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The revolution of LLMs



What is a LLM?

• ChatGPT, a chatbot built on top of the GPT LLM released on November 28, 2022, has popularized

deep learning models trained with a text corpus.

• Language models learn a probability distribution over language:

P(w1, . . . ,wm)

For example, what is the most likely word after “European Central” in an article at the FT?

• A language model can use many different probability structures and not necessarily a deep neural

networks (even if the latter have gained much popularity).

• Large in terms of training data (e.g., Common Crawl, Wikipedia, GitHub, ...) and parameters (e.g.,

PaLM has 540 billion parameters; GPT-4 rumored to have 1 trillion).
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Data collection

[Training data mixture used in Meta’s LLaMA model]

Download a large amount of publicly available data
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Period Data Scale (start to end) Slope Doubling time

1952 to 2010

Pre Deep Learning Era

No low outliers

(n = 19)
3e+04 to 2e+14 FLOPs

0.2 OOMs/year

[0.1; 0.2; 0.2]

21.3 months

[17.0; 21.2; 29.3]

2010 to 2022

Deep Learning Era

No outliers

(n = 80)
7e+14 to 2e+18 FLOPs

0.6 OOMs/year

[0.4; 0.7; 0.9]

5.7 months

[4.3; 5.6; 9.0]

September 2015 to 2022

Large-Scale Era

High outliers

(n = 19)
4e+21 to 8e+23 FLOPs

0.4 OOMs/year

[0.2; 0.4; 0.5]

9.9 months

[7.7; 10.1; 17.1]

TABLE I: Summary of our main results. In 2010 the trend accelerated along the with the popularity of Deep Learning, and in
late 2015 a new trend of large-scale models emerged.
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 118

Fig. 1: Trends in n = 118 milestone ML models between 1952 and 2022. We distinguish three eras. Notice the change of slope circa 2010,
matching the advent of Deep Learning; and the emergence of a new large-scale trend in late 2015.

transistor density doubles roughly every two years [22]
(this is often simplified to computational performance
doubling every two years)

2) Deep Learning Era: After around 2010, we observe
a slope discontinuity where the compute doubles every
4 to 9 months, significantly longer than the results
obtained in [4]

3) Large-Scale Era: We argue that a new trend of large-
scale models, with compute significantly higher than
other models published in the same year, emerges in
2015 with the release of AlphaGo [8]. This grows at
a slower rate than the Deep Learning trend, doubling
roughly every 8 to 17 months

The data arguably lies along three log-linear trends – one
corresponding to the Pre Deep Learning Era (1952 to 2010), a
second corresponding to regular (i.e. not large-scale) models
after the advent of Deep Learning (2010 to 2022), and a large-

scale trend from 2015 to 2022.

A. When did the Deep Learning Era start?
One potential source of error is the ambiguity in the transition
points - for instance, in our choice of the start of the Deep
Learning Era. In particular, our data (as shown in Figure 1)
does not allow for resolution of the transition to Deep Learning
at the level of a year.
Many authors decide to start the Deep Learning Era with the
release of AlexNet in 2012 [4, 23], but there is some room
for debate regarding this, and we instead believe that 2010 is
most inline with the available evidence:

• Many models preceding AlexNet have features associated
with Deep Learning, including model size and depth [24,
25, 26, 27, 28], GPU-based training [25, 29, 30, 31, 32],
and better performance than traditional ML approaches
[26, 27, 28, 31]

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 02,2023 at 22:56:38 UTC from IEEE Xplore.  Restrictions apply. 
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Period Outliers Scale (FLOPs) Slope Doubling time R²

1952-2009 All models (n = 19) 3e+04 / 2e+14 0.2 OOMs/year [0.1; 0.2; 0.2] 21.3 months [16.2; 21.3; 31.3] 0.77

1952-2011 All models (n = 26) 1e+04 / 3e+15 0.2 OOMs/year [0.1; 0.2; 0.2] 19.6 months [15.6; 19.4; 25.0] 0.83

All models (n = 98) 1e+15 / 6e+22 0.7 OOMs/year [0.6; 0.7; 0.7] 5.6 months [5.0; 5.6; 6.2] 0.70
2010-2022

Regular-scale (n = 77) 4e+14 / 2e+22 0.7 OOMs/year [0.6; 0.7; 0.7] 5.6 months [5.1; 5.6; 6.2] 0.78

