
Introduction to Deep Learning

Jesús Fernández-Villaverde1 and Galo Nuño2

August 28, 2023

1University of Pennsylvania

2Banco de España

The problem

• We want to approximate (“learn”) an unknown function:

y = f (x)

where y is a scalar and x = {x0 = 1, x1, x2, ..., xN} a vector (including a constant).

• We care about the case when N is large (possibly in the thousands!).

• Easy to extend to the case where y is a vector (e.g., a probability distribution), but notation becomes

cumbersome.

• In economics, f (x) can be a value function, a policy function, a pricing kernel, a conditional

expectation, a classifier, ...

1

A neural network

• An artificial neural network (a.k.a. a connectionist system) is a approximation to f (x) of the form:

y = f (x) ∼= gNN (x; θ) = θ0 +
M∑

m=1

θmϕ (zm)

where ϕ(·) is an arbitrary activation function and:

zm =
N∑

n=0

θn,mxn

• The xn’s are known as the features of the data, which belong to a feature space X .

• The ϕ (zm)’s are known as the representation of the data (a generalized linear model).

• M is known as the width of the model (wide vs. thin networks).

• “Training” the network: We select θ such that gNN (x; θ) is as close to f (x) as possible given some

relevant metric (e.g., the ℓ2 norm).
2

Flow representation

WeightsInputs

θ0x0

θ1x1

θ2x2

θnxn

n∑
i=0

θixi

Linear Trans.

Activation

Output

3

Intuition

• Intuition 1: A biological interpretation, but I do not find it too useful. Closer to econometrics (e.g.,

NOLS, semiparametric regression, and sieves) and differential geometry.

• Intuition 2: We look for representations of the features of the data that are informationally efficient.

• Intuition 3 (more advanced): We look for translations and rotations of the data that deliver a more

convenient geometry by moving from a parent space to a simpler one.

4

The biological analog

5

Comparison with other approximations

• Compare:

f (x) ∼= gNN (x; θ) = θ0 +
M∑

m=1

θmϕ

(
N∑

n=0

θn,mxn

)
with a standard projection:

f (x) ∼= gCP (x; θ) = θ0 +
M∑

m=1

θmϕm (x)

where ϕm is, for example, a Chebyshev polynomial.

• We exchange the rich parameterization of coefficients for the parsimony of basis functions.

• How we determine the coefficients will also be different, but this is somewhat less important.

6

Why do neural networks “work”?

• Neural networks consist entirely of chains of tensor operations: we take x, we perform affine

transformations, and apply an activation function.

• Thus, these tensor operations are geometric transformations of x. In fact, a better name for neural

networks could be chained geometric transformations.

• In other words: a neural network is a complex geometric transformation in a high-dimensional space.

• Deep neural networks look for convenient geometrical representations of high-dimensional manifolds.

• The success of any functional approximation problem is to search for the right geometric space in

which to perform it, not to search for a “better” basis function.

• Think about:

y = kαl1−α ⇒ log y = α log k + (1− α) log l

7

130 CHAPTER 5 Fundamentals of machine learning

it enables local generalization. But remarkably, humans deal with extreme novelty all the
time, and they do just fine. You don’t need to be trained in advance on countless
examples of every situation you’ll ever have to encounter. Every single one of your
days is different from any day you’ve experienced before, and different from any day
experienced by anyone since the dawn of humanity. You can switch between spending
a week in NYC, a week in Shanghai, and a week in Bangalore without requiring thou-
sands of lifetimes of learning and rehearsal for each city.

 Humans are capable of extreme generalization, which is enabled by cognitive mecha-
nisms other than interpolation: abstraction, symbolic models of the world, reasoning,
logic, common sense, innate priors about the world—what we generally call reason, as
opposed to intuition and pattern recognition. The latter are largely interpolative in
nature, but the former isn’t. Both are essential to intelligence. We’ll talk more about
this in chapter 14.

