαH(x, α̃(x;Θα))λ̃(x;Θλ),

where DαG ∈ RL1×M , DαH ∈ RL2×M , and Dαf ∈ RN×M are the submatrices of the Jacobian

matrices of G , H, and f respectively containing the derivatives with respect to α.
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Error criterion I (continuous time)

• The HJB error:

errHJB(x;Θ) ≡ r(x, α̃(x;Θα)) +∇x Ṽ (x;ΘV )f (x, α̃(x;Θα))+

+
1

2
tr [σ(x)T∆x Ṽ (x;ΘV )σ(x)]− ρṼ (x;ΘV )

• The policy function error:

errα(x;Θ) ≡∂r(x, α̃(x;Θα))

∂α
+ Dαf (x, α̃(x;Θ

α))T∇x Ṽ (x;ΘV )

− DαG (x, α̃(x;Θα))T µ̃(x;Θµ)− DαH(x, α̃(x;Θα))λ̃(x;Θλ),

where DαG ∈ RL1×M , DαH ∈ RL2×M , and Dαf ∈ RN×M are the submatrices of the Jacobian

matrices of G , H, and f respectively containing the derivatives with respect to α.

13



Error criterion II (discrete and continuous time)

• The constraint error is itself composed of the primal feasibility errors:

errPF1(x;Θ) ≡ max{0,G (x, α̃(x;Θα))}
errPF2(x;Θ) ≡ H(x, α̃(x;Θα))

the dual feasibility error:

errDF (x;Θ) = max{0,−µ̃(x;Θµ}

and the complementary slackness error:

errCS(x;Θ) = µ̃(x;Θ)TG (x, α̃(x;Θα))

• We combine these four errors by using the squared error as our loss criterion:

E(x;Θ) ≡
∣∣∣∣errB/HJB(x;Θ)

∣∣∣∣2
2
+
∣∣∣∣errα(x;Θ)

∣∣∣∣2
2
+
∣∣∣∣errPF1(x;Θ)

∣∣∣∣2
2
+

+
∣∣∣∣errPF2(x;Θ)

∣∣∣∣2
2
+
∣∣∣∣errDF (x;Θ)

∣∣∣∣2
2
+
∣∣∣∣errCS(x;Θ)

∣∣∣∣2
2
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Training

• We train our neural networks by minimizing the above error criterion through minibatch gradient

descent over points drawn from the ergodic distribution of the state vector.

• The efficient implementation of this last step is the key to the success of the algorithm.

• We start by initializing our network weights and we perform K learning steps called epochs, where K

can be chosen in a variety of ways.

• For each epoch, we draw I points from the state space by simulating from the ergodic distribution.

• Then, we randomly split this sample into B minibatches of size S . For each minibatch, we define the

minibatch error,by averaging the loss function over the batch.

• Finally, we perform minibatch gradient descent for all network weights, with ηk being the learning

rate in the k-th epoch.
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The continuous-time neoclassical growth model I

• We start with the continuous-time neoclassical growth model because it has closed-form solutions for

the policy functions, which allows us to focus our attention on the analysis of the value function

approximation.

• We can then back out the policy function from this approach and compare it to the results of the

next step in which we approximate the policy functions themselves with a neural net.

• A single agent deciding to either save in capital or consume with a HJB equation :

ρV (k) = max
c

U(c) + V ′(k)[F (k)− δ ∗ k − c]

• Notice that c = (U ′)−1(V ′(k)). With CRRA utility, this simplifies further to c = (V ′(k))−
1
γ .

• We set γ = 2, ρ = 0.04, F (k) = 0.5 ∗ k0.36, δ = 0.05.
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The continuous-time neoclassical growth model II

• We approximate the value function V (k) with a neural network, Ṽ (k; Θ) with an “HJB error”:

errHJB =ρṼ (k ; Θ)− U

(
(U ′)−1

(
∂Ṽ (k ; Θ)

∂k

))

− ∂Ṽ (k ; Θ)

∂k

[
F (k)− δ ∗ k − (U ′)−1

(
∂Ṽ (k; Θ)

∂k

)]

• Details:

1. 3 layers.

2. 8 neurons per layers.

3. tanh(x) activation.