All models (n = 91) 1e+17 / 6e+22 0.6 OOMs/year [0.5; 0.6; 0.7] 5.7 months [4.9; 5.7; 6.7] 0.58
2012-2022

Regular-scale (n = 80) 4e+16 / 2e+22 0.6 OOMs/year [0.5; 0.6; 0.7] 5.7 months [4.9; 5.7; 6.7] 0.69

TABLE II: Log-linear regression results for ML models from 1952 to 2022.
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Training compute (FLOPs) of milestone Machine Learning systems over time
n = 99

Fig. 2: Trends in training compute of n = 99 milestone ML systems between 2010 and 2022. Notice the emergence of a
possible new trend of large-scale models around 2016. The trend in the remaining models stays the same before and after
2016.

• There is evidence that between 2009 and 2012 (prior to
the 2012 ImageNet competition won by AlexNet), the
field of speech recognition realised that Deep Learning
would be capable of achieving major breakthroughs in the
domain. In particular, Deng, Yu, and Hinton suggest that
“deep architectures with efficient learning algorithms”
would be needed to overcome challenges [33], and [34]
suggests that leading Speech Recognition researchers
held a shared vision of Deep Learning driving major
advances in their field

Hence we argue that 2010 is the starting date most consistent
with the evidence, because: (a) the use of GPUs to train large
ML models was already common at the time, (b) there were
at least a few Deep Neural Networks that achieved highly
competitive performance (notably [26, 27, 31]), and (c) this
timeline is consistent with the adoption of Deep Learning in

Speech Recognition. Although we use 2010 as the default start
of the Deep Learning Era, our conclusions remain unchanged
if 2012 is used instead (see Table II).

B. Trends in the Large-Scale era
The second transition point is more speculative – our data
suggests the emergence of a new trend of large-scale models,
starting with AlphaGo in late 2015 and continuing to the
present (see Figure 2). This represents a bifurcation of the
Deep Learning trend that persisted from 2010 to 2015, with
the trend of regular-scale models continuing unperturbed post-
2016.
We believe that there are several arguments in favour of this
framing of large-scale trends:

• The trend of regular-scale Deep Learning models
continues unperturbed post-2016, doubling every 5 to

Authorized licensed use limited to: University of Pennsylvania. Downloaded on August 02,2023 at 22:56:38 UTC from IEEE Xplore.  Restrictions apply. 
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Location, location, location

• Original contribution by Elman (1990): Finding Structure in Time.

• Key idea: exploit the location of words within a text.
184 ELMAN 

OUTPUT UNITS 

I 1 

HIDDEN UNITS 

INPUT UNITS CONTEXT UNITS 

Figure 2. A simple recurrent network in which octivotions ore copied from hidden layer to 

context layer on a one-for-one basis, with fixed weight of 1 .O. Dotted lines represent train- 
able connections. 

input, and also the previous internal state of some desired output. Because 
the patterns on the hidden units are saved as context, the hidden units must 
accomplish this mapping and at the same time develop representations which 
are useful encodings of the temporal properties of the sequential input. 
Thus, the internal representations that develop are sensitive to temporal 
context; the effect of time is implicit in these internal states. Note, however, 
that these representations of temporal context need not be literal. They rep- 
resent a memory which is highly task- and stimulus-dependent. 
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The transformers

• Why now?

• Conjunction of:

1. A pathbreaking algorithmic revolution: transformer models based on self-attention (December 2017).

2. GPUs: attention multiheads can run on separate GPUs openings.

3. We have learned that we want to train LLMs according to power laws linking complexity and data.

Hoffman et al., 2022: for every doubling of model size the number of training tokens should also be

doubled.

• This is the reason behind the “T” in GPT (generative pre-trained transformer).
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Attention Is All You Need

Ashish Vaswani∗
Google Brain

avaswani@google.com

Noam Shazeer∗
Google Brain

noam@google.com

Niki Parmar∗
Google Research

nikip@google.com

Jakob Uszkoreit∗
Google Research
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Łukasz Kaiser∗
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Illia Polosukhin∗ ‡
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

1 Introduction

Recurrent neural networks, long short-term memory [13] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and
∗Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started

the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.
†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Training Compute-Optimal Large Language Models
Jordan Hoffmann★, Sebastian Borgeaud★, Arthur Mensch★, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,

Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,

Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre★
★Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly
facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of
67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.