WHY DEEP LEARNING WORKS

Remember the crumpled paper ball metaphor from chapter 2? A sheet of paper rep-
resents a 2D manifold within 3D space (see figure 5.9). A deep learning model is a
tool for uncrumpling paper balls, that is, for disentangling latent manifolds.

A deep learning model is basically a very high-dimensional curve—a curve that is
smooth and continuous (with additional constraints on its structure, originating from
model architecture priors), since it needs to be differentiable. And that curve is fitted
to data points via gradient descent, smoothly and incrementally. By its very nature,
deep learning is about taking a big, complex curve—a manifold—and incrementally
adjusting its parameters until it fits some training data points.

Manifold interpolation

(intermediate point

on the latent manifold)

Linear interpolation

(average in the encoding space)

Figure 5.8 Difference between
linear interpolation and interpolation
on the latent manifold. Every point on
the latent manifold of digits is a valid
digit, but the average of two digits
usually isn’t.

Figure 5.9 Uncrumpling a
complicated manifold of data

8

Deep learning, I

• A deep learning network is an acyclic multilayer composition of J > 1 neural networks:

z0m = θ00,m +
N∑

n=1

θ0n,mxn

and

z1m = θ10,m +
M(1)∑
m=1

θ1mϕ
1
(
z0m
)

...

y ∼= gDL(x; θ) = θJ0 +
M(J)∑
m=1

θJmϕ
J
(
zJ−1
m

)
where the M(1),M(2), ... and ϕ1(·), ϕ2(·), ... are possibly different across each layer of the network.

• A deep network creates new representations by composing older representations.

9

x0

x1

x2

Input Values

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

10

Deep learning, II

• Sometimes known as deep feedforward neural networks or, of fully connected, multilayer perceptrons

(MLPs).

• “Feedforward” comes from the fact that the composition of neural networks can be represented as a

directed acyclic graph, which lacks feedback. We can have more general recurrent structures.

• J is known as the depth of the network (deep vs. shallow networks).

• The case J = 1 is a standard neural network.

• As before, we can select θ such that gDL (x; θ) approximates a target function f (x) as closely as

possible under some relevant metric.

• All other aspects (selecting ϕ(·), J, M, ...) are known as the network architecture. We will discuss

extensively at the end of this slide block how to determine them.

11

Why do deep neural networks “work” better?

• Why do we want to introduce hidden layers?

1. It works! Evolution of ImageNet winners.

2. The number of representations increases exponentially with the number of hidden layers while

computational cost grows linearly.

3. Intuition: hidden layers induce highly nonlinear behavior in the joint creation of representations without

the need to have domain knowledge (used, in other algorithms, in some form of greedy pre-processing).

12

13

Some consequences

• Because of the previous arguments, neural networks can efficiently approximate extremely complex

functions.

• In particular, under certain (relatively weak) conditions:

1. Neural networks are universal approximators.

2. Neural networks break the “curse of dimensionality.”

• Furthermore, neural networks are easy to code, stable, and scalable for multiprocessing (neural

networks are built around tensors).

14

Further advantages

• Neural networks and deep learning often require less “inside knowledge” by experts on the area.

• While results can be highly counter-intuitive, deep neural networks deliver excellent performance.

• Outstanding open source libraries (Tensorflow, Keras, Pytorch, JAX) that integrate well with easy

scripting languages (Python).

• Newer algorithms: batch normalization, residual connections, and depthwise separable convolutions.

• More recently, development of dedicated hardware (TPUs, AI accelerators, FPGAs) are likely to

maintain a hedge for the area.

• The richness of an ecosystem is key for its long-run success.

15

16

Limitations of neural networks and deep learning

• While neural networks and deep learning can work extremely well, there is no such a thing as a silver

bullet.

• Clear and serious trade-offs in real-life applications.

• We often require tens of thousands of observations to properly train a deep network.

• Of course, sometimes “observations” are endogenous (we can simulate them) and we can implement

data augmentation, but if your goal is to forecast GDP next quarter, it is unlikely a deep neural

network will beat an ARIMA(n,p,q) (at least only with macro variables).

• Issues of interpretation.