4. Normal initialization N
(
0, 4

√
2

ninput+noutput

)
with input normalization.
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(a) Value with closed-form policy
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(c) Consumption with closed-form policy
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(e) HJB error with closed-form policy
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Approximating the policy function

• Let us not use the closed-form consumption policy function but rather approximate said policy

function directly with a policy neural network C̃ (k ; ΘC ).

• The new HJB error:

errHJB = ρṼ (k; ΘV )− U
(
C̃ (k ; ΘC )

)
− ∂Ṽ (k; ΘV )

∂k

[
F (k)− δ ∗ k − C̃ (k; ΘC )

]

• Now we have a policy function error:

errC = (U ′)−1

(
∂Ṽ (k ; ΘV )

∂k

)
− C̃ (k; ΘC )
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(b) Value with policy approximation
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(d) Consumption with policy approximation
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(f) HJB error with policy approximation
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(g) Policy error with policy approximation
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Models with heterogeneous

agents



The challenge

• To compute and take to the data models with heterogeneous agents, we need to deal with:

1. The distribution of agents Gt .

2. The operator H(·) that characterizes how Gt evolves:

Gt+1 = H(Gt , St)

or
∂Gt

∂t
= H(Gt , St)

given the other aggregate states of the economy St .

• How do we track Gt and compute H(Gt ,St)?
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A common approach

• If we are dealing with N discrete types, we keep track of N − 1 weights.

• If we are dealing with continuous types, we extract a finite number of features from Gt :

1. Moments.

2. Q-quantiles.

3. Weights in a mixture of normals...

• We stack either the weights or features of the distribution in a vector µt .

• We assume µt follows the operator h(µt ,St) instead of H(Gt ,St).

• We parametrize h(µt ,St) as h
j(µt ,St ; θ).

• We determine the unknown coefficients θ such that an economy where µt follows h
j(µt ,St ; θ)

replicates as well as possible the behavior an economy where Gt follows H(·).
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Example: Basic Krusell-Smith model

• Two aggregate variables: aggregate productivity shock and household distribution Gt(a, z) where:∫
Gt(a, z)da = Kt

• We summarize Gt(a, ·) with the log of its mean: µt = logKt (extending to higher moments is simple,

but tedious).

• We parametrize logKt+1︸ ︷︷ ︸
µt+1

= θ0(st) + θ1(st) logKt︸ ︷︷ ︸
hj (µt ,st ;θ)

.

• We determine {θ0(st), θ1(st)} by OLS run on a simulation.
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Problems

• No much guidance regarding feature and parameterization selection in general cases.

• Yes, keeping track of the log of the mean and a linear functional form work well for the basic model.

But, what about an arbitrary model?

• Method suffers from “curse of dimensionality”: difficult to implement with many state variables or high

N/higher moments.

• Lack of theoretical foundations (Does it converge? Under which metric?).
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How can deep learning help?

• Deep learning addresses challenges:

1. How to extract features from an infinite-dimensional object efficiently.

2. How to parametrize the non-linear operator mapping how distributions evolve.

3. How to tackle the “curse of dimensionality.”

• Given time limitations, today I will discuss the last two points.

• In our notation of y = f (x):

1. y = µt+1.

2. x = (µt , St).
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Example: Financial frictions and

the wealth distribution



Motivation

• Recently, many papers have documented the nonlinear relations between financial variables and

aggregate fluctuations.

• For example, Jordà et al. (2016) have gathered data from 17 advanced economies over 150 years to

show how output growth, volatility, skewness, and tail events all seem to depend on the levels of

leverage in an economy.

• Similarly, Adrian et al. (2019a) have found how, in the U.S., sharply negative output growth follows

worsening financial conditions associated with leverage.

• Can a fully nonlinear DSGE model account for these observations?

• To answer this question, we postulate, compute, and estimate a continuous-time DSGE model with a

financial sector, modeled as a representative financial expert, and households, subject to uninsurable

idiosyncratic labor productivity shocks.
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The main takeaway

• The interaction between the supply of bonds by the financial sector and the precautionary demand for

bonds by households produces significant endogenous aggregate risk.

• This risk induces an endogenous regime-switching process for output, the risk-free rate, excess

returns, debt, and leverage.