1. Introduction
Recently a series of Large Language Models (LLMs) have been introduced (Brown et al., 2020; Lieber
et al., 2021; Rae et al., 2021; Smith et al., 2022; Thoppilan et al., 2022), with the largest dense
language models now having over 500 billion parameters. These large autoregressive transformers
(Vaswani et al., 2017) have demonstrated impressive performance on many tasks using a variety of
evaluation protocols such as zero-shot, few-shot, and fine-tuning.

The compute and energy cost for training large language models is substantial (Rae et al., 2021;
Thoppilan et al., 2022) and rises with increasing model size. In practice, the allocated training
compute budget is often known in advance: how many accelerators are available and for how long
we want to use them. Since it is typically only feasible to train these large models once, accurately
estimating the best model hyperparameters for a given compute budget is critical (Tay et al., 2021).

Kaplan et al. (2020) showed that there is a power law relationship between the number of
parameters in an autoregressive language model (LM) and its performance. As a result, the field has
been training larger and larger models, expecting performance improvements. One notable conclusion
in Kaplan et al. (2020) is that large models should not be trained to their lowest possible loss to be
compute optimal. Whilst we reach the same conclusion, we estimate that large models should be
trained for many more training tokens than recommended by the authors. Specifically, given a 10×
increase computational budget, they suggests that the size of the model should increase 5.5× while
the number of training tokens should only increase 1.8×. Instead, we find that model size and the
number of training tokens should be scaled in equal proportions.

Following Kaplan et al. (2020) and the training setup of GPT-3 (Brown et al., 2020), many of the
recently trained large models have been trained for approximately 300 billion tokens (Table 1), in
line with the approach of predominantly increasing model size when increasing compute.

Corresponding authors: {jordanhoffmann|sborgeaud|amensch|sifre}@deepmind.com
© 2023 DeepMind. All rights reserved
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Three kinds of LLM

• Generic language models: predicting the next token. I will center on this one type.

• Instruction tuned.

• Dialog tuned: ChatGPT (the base model is hard to interact with).

10



The uses of LLM

• All three types share that they are trained to tackle text-based tasks:

1. Text classification.

2. Text summarization (including sentiment analysis).

3. Text generation (including translation and coding).

4. Questions/Answers.

5. Common sense reasoning.

• Because of these capabilities, we can consider LLMs as a part of generative AI: models capable of

generating new content.

• This is the reason behind the “G” in GPT (generative pre-trained transformer).

11



Foundation models I

• Some authors are even talking about foundation models: instead of multiple pipelines for each task,

we have a common one.

• Key reason: embedding.

• Adapted models and pluggings.

• Emerging properties we do not fully understand:

1. For example, LLMs seem to have a theory of the mind.

2. Related to old ideas in F.A. Hayek’s The Sensory Order.
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386 8 Summary and Outlook

After building huge models for language, researcher evaluated the same tech-
niques for other types of sequences, including image patches, sound bites in audio 
recordings, 3D tubelets in videos, DNA subsequences, and event trajectories in 
video games. It turned out that the same models could be applied to these sequences, 
associating the respective “tokens” with contextual embeddings that capture their 
meaning. Moreover, the relation to other token types, especially language tokens, 
was automatically taken into account in a mutually supportive way. This opened the 
door to a wide range of mixed media applications, e.g. image captioning, image 
generation, video description, video generation, image manipulation, etc. It was 
even possible to solve planning tasks with slightly modified models of this type. 

The representation of sequence elements by contextual embeddings determined 
by self-attention has emerged as an overarching principle for solving a variety of 
different tasks. In 2021 Bommasani et al. [13, p. 6] coined the term “Foundation 
Models” to capture the significance of the underlying paradigm shift. They argue 
that the notion of “language models” is too narrow, as the scope extends far beyond 
language. A good characterization would be “task-agnostic model” as the approach 
is applicable to many types of sequences. “Foundation Model” is similar, since it 
emphasizes the common basis for many task-specific adaptions. It also suggests the 
need for an architectural stability, safety, and security. Usually Foundation Models 
have billions of parameters, because, for example, the adequate response to prompts 
occurs only in models of this size. 

