

Challenges Solving Economic Models

Jesús Fernández-Villaverde¹ and Galo Nuño² August 7, 2023

¹University of Pennsylvania

²Banco de España

- Many interesting questions in macroeconomics require:
 - 1. Nonlinear techniques. Examples: How do financial crises arise? Why do countries or firms default? When do firms invest in large, lumpy projects? Why do individuals decide to migrate?
 - 2. Heterogeneous agents. Examples: What mechanisms account for changes in income and wealth inequality? Is there a trade-off between inequality and economic growth? How does inequality affect monetary and fiscal policy? What are the consequences of entry-exit in models of industry dynamics?
 - 3. Many state variables. Examples: Discrete node models, corporate finance models, rich life-cycle models, models where parameters are quasi-states.
- Often, all three elements come together. Example: heterogeneous agents models with nominal frictions and many assets.

- Modeling this class of problems rarely leads to analytic solutions. Thus, we must resort to numerical techniques.
- We want accurate and fast solution methods that can handle these models.
- Fast includes both coding and running time.
- While standard dynamic programming techniques (value function iteration, policy function iteration, or a combination of both) can tackle, in theory, most environments, we would need to struggle with the "curse of dimensionality" (three aspects of it).
- Similar concern for projection methods.
- Challenges for perturbation approaches.

Too many dimensions

Too many kinks

Unknown and non-hypercubic domains of interest

- We want to find ways to keep the "curse of dimensionality" under control.
- In particular, we want to move to the "feasible" region of the Big-O complexity chart.
- This is relevant both for time and memory complexity.
- But key, as well, in terms of coding time. In practice, given modern computational resources, this is the real constraint for researchers.

Big-O Complexity Chart

Operations

- Three strategies:
 - 1. Better numerical algorithms (e.g., continuous-time methods, deep learning).
 - 2. Better software implementations (e.g., robust OS, modern programming languages, functional programming, flexible data structures, advances in massive parallelization).
 - 3. Better hardware designs (e.g., GPUs, TPUs and other AI accelerators, FPGAs).
- Some of these techniques are relatively new in economics or, at least, less familiar to many researchers.
- A complete treatment of the material would require, at the very least, a whole semester.
- In this course, we will focus on better numerical algorithms: deep learning.

GPUs

TPUs

Programming field-programmable gate arrays for economics

Approximation method	High-dimensional input	Can resolve local features accurately	Irregularly shaped domain	Large amount of data
Polynomials	\checkmark	×	\checkmark	\checkmark
Splines	×	\checkmark	×	\checkmark
Adaptive (sparse) grids	\checkmark	\checkmark	×	\checkmark
Gaussian processes	\checkmark	\checkmark	\checkmark	×
Deep learning	\checkmark	\checkmark	\checkmark	\checkmark