• We are very far from any type of general human intelligence. Think about the process of designing a

rocket.

17

References

18

19

20

Digging deeper

Activation functions I

• Traditionally:

1. Identity function:

ϕ (z) = z

Used in linear regression.

2. A sigmoidal function:

ϕ (z) =
1

1 + e−z

3. Step function (a limiting case as z grows quickly):

ϕ (z) = 1 if z > 0, ϕ (z) = 0 otherwise.

4. Hyperbolic tangent:

ϕ (z) =
e2z − 1

e2z + 1
21

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

22

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

23

Activation functions II

• Some activation functions that have gained popularity recently:

1. Rectified linear unit (ReLU):

ϕ (z) = max(0, z)

2. Parametric ReLU:

ϕ (z) = max(z , az)

3. Continuously Differentiable Exponential Linear Units (CELU):

ϕ (z) = max(0, z) + min(0, α(ex/α − 1))

4. Softplus:

ϕ (z) = log(1 + ez)

24

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ReLU
Sofplus

25

Interpretation

• θ0 controls the activation threshold.

• The level of the θi ’s for i > 0 control the activation rate (the higher the θi ’s, the harder the

activation).

• Some textbooks separate the activation threshold and scaling coefficients from θ as different

coefficients in ϕ, but such separation moves notation farther away from standard econometrics.

• But in practice θ does not have a structural interpretation, so the identification problem is of

secondary importance.

26

-4 -2 0 2 4
0

1

2

3

4

-4 -2 0 2 4
0

1

2

3

4

5

-4 -2 0 2 4
0

1

2

3

-4 -2 0 2 4
0

2

4

6

-4 -2 0 2 4
0

2

4

6

-4 -2 0 2 4
0

1

2

3

4

-4 -2 0 2 4
-4

-3

-2

-1

0

-4 -2 0 2 4
-4

-3

-2

-1

0

-4 -2 0 2 4
-6

-4

-2

0

27

Two classic (yet remarkable) results I

Borel measurable function

A map f : X → Y between two topological spaces is called Borel measurable if f −1(A) is a Borel set for

any open set A on Y (the Borel sets are all the open sets built through the operations of countable

union, countable intersection, and relative complement).

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)

A neural network with at least one layer can approximate any Borel measurable function mapping

finite-dimensional spaces to any desired degree of accuracy.

• Intuition of the result.

• Comparison with other results in series approximations.

28

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-3

-2

-1

0

1

2

3

4

29

-2 -1 0 1
-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1
-4

-3

-2

-1

0

1

2

3

4

30

Two classic (yet remarkable) results II

• Assume, as well, that we are dealing with the class of functions for which the Fourier transform of

their gradient is integrable.

Breaking the curse of dimensionality: Barron (1993)

A one-layer NN achieves integrated square errors of order O(1/M), where M is the number of nodes. In

comparison, for series approximations, the integrated square error is of order O(1/(M2/N)) where N is

the dimensions of the function to be approximated.

• More general theorems by Leshno et al. (1993) and Bach (2017).

• What about Chebyshev polynomials? Splines? Problems of convergence and generalization

(“extrapolation”).

• There is another, yet more subtle curse of dimensionality: data availability. We will return to this

concern while dealing with symmetries

31

Playing with multiple layers

• Often, fewer neurons in higher layers allow for compression of learning into fewer features. In fact,

intermediate features are many times interesting by themselves.

• We can also add multidimensional outputs.

• Or even to produce, as output, a probability distribution, for example, using a softmax layer:

ym =
ez

J−1
m∑M

m=1 e
zJ−1
m

32

Training

Loss function

• We need to specify a loss function to train the network (i.e., select θ).

• A natural loss function: the quadratic error function E (θ;Y, ŷ):

θ∗ = argmin
θ

E (θ;Y, ŷ)

= argmin
θ

L∑
l=1

E (θ; yl , ŷl)

= argmin
θ

1

2

L∑
l=1

∥yl − g (xl ; θ)∥2

• Where from do the observations Y come? Observed data vs. simulated epochs.