Figure 8.1 shows possible training data and application tasks of Foundation 
Models. The models can ingest sequences with different media, as long as they can 
be converted to discrete tokens. This covers language and various media, but also 

Fig. 8.1 A Foundation Model can integrate the information contained in the data from various 
modalities during pre-training. It can access up-to-date knowledge by search engines and store 
intermediate results. This single model can then be adapted to a wide range of downstream tasks 
by few-shot prompts or fine-tuning [13, p. 6]. Credits for image parts in Table A.1
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Foundation models II

• How far away are we from human-level artificial general intelligence (AGI)? (what is intelligence

anyway?).

• Questions:

1. Hallucinations?

2. Safety vs. accuracy?

3. Existential risk from AI?

• https://munkdebates.com/debates/artificial-intelligence

16

https://munkdebates.com/debates/artificial-intelligence


On the Opportunities and Risks of
Foundation Models

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora
Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill

Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji
Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue

Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh
Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman
Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt

Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain
Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani

Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi
Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent

Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Christopher D. Manning
Suvir Mirchandani Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan

Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan
Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech

Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren
Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh
Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin

Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan Wu
Jiajun Wu Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia
Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou

Percy Liang*1

Center for Research on Foundation Models (CRFM)
Stanford Institute for Human-Centered Artificial Intelligence (HAI)

Stanford University

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) trained on broad
data (generally using self-supervision at scale) that can be adapted to a wide range of downstream tasks.
We call these models foundation models to underscore their critically central yet incomplete character.
This report provides a thorough account of the opportunities and risks of foundation models, ranging
from their capabilities (e.g., language, vision, robotic manipulation, reasoning, human interaction) and
technical principles (e.g., model architectures, training procedures, data, systems, security, evaluation,
theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse,
economic and environmental impact, legal and ethical considerations). Though foundation models are
based on standard deep learning and transfer learning, their scale results in new emergent capabilities,
and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides
powerful leverage but demands caution, as the defects of the foundation model are inherited by all the
adapted models downstream. Despite the impending widespread deployment of foundation models,
we currently lack a clear understanding of how they work, when they fail, and what they are even
capable of due to their emergent properties. To tackle these questions, we believe much of the critical
research on foundation models will require deep interdisciplinary collaboration commensurate with
their fundamentally sociotechnical nature.

1Corresponding author: pliang@cs.stanford.edu *Equal contribution.
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General vs. specialized LLM

• Either for general purpose or specialized corpora of documents.

• You can pre-train the LLM in a large dataset and adapt it to a smaller corpus (even zero-shot

learning).

• For example, all documents within the Fed, all the NBER working papers, all articles at the FT.

• This is the reason behind the “P” in GPT (generative pre-trained transformer).

• Parameter-efficient fine-tuning methods, prompt training, and supervised learning.

• Key idea: Transduction (particular→particular) vs. induction (particular→general→particular).

• Related to the failure of the project of building a universal formal grammar in the 1970s (we will

return to this point later on).
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Language Models are Few-Shot Learners

Tom B. Brown∗ Benjamin Mann∗ Nick Ryder∗ Melanie Subbiah∗

Jared Kaplan† Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter

Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray

Benjamin Chess Jack Clark Christopher Berner

Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei

OpenAI

Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions – something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3’s few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

∗Equal contribution
†Johns Hopkins University, OpenAI

Author contributions listed at end of paper.
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Chatbots vs. APIs

• You might have used the chatbot for ChatGPT. This is the reason behind the “Chat” in ChatGPT

(chatbot for generative pre-trained transformer).

• However, for more systematic research, one can use APIs (application programming interfaces) and

focus on prompt design:
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Life beyond ChatGPT

1. ChatGPT: designed for chatbots and conversational AI.

2. Llama 2: best open source model, trained on 1-1.4T tokens.

3. Bard: Google.

4. LangChain: designed for translation.

5. Cohere: designed for text classification, summarization, and sentiment analysis.

6. Many others.
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On the role of LLMs in

economics



How can LLMs change my workflow?

• Text as data by M. Gentzkow, B.T. Kelly, and M. Taddy: general introductory survey.

• Text algorithms in economics by E. Ash and S. Hansen: general introductory survey.

• A User’s Guide to GPT and LLMs for Economic Research by K. Bryan: examples of how to use LLM

in your daily research.

• Second half of https://youtu.be/bZQun8Y4L2A by A. Karpathy: nice tricks for good prompting.

• Language Models and Cognitive Automation for Economic Research by A. Korinek: application of

LLM for ideation, writing, background research, data analysis, coding, and mathematical derivations.
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How can I apply LLMs to learn about the economy?