• Mechanism: endogenous aggregate risk begets multiple stochastic steady states or SSS(s), each with

its own stable basin of attraction.

• Intuition: different persistence of wages and risk-free rates in each basin.

• The regime-switching generates:

1. Multimodal distributions of aggregate variables (Adrian et al., 2019b).

2. Time-varying levels of volatility and skewness for aggregate variables (Fernández-Villaverde and Guerrón,

2020).

3. Supercycles of borrowing and deleveraging (Reinhart and Rogoff, 2009).
32



0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

33



HA vs. RA

• Our findings are in contrast with the properties of the representative household version of the model.

• While the consumption decision rule of the households is close to linear with respect to the household

state variables, it is sharply nonlinear with respect to the aggregate state variables.

• This point is more general: agent heterogeneity might matter even if the decision rules of the agents

are linear with respect to individual state variables.

• Thus, changes in the forces behind precautionary savings affect aggregate variables, and we can offer

a novel and simultaneous account of:

1. The recent heightened fragility of the advanced economies to adverse shocks.

2. The rise in wealth inequality witnessed before the 2007-2008 financial crisis.

3. The increase in debt and leverage experienced during the same period.

4. The low risk-free interest rates of the last two decades.
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Methodological contribution

• New approach to (globally) compute and estimate with the likelihood approach HA models:

1. Computation: we use tools from machine learning.

2. Estimation: we use tools from inference with diffusions.

• Strong theoretical foundations and many practical advantages.

1. Deal with a large class of arbitrary operators efficiently.

2. Algorithm that is i) easy to code, ii) stable, iii) scalable, and iv) massively parallel.
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The firm

• Representative firm with technology:

Yt = Kα
t L

1−α
t

• Competitive input markets:

wt = (1− α)Kα
t L

−α
t

rct = αKα−1
t L1−α

t

• Aggregate capital evolves:
dKt

Kt
= (ιt − δ) dt + σdZt

• Instantaneous return rate on capital drkt :

drkt = (rct − δ) dt + σdZt
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The expert

• Representative expert (financial intermediary) with preferences:

E0

[∫ ∞

0

e−ρ̂t log(Ĉt)dt

]

• Expert rents capital Kt to firms and issues risk-free debt Bt at rate rt to households.

• Financial friction: expert cannot issue state-contingent claims and must absorb all risk from capital.

• Expert’s net wealth Nt = Kt − Bt evolves:

dNt = Ktdr
k
t − rtBtdt − Ĉtdt

=
[
(rt + ωt (rct − δ − rt))Nt − Ĉt

]
dt + σωtNtdZt

where ωt ≡ Kt

Nt
is the leverage ratio.

• Kt follows:

dKt = dNt + dBt
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Households I

• Continuum of infinitely-lived households with unit mass with preferences:

E0

[∫ ∞

0

e−ρt c
1−γ
t − 1

1− γ
dt

]

• Heterogeneous in wealth am and labor productivity zm for m ∈ [0, 1].

• zt units of labor valued at wage wt evolves stochastically following a Markov chain:

1. zt ∈ {z1, z2} , with z1 < z2 and ergodic mean 1.

2. Jump intensity from state 1 to state 2: λ1 (reverse intensity is λ2).

• Distribution of households Gt (a, z).
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Households II

• Households save at ≥ 0 in the riskless debt issued by experts with an interest rate rt :

dat = (wtzt + rtat − ct) dt = s (at , zt ,Kt ,Gt) dt

• Optimal choice: ct = c (at , zt ,Kt ,Gt).

• Total consumption by households:

Ct ≡
∫

c (at , zt ,Kt ,Gt) dGt (a, z)

• Gt (a, z) has a Radon-Nikodym derivative gt(a, z) that follows the KF equation:

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i ̸= j = 1, 2

where git(a) ≡ gt(a, zi ), i = 1, 2.
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Market clearing

1. Total amount of labor rented by the firm is equal to labor supplied:

Lt =

∫
zdGt = 1

Then, total payments to labor are given by wt .

2. Total amount of debt of the expert equals the total households’ savings:

Bt ≡
∫

adGt (da, dz)

with dBt = (wt + rtBt − Ct) dt.