• Initial θ come from a normal distribution N (0, σ). For example: σ = 4
√

2
ninput+noutput

, but other

choices are possible.

33

Alternative loss functions

• Other loss functions can be used.

• For instance, we can add regularization terms:

1. ℓ1 (LASSO): λ
∑

i=1 |θi |.

2. ℓ2 (ridge regression, aka as Tikhonov regularization): λ
∑

i=1 θ
2
i .

3. A combination of both norms (elastic net): λ1

∑
i=1 |θi |+ λ2

∑
i=1 θ

2
i .

34

Backpropagation

• We can easily calculate E(θ∗;Y , ŷ) and ∇E(θ∗;Y , ŷ) for a given θ∗.

• In particular, for the gradient, we use backpropagation (Rumelhart et al., 1986):

∂E (θ; yl , ŷl)

∂θ0
= yl − g (xl ; θ)

∂E (θ; yl , ŷl)

∂θm
= (yl − g (xl ; θ))ϕ (zm) , for ∀m

∂E (θ; yl , ŷl)

∂θn,m
= (yl − g (xl ; θ)) θmxnϕ

′ (zm) , for ∀n,m

where ϕ′(z) is the derivative of the activation function.

• The derivative ϕ′(z) will be trivial to evaluate if we use a ReLU. Also, modern libraries use automatic

differentiation, which interacts particularly well with backpropagation.

• Backpropagation will be particularly important when we use multiple layers.

35

An example

• Let us go back to our simple function x3 + x2 − x − 1.

• Let us train a 3-layer network.

• Simple code in Matlab.

• Suggested exercise: write an equivalent code in Python with PyTorch or JAX.

36

Architecture design

Architecture design

• Before, we have taken many aspects of the network architecture as given.

• But in practice, you need to design them (hence, importance of having access to a good deep

learning library).

• Choices (“hyperparameters”):

1. ϕ(·): activation function.

2. M: number of neurons.

3. J: number of layers.

4. Number and size of epochs.

• Notation for whole architecture: A.

• Use E (θ;Y, ŷ) with some form of regularization (ℓ1 or ℓ2), cross-validation, or dropout.

37

Cross-validation

38

Dropout

39

An online illustration

• We can play with many of these hyperparameters easily with the right libraries.

• Nothing substitutes practice.

• An interesting additional webpage: https://playground.tensorflow.org/.

• You can play with all the aspects of the architecture in several standard problems (from easy to

challenging).

• Spend some time with this webpage!

40

https://playground.tensorflow.org/

Further ideas

• Principles:

1. Trade-off error/computational time.

2. Better to err on the side of too many M.

• Double descent phenomenon (we will come back to this point later).

41

Appendix: Historical background

42

A bit of history, I

• Original idea of neural networks goes back to 1943: Warren McCulloch (1898-1969) and Walter Pitts

(1923-1969): “A Logical Calculus of the Ideas Immanent in Nervous Activity.”

• Inspired by:

1. Turing’s ideas on computation. Much of it developed in detail in “Computing Machinery and

Intelligence,” which is arguably the most influential paper in the history of Computer Science.

2. The work on mathematical biology of Nicolas Rashevsky (1899-1972), Pitts’s advisor.

3. Propositional logic by Alfred North Whitehead and Bertrand Russell.

• Donald Hebb (1949) proposes an updated rule modifying the connection strengths between neurons

(i.e., Hebbian learning).

43

8

Around the same time in England, Alan Turing was forming his initial84

ideas on computation and neurons. He had already published his paper on85

computability by then. This paper (Turing, 2009) is the second assigned86

reading for this lecture. 1
87

88

McCulloch was inspired by Turing’s idea that of building a machine that could89

compute any function in finitely-many steps was powerful. In his mind, the90

neuron in a human brain, which either fires or does not fire depending upon91

the stimuli of the neurons connected to it, was a binary object; rules of logic92

where a natural way to link such neurons, just like the Pitt’s hero Bertrand93

Russell rebuilt modern mathematics using logic.94

1If you need more inspiration to go and read it, the first section is titled “The Imitation Game”.