• Hedonic prices and quality-adjusted price indices powered by AI by P. Bajari et al.: use product

description text to predict product prices.

• Bloated Disclosures: Can ChatGPT Help Investors Process Financial Information? by A. Kim, M.

Muhn, and V. Nikolaev: probe the economic usefulness of LLMs in summarizing complex corporate

disclosures using the stock market as a laboratory.

• Asset Embeddings by X. Gabaix, R.S.J. Koijen, and M. Yogo: learn asset embeddings from investors’

holdings data.

• Work2vec: Using language models to understand wage premia by S.H. Bana: uncover the premia

associated with eight in-demand certifications.

• Out of One, Many: Using Language Models to Simulate Human Samples by L.P. Argyle et al.: using

LLMs to synthesize data from undersample populations.
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What are the effects of LLMs on the economy? (positive and normative)

• Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus? by

J.J. Horton: LLM as an approximation of bounded-rational agents.

• Economics, Hayek, and Large Language Models by T. Cowen: a podcast about how LLM might

change our conception of how economies work.

• Generative AI at Work by E. Brynjolfsson, D. Li, and L.R. Raymond.

• Preparing for the (Non-Existent?) Future of Work by A. Korinek and M. Juelfs.

• GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models by

T. Eloundou, S. Manning, P. Mishkin, and D. Rock.

• Regulating Transformative Technologies by D. Acemoglu and T. Lensman.

• Power and Progress by D. Acemoglu and S. Johnson.
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Natural language processing

• Natural language processing (NLP): field specialized in how computers can deal with language as it

appears in “natural” contexts (speech, text, ...).

• One of the very first applications of computers: Georgetown-IBM experiment in automatic translation

in 1954.

• Classical NLP was based on symbolic rules (John Searle’s Chinese room experiment and ELIZA) and

Chomskyan theories of linguistics.

• After some early success, the field stagnated.

• In comparison, modern NLP is built around statistical models.

• Base of its recent success.
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Chapter 1

Modern language models refute
Chomsky’s approach to language

Steven T. Piantadosia,b
aUC Berkeley, Psychology bHelen Wills Neuroscience Institute

The rise and success of large language models undermines virtually every strong
claim for the innateness of language that has been proposed by generative linguis-
tics. Modern machine learning has subverted and bypassed the entire theoretical
framework of Chomsky’s approach, including its core claims to particular insights,
principles, structures, and processes. I describe the sense in which modern lan-
guage models implement genuine theories of language, including representations
of syntactic and semantic structure. I highlight the relationship between contem-
porary models and prior approaches in linguistics, namely those based on gradient
computations and memorized constructions. I also respond to several critiques of
large language models, including claims that they can’t answer “why” questions,
and skepticism that they are informative about real life acquisition. Most notably,
large language models have attained remarkable success at discovering grammar
without using any of the methods that some in linguistics insisted were necessary
for a science of language to progress.

Introduction

After decades of privilege and prominence in linguistics, Noam Chomsky’s ap-
proach to the science of language is experiencing a remarkable downfall. The
story is, in part, a cautionary tale about what happens when an academic field
isolates itself from what should be complementary endeavours. Chomsky’s ap-
proach and methods are often argued to be problematic (e.g. Harris 1993, Pullum
1989, Behme 2012, Postal 2012, Behme 2014), but it is yet to be widely recognized
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The transformer model



The transformer model

• Deep convolutional neural networks, introduced in 2012, greatly impacted computer vision.

• But NLP (at the time, built around RNN and CNN) had lagged.

• Vaswani et al. (2017): Attention Is All You Need. Group of researchers affiliated with Google.

• 83,844 Google Scholar citations as of August 2, 2023.

• Transformers applied to other fields outside natural language processing (Visual transformers,

DALL-E). In fact, anything that is set-to-set.

• Built around two ideas:

1. (Self-)Attention.

2. Encoder/decoder structure.
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Steps to build a transformer model

1. Formalizing text (see block 11).

2. Text wrangling (see block 11).

3. Tokenization.

4. Embedding.

5. Attention.

6. Output.

7. Training.

8. Extensions.

36



Step III: Tokenization



Tokenization

• Tokenization is splitting a raw character string into useful semantic pieces for processing called tokens.

• For example, we chop the string of characters:

“The European Central Bank is in Frankfurt”

into

“The”, “European”, “Central”, “Bank”, “is”, “in”, “Frankfurt”.