3. By the resource constraint, dKt =
(
Yt − δKt − Ct − Ĉt

)
dt + σKtdZt , we get:

ιt =
Yt − Ct − Ĉt

Kt
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Equilibrium

An equilibrium in this economy is composed by a set of prices
{
wt , rct , rt , r

k
t

}
t≥0

, quantities{
Kt ,Nt ,Bt , Ĉt , cmt

}
t≥0

, and a density {gt (·)}
t≥0

such that:

1. Given wt , rt , and gt , the solution of the household m’s problem is ct = c (at , zt ,Kt ,Gt).

2. Given rkt , rt , and Nt , the solution of the expert’s problem is Ĉt , Kt , and Bt .

3. Given Kt , firms maximize their profits and input prices are given by wt and rct .

4. Given wt , rt , and ct , gt is the solution of the KF equation.

5. Given gt and Bt , the debt market clears.
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Characterizing the equilibrium I

• First, we proceed with the expert’s problem. Because of log-utility:

Ĉt = ρ̂Nt

ωt = ω̂t =
rct − δ − rt

σ2

• We can use the equilibrium values of rct , Lt , and ωt to get the wage:

wt = (1− α)Kα
t

the rental rate of capital:

rct = αKα−1
t

and the risk-free interest rate:

rt = αKα−1
t − δ − σ2Kt

Nt
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Characterizing the equilibrium II

• Expert’s net wealth evolves as:

dNt =

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Nt︸ ︷︷ ︸

µN
t (Bt ,Nt)

dt + σKt︸︷︷︸
σN
t (Bt ,Nt)

dZt

• And debt as:

dBt =

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2Kt

Nt

)
Bt − Ct

)
dt

• Nonlinear structure of law of motion for dNt and dBt .

• We need to find:

Ct ≡
∫

c (at , zt ,Kt ,Gt) gt (a, z) dadz

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i ̸= j = 1, 2
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The DSS

• No aggregate shocks (σ = 0), but we still have idiosyncratic household shocks.

• Then:

r = rkt = rct − δ = αKα−1
t − δ

and

dNt =
(
αKα−1

t − δ − ρ̂
)
Ntdt

• Since in a steady state the drift of expert’s wealth must be zero, we get:

K =

(
ρ̂+ δ

α

) 1
α−1

and:

r = ρ̂ < ρ

• The value of N is given by the dispersion of the idiosyncratic shocks (no analytic expression). 45



How do we find aggregate consumption?

• As in Krusell and Smith (1998), households only track a finite set of n moments of gt(a, z) to form

their expectations.

• No exogenous state variable (shocks to capital encoded in K ). Instead, two endogenous states.

• For ease of exposition, we set n = 1. The solution can be trivially extended to the case with n > 1.

• More concretely, households consider a perceived law of motion (PLM) of aggregate debt:

dBt = h (Bt ,Nt) dt

where

h (Bt ,Nt) =
E [dBt |Bt ,Nt ]

dt
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A new HJB equation

• Given the PLM, the household’s Hamilton-Jacobi-Bellman (HJB) equation becomes:

ρVi (a,B,N) = max
c

c1−γ − 1

1− γ
+ s

∂Vi

∂a
+ λi [Vj(a,B,N)− Vi (a,B,N)]

+h (B,N)
∂Vi

∂B
+ µN (B,N)

∂Vi

∂N
+

[
σN (B,N)

]2
2

∂2Vi

∂N2

i ̸= j = 1, 2, and where

s = s (a, z ,N + B,G )

• We solve the HJB with a first-order, implicit upwind scheme in a finite difference stencil.

• Sparse system. Why?

• Alternatives for solving the HJB? Meshfree, FEM, deep learning, ...

47



An algorithm to find the PLM

1) Start with h0, an initial guess for h.

2) Using current guess hn, solve for the household consumption, cm, in the HJB equation.

3) Construct a time series for Bt by simulating by J periods the cross-sectional distribution of

households with a constant time step ∆t (starting at DSS and with a burn-in).