44

A bit of history, II

• Perceptron by Frank Rosenblatt (1928-1971) in the late 1950s and early 1960s: the simplest

feedforward neural networks that yields a universal approximator.

• However, XOR problem identified by Minsky and Papert (1969) led to a move toward expert systems

in AI (although scope of XOR problem was misunderstood at the time).

• Neural networks enjoyed a brief spike of popularity in the late 1980s and early 1990s, but largely

abandoned by late 1990s.

45

46

Current interest

• Neural networks revived in the second half of the 2000s.

• Why?

1. Suddenly, the large computational and data requirements required to train the networks efficiently

became available at a reasonable cost.

2. New algorithms such as backpropagation through stochastic gradient descent became popular (although

they were already known).

• Some well-known successes (Krizhevsky, Sutskever, and Hinton, 2012) and industrial applications:

deep learning quickly replaced SVM, random forest, and gradient boosted trees as most powerful

learning algorithm.

• Currently, neural networks are among the most active areas of research in computer science and

applied math.

47

AlphaGo

• Big splash: AlphaGo vs. Lee Sedol in March 2016.

• Silver et al. (2018): now applied to chess, shogi, Go, and StarCraft II.

• Check also:

1. https://deepmind.com/research/alphago/.

2. https://www.alphagomovie.com/

3. https:

//deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

• Very different than Deep Blue vs. Kasparov (1997): expert systems of AI.

• New and surprising strategies.

• However, you need to keep this accomplishment in perspective.

48

https://deepmind.com/research/alphago/
https://www.alphagomovie.com/
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

49

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)

∂
σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 μs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: +1 for winning and −1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ~ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

R
eg

re
ss

io
n

C
la

ss
i�

ca
tio

nC
lassi�cation

Self Play

Policy gradient

a b

Human expert positions Self-play positions
N

eural netw
ork

D
ata

Rollout policy

p p p (a⎪s) (s′)p

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
 e

rr
or

on
 e

xp
er

t
ga

m
es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59

Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 �lters
192 �lters
256 �lters
384 �lters

A
lp

ha
G

o
w

in
 r

at
e

(%
)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

50

COMPUTER SCIENCE

A general reinforcement learning
algorithm that masters chess, shogi,
and Go through self-play
David Silver1,2*†, Thomas Hubert1*, Julian Schrittwieser1*, Ioannis Antonoglou1,
Matthew Lai1, Arthur Guez1, Marc Lanctot1, Laurent Sifre1, Dharshan Kumaran1,
Thore Graepel1, Timothy Lillicrap1, Karen Simonyan1, Demis Hassabis1†

The game of chess is the longest-studied domain in the history of artificial intelligence.
The strongest programs are based on a combination of sophisticated search techniques,
domain-specific adaptations, and handcrafted evaluation functions that have been refined
by human experts over several decades. By contrast, the AlphaGo Zero program recently
achieved superhuman performance in the game of Go by reinforcement learning from self-play.
In this paper, we generalize this approach into a single AlphaZero algorithm that can achieve
superhuman performance in many challenging games. Starting from random play and given
no domain knowledge except the game rules, AlphaZero convincingly defeated a world
champion program in the games of chess and shogi (Japanese chess), as well as Go.

T
he study of computer chess is as old as
computer science itself. Charles Babbage,
Alan Turing, Claude Shannon, and John
von Neumann devised hardware, algo-
rithms, and theory to analyze and play the

game of chess. Chess subsequently became a
grand challenge task for a generation of artifi-
cial intelligence researchers, culminating in high-
performance computer chess programs that play
at a superhuman level (1, 2). However, these sys-
tems are highly tuned to their domain and can-
not be generalized to other games without
substantial human effort, whereas general game-
playing systems (3, 4) remain comparatively weak.
A long-standing ambition of artificial intelli-

gence has been to create programs that can in-
stead learn for themselves from first principles
(5, 6). Recently, the AlphaGo Zero algorithm
achieved superhuman performance in the game