• Often, tokens are words, but there may be characters, numbers, punctuation, and white spaces.

• Simple rules work well, but not perfectly. For example, splitting on white space and punctuation will

separate hyphenated phrases, as in “risk-averse agent” and contractions, as in “aren‘t”.

• While, in practice, one uses a specialized library for tokenization, it is important to understand

tokenization in some more detail.
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Vocabularies

• Tokenization relies on a vocabulary: a list of all allowed tokens.

• Oxford English dictionary ≈ 170k words in current use (vs. more than one mil ever used).

• We take advantage of that, in practice, we only use around 40k words (with a clear Zipf’s law

distribution). Other words are mapped into the 40k or masked as unknown.

• For specialized LLM, we might want to have specific vocabularies.

• How?

1. Domain knowledge.

2. Stop-words removal.

3. Linguistic roots.

4. Multi-word phrases.
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Tokenization in GPT-3

• GPT-3 tokenizer here: https://platform.openai.com/tokenizer.

• GPT-3 uses byte pair encoding (https://github.com/openai/tiktoken):

1. Common words are a single token, less frequent words are represented by multiple tokens:

“Enconding” is tokenized as “Enc” and “oding”.

2. Odd words are dropped.

• We assign every token an ID from a vocabulary with a total of 50257 tokens. For memory reasons,

one may want to cap the vocabulary at 216 = 65536 tokens.

• Example: “European Central Bank” → “European”, “Central”, “Bank” → [22030, 5694, 5018].

• More precisely, we represent each integer as a one-hot vector w1×50227 with a 1 in the corresponding

entry.
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Step IV: Embedding



Embedding

• In natural language, words bundle in predictable patterns:

P(Bank|European + Central) ≫ 0

but

P(Giraffe|European + Central) ≈ 0

• This means we can use probabilities to generate predictions.

• We can capture this idea with an embedding: a representation of a token as a vector.

• We can estimate static embeddings with a simple logistic classifier (Word2vec).

• Useful for tasks such as document classification or sentiment analysis.

• However, static embeddings are not powerful enough for many interesting problems.

• We want more complex models that can incorporate contextual information.
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Contextual embedding into vectors

• We take each token and embed it into a dense n-dim vector, to which we will add some context

information.

• Why do we do this?

1. Dimensionality reduction.

2. More importantly: projection into a more informative space (interpretability?).

• Also, we usually do this in blocks of tokens: it will train the transformer to make predictions within

the block.
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Embedding in GPT-3

• GPT-3 uses input blocks of m = 2048 tokens (even if it needs to leave space empty): B2048×50227

where each row is one token and a 12288-dim embedding.

• More concretely, we get a sequence-embeddings matrix:

E2048×12228 = B2048×50227 ∗W E
50227×12228

where W E
50227×12228 is an embedding weight matrix (we will see later how we pick it).

• For example:

“European” = [0.01,−0.99, · · · , 0.34, 0.12]
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Why is embedding key?

• Since we have a vector representation for each token, we can define standard vector operations by

looking at the closest embedding:

• Sum: Bank = European + Central

[0.03,−0.9, · · · , 0.42, 0.36] ≈ [0.01,−0.99, · · · , 0.34, 0.12] + [0.02, 0.09, · · · , 0.08, 0.24]

• Subtraction: Frankfurt = European Commission + Brussels− European Central Bank.

• We can map any piece of information into an n-dimension vector. Whether there are tokens from text,

pixels from photographs, Fourier weights from a recording, etc, is irrelevant → foundation models.
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Encoding

• We mentioned before we want to incorporate context into our embedding.

• Distributional semantics: “A word is characterized by the company it keeps” (Firth, 1957).

• Think about the sentence: “I seat in the bank inside the bank office by the river bank where you

bank.”

• We capture these relations by looking at the position of a token within a block: encoding.

• Quite different ways to do it, language-dependent (i.e., compare English, an analytic language, with

Latin, a synthetic one!)
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Positional encoding in GPT-3

• We take the position of each token within the block [0− 2047] through 12288 sinusoidal functions,

each with a different frequency.

• Thus, we get a sequence-positional-encodings matrix:

S2048×12228 = sin12288(B2048×50227)

Extrapolate easily.