4) Given Bt , find Nt , Kt , and:

ĥ =

{
ĥ1, ĥ2..., ĥj ≡

Btj+∆t − Btj

∆t
, ..., ĥJ

}

5 ) Define X = {x1, x2, ..., xJ}, where xj =
{
x1j , x

2
j

}
=
{
Btj ,Ntj

}
.

6) Use
(
ĥ,X

)
and a universal nonlinear approximator to obtain hn+1, a new guess for h.

7) Iterate steps 2)-6) until hn+1 is sufficiently close to hn.
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A universal nonlinear approximator

• We approximate the PLM with a neural network (NN):

h (x; θ) = θ10 +
Q∑

q=1

θ1qϕ

(
θ20,q +

D∑
i=1

θ2i,qx
i

)
where Q = 16, D = 2, and ϕ(z) = log(1 + ez).

• θ is selected as:

θ∗ = argmin
θ

1

2

J∑
j=1

∥∥∥h (xj ; θ)− ĥj

∥∥∥2
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Estimation with aggregate variables I

• D + 1 observations of Yt at fixed time intervals [0,∆, 2∆, ..,D∆]:

Y D
0 = {Y0,Y∆,Y2∆, ...,YD} .

• More general case: sequential Monte Carlo approximation to the Kushner-Stratonovich equation

(Fernández-Villaverde and Rubio Raḿırez, 2007).

• We are interested in estimating a vector of structural parameters Ψ.

• Likelihood:

LD

(
Y D
0 |Ψ

)
=

D∏
d=1

pY
(
Yd∆|Y(d−1)∆; Ψ

)
,

where

pY
(
Yd∆|Y(d−1)∆; Ψ

)
=

∫
fd∆(Yd∆,B)dB.

given a density, fd∆(Yd∆,B), implied by the solution of the model.
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Estimation with aggregate variables II

• After finding the diffusion for Yt , f
d
t (Y ,B) follows the Kolmogorov forward (KF) equation in the

interval [(d − 1)∆, d∆]:

∂ft
∂t

= − ∂

∂Y

[
µY (Y ,B)ft(Y ,B)

]
− ∂

∂B

[
h(B,Y

1
α − B)f dt (Y ,B)

]
+
1

2

∂2

∂Y 2

[(
σY (Y )

)2
ft(Y ,B)

]

• The operator in the KF equation is the adjoint of the infinitesimal generator of the HJB.

• Thus, the solution of the KF equation amounts to transposing and inverting a sparse matrix that has

already been computed.

• Our approach provides a highly efficient way of evaluating the likelihood once the model is solved.

• Conveniently, retraining of the neural network is easy for new parameter values.
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Parametrization

Parameter Value Description Source/Target

α 0.35 capital share standard

δ 0.1 yearly capital depreciation standard

γ 2 risk aversion standard

ρ 0.05 households’ discount rate standard

λ1 0.986 transition rate u.-to-e. monthly job finding rate of 0.3

λ2 0.052 transition rate e.-to-u. unemployment rate 5 percent

y1 0.72 income in unemployment state Hall and Milgrom (2008)

y2 1.015 income in employment state E (y)= 1

ρ̂ 0.0497 experts’ discount rate K/N = 2
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Figure 1: Loglikelihood over σ.
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Mean Standard deviation Skewness Kurtosis

Y basin HL 1.5802 0.0193 0.0014 2.869

Y basin LL 1.5829 0.0169 0.1186 3.0302

rbasin HL 4.92 0.3364 0.0890 2.866

rbasin LL 4.89 0.2947 -0.0282 3.0056

wbasin HL 1.0271 0.0125 0.0014 2.8691

wbasin LL 1.0289 0.0111 0.1186 3.0302

Table 1: Moments conditional on basin of attraction.
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Recent advances

• Maliar, Maliar, and Winant (2021): discrete time, finite number of agents, approximation of

Euler/Bellman equations.

• Azinovic, Gaegauf, and Scheidegger (2019): discrete time, continuum of agents (finite histogram),

approximation of Euler equations.

• Duarte (2018): continuous time, finite number of agents, reinforcement learning.

• Fernández-Villaverde et al. (2022): continuous time, finite number of agents, approximation of HJBs.

• Ebrahimi-Kahou et al. (2021): discrete time, finite number of agents, symmetry + concentration of

measure.
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