of Go by representing Go knowledge with the
use of deep convolutional neural networks (7, 8),
trained solely by reinforcement learning from
games of self-play (9). In this paper, we introduce
AlphaZero, a more generic version of the AlphaGo
Zero algorithm that accommodates, without
special casing, a broader class of game rules.
We apply AlphaZero to the games of chess and
shogi, as well as Go, by using the same algorithm
and network architecture for all three games.
Our results demonstrate that a general-purpose
reinforcement learning algorithm can learn,
tabula rasa—without domain-specific human
knowledge or data, as evidenced by the same
algorithm succeeding in multiple domains—
superhuman performance across multiple chal-
lenging games.
A landmark for artificial intelligence was

achieved in 1997 when Deep Blue defeated the
human world chess champion (1). Computer
chess programs continued to progress stead-
ily beyond human level in the following two
decades. These programs evaluate positions by
using handcrafted features and carefully tuned
weights, constructed by strong human players and

programmers, combined with a high-performance
alpha-beta search that expands a vast search tree
by using a large number of clever heuristics and
domain-specific adaptations. In (10) we describe
these augmentations, focusing on the 2016 Top
Chess Engine Championship (TCEC) season 9
world champion Stockfish (11); other strong chess
programs, including Deep Blue, use very similar
architectures (1, 12).
In terms of game tree complexity, shogi is a

substantially harder game than chess (13, 14): It
is played on a larger boardwith awider variety of
pieces; any captured opponent piece switches
sides and may subsequently be dropped anywhere
on the board. The strongest shogi programs, such
as the 2017 Computer Shogi Association (CSA)
world champion Elmo, have only recently de-
feated human champions (15). These programs
use an algorithm similar to those used by com-
puter chess programs, again based on a highly
optimized alpha-beta search engine with many
domain-specific adaptations.
AlphaZero replaces the handcrafted knowl-

edge and domain-specific augmentations used
in traditional game-playing programs with deep
neural networks, a general-purpose reinforce-
ment learning algorithm, and a general-purpose
tree search algorithm.
Instead of a handcrafted evaluation function

and move-ordering heuristics, AlphaZero uses a
deep neural network (p, v) = fq(s) with param-
eters q. This neural network fq(s) takes the board
position s as an input and outputs a vector of
move probabilities pwith components pa = Pr(a|s)
for each action a and a scalar value v estimating
the expected outcome z of the game from posi-
tion s, v≈E½zjs�. AlphaZero learns these move
probabilities and value estimates entirely from
self-play; these are then used to guide its search
in future games.
Instead of an alpha-beta search with domain-

specific enhancements, AlphaZero uses a general-
purposeMonteCarlo tree search (MCTS) algorithm.
Each search consists of a series of simulated
games of self-play that traverse a tree from root
state sroot until a leaf state is reached. Each sim-
ulation proceeds by selecting in each state s a
move a with low visit count (not previously
frequently explored), high move probability, and
high value (averaged over the leaf states of

RESEARCH

Silver et al., Science 362, 1140–1144 (2018) 7 December 2018 1 of 5

Fig. 1. Training AlphaZero for 700,000 steps. Elo ratings were
computed from games between different players where each player
was given 1 s per move. (A) Performance of AlphaZero in chess
compared with the 2016 TCEC world champion program Stockfish.

(B) Performance of AlphaZero in shogi compared with the 2017
CSA world champion program Elmo. (C) Performance of AlphaZero
in Go compared with AlphaGo Lee and AlphaGo Zero (20 blocks
over 3 days).

1DeepMind, 6 Pancras Square, London N1C 4AG, UK. 2University
College London, Gower Street, London WC1E 6BT, UK.
*These authors contributed equally to this work.
†Corresponding author. Email: davidsilver@google.com (D.S.);
dhcontact@google.com (D.H.)

on D
ecem

ber 9, 2018

http://science.sciencem
ag.org/

D
ow

nloaded from

51

	References
	Digging deeper
	Training
	Architecture design
	Appendix: Historical background