• We sum the sequence-embeddings matrix and sequence-positional-encodings matrix:

SE2048×12228 = E2048×12228 + S2048×12228

48



49



Step V: Attention



Attention

• Train the neural network to focus on some input data (e.g., some tokens) and lower the weights of

other inputs by sharing communication among tokens.

• Mimics human cognition.

• Generalization of ideas floating since the 1990s (multiplicative modules, sigma pi units, and

hyper-networks).

• Permutation invariant (unless we introduce positional encoding).

• Particularly easy to parallelize with GPUs because it avoids the previous approach of using recurrence.

• A more detailed introduction:

https://www.youtube.com/watch?v=AIiwuClvH6k&ab_channel=GoogleDeepMind.
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Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n2 · d) O(1) O(1)
Recurrent O(n · d2) O(n) O(n)
Convolutional O(k · n · d2) O(1) O(logk(n))
Self-Attention (restricted) O(r · n · d) O(1) O(n/r)

tokens in the sequence. To this end, we add "positional encodings" to the input embeddings at the
bottoms of the encoder and decoder stacks. The positional encodings have the same dimension dmodel
as the embeddings, so that the two can be summed. There are many choices of positional encodings,
learned and fixed [9].

In this work, we use sine and cosine functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position and i is the dimension. That is, each dimension of the positional encoding
corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to 10000 · 2π. We
chose this function because we hypothesized it would allow the model to easily learn to attend by
relative positions, since for any fixed offset k, PEpos+k can be represented as a linear function of
PEpos.

We also experimented with using learned positional embeddings [9] instead, and found that the two
versions produced nearly identical results (see Table 3 row (E)). We chose the sinusoidal version
because it may allow the model to extrapolate to sequence lengths longer than the ones encountered
during training.

4 Why Self-Attention

In this section we compare various aspects of self-attention layers to the recurrent and convolu-
tional layers commonly used for mapping one variable-length sequence of symbol representations
(x1, ..., xn) to another sequence of equal length (z1, ..., zn), with xi, zi ∈ Rd, such as a hidden
layer in a typical sequence transduction encoder or decoder. Motivating our use of self-attention we
consider three desiderata.

One is the total computational complexity per layer. Another is the amount of computation that can
be parallelized, as measured by the minimum number of sequential operations required.

The third is the path length between long-range dependencies in the network. Learning long-range
dependencies is a key challenge in many sequence transduction tasks. One key factor affecting the
ability to learn such dependencies is the length of the paths forward and backward signals have to
traverse in the network. The shorter these paths between any combination of positions in the input
and output sequences, the easier it is to learn long-range dependencies [12]. Hence we also compare
the maximum path length between any two input and output positions in networks composed of the
different layer types.

As noted in Table 1, a self-attention layer connects all positions with a constant number of sequentially
executed operations, whereas a recurrent layer requires O(n) sequential operations. In terms of
computational complexity, self-attention layers are faster than recurrent layers when the sequence
length n is smaller than the representation dimensionality d, which is most often the case with
sentence representations used by state-of-the-art models in machine translations, such as word-piece
[38] and byte-pair [31] representations. To improve computational performance for tasks involving
very long sequences, self-attention could be restricted to considering only a neighborhood of size r in

6
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Query, key, and value I

• We take a sequence x = (x1, . . . , xm) of n-dim input vectors and produce a sequence y = (y1, . . . , ym)

of p-dim output vectors.

• p is the head size.

• With our previous example of GPT-3, m = 2048 and n = 12288.

• In a database, you have a query and obtain a value.

• Often, you want to have a key for each value.

52



Query, key, and value II

• Every token emits a query (“what am I looking for?”) and a key (“what do I contain?”) vector.

• Three components:

1. Q: query Qm×p = softmax
(
SEm×nW

Q
n×p

)
.

2. K: key Km×p = softmax
(
SEm×nW

K
n×p

)
.

3. V: value Vm×p = softmax
(
SEm×nW

V
n×p

)
.

• Importance matrix softmax
(
QKT

)
represents the relative importance of each token with respect to

all others (“affinities”).

• Then:

Attention(Q,K ,V ) = softmax
(
QKT

)
V

• You can think about Attention(Q,K ,V ) as a refined embedding.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4
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Scaling, masking, and multiheads

• Scaling: we can scale
(
QKT

)
by

√
n before applying softmax.

• Masking: some words in the input sequence are masked. Many possible reasons: GPT-3 to avoid

having an encoder.

• Multiheads: We build multiple attention weights WQ,r ,W K ,r ,W V ,r , where r is the index of the

self-attention path.

• There is a simpler implementation of query, key, value: dot product.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4

57



Scaling, masking, and multiheads in GPT-3

• In GPT-3, we have p = 128 and 96 attention weights for a total of 12228 (same as n).

• Also, we multiply by a new weight matrix WO , add original SE , and normalize to get an output

Attentionnorm(Q,K ,V )2048×12228.

1. Why sum? Skip connection (also known as a residual or shortcut connection).

2. Why normalization?
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Abstract

Training state-of-the-art, deep neural networks is computationally expensive. One
way to reduce the training time is to normalize the activities of the neurons. A
recently introduced technique called batch normalization uses the distribution of
the summed input to a neuron over a mini-batch of training cases to compute a
mean and variance which are then used to normalize the summed input to that
neuron on each training case. This significantly reduces the training time in feed-
forward neural networks. However, the effect of batch normalization is dependent
on the mini-batch size and it is not obvious how to apply it to recurrent neural net-
works. In this paper, we transpose batch normalization into layer normalization by
computing the mean and variance used for normalization from all of the summed
inputs to the neurons in a layer on a single training case. Like batch normalization,
we also give each neuron its own adaptive bias and gain which are applied after
the normalization but before the non-linearity. Unlike batch normalization, layer
normalization performs exactly the same computation at training and test times.
It is also straightforward to apply to recurrent neural networks by computing the
normalization statistics separately at each time step. Layer normalization is very
effective at stabilizing the hidden state dynamics in recurrent networks. Empiri-
cally, we show that layer normalization can substantially reduce the training time
compared with previously published techniques.

1 Introduction

Deep neural networks trained with some version of Stochastic Gradient Descent have been shown
to substantially outperform previous approaches on various supervised learning tasks in computer
vision [Krizhevsky et al., 2012] and speech processing [Hinton et al., 2012]. But state-of-the-art
deep neural networks often require many days of training. It is possible to speed-up the learning
by computing gradients for different subsets of the training cases on different machines or splitting
the neural network itself over many machines [Dean et al., 2012], but this can require a lot of com-
munication and complex software. It also tends to lead to rapidly diminishing returns as the degree
of parallelization increases. An orthogonal approach is to modify the computations performed in
the forward pass of the neural net to make learning easier. Recently, batch normalization [Ioffe and
Szegedy, 2015] has been proposed to reduce training time by including additional normalization
stages in deep neural networks. The normalization standardizes each summed input using its mean
and its standard deviation across the training data. Feedforward neural networks trained using batch
normalization converge faster even with simple SGD. In addition to training time improvement, the
stochasticity from the batch statistics serves as a regularizer during training.

Despite its simplicity, batch normalization requires running averages of the summed input statis-
tics. In feed-forward networks with fixed depth, it is straightforward to store the statistics separately
for each hidden layer. However, the summed inputs to the recurrent neurons in a recurrent neu-
ral network (RNN) often vary with the length of the sequence so applying batch normalization to
RNNs appears to require different statistics for different time-steps. Furthermore, batch normaliza-
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Step VI: Output



Decoding

• Next, we pass the result Attentionnorm(Q,K ,V ) through a feed forward neural network with ReLUs

to get Y F
2048×12228.

• Why? Forecasting.

• We sum Y E
2048×12228 = Attentionnorm(Q,K ,V ) + Y F and normalize.

• Finally, we get YE with the inverse of our embedding weight matrix:

Y E (W E )(−1)

• We apply softmax and select a word among the top-k probabilities.

• Also, we can use human alignment.
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Step VII: Training



Practical implementation I

• GPT-3 uses 499 billion tokens in the full training data. The Common Crawl data set contains 410 of

those.

• Loss function to select all the relevant weights: the average negative log-likelihood per token.

• Dropout.

• Powerful optimizer.

• Length of training vs. size of model and data.
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Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model
BLEU Training Cost (FLOPs)

EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 · 1020
GNMT + RL [38] 24.6 39.92 2.3 · 1019 1.4 · 1020
ConvS2S [9] 25.16 40.46 9.6 · 1018 1.5 · 1020
MoE [32] 26.03 40.56 2.0 · 1019 1.2 · 1020
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 · 1020
GNMT + RL Ensemble [38] 26.30 41.16 1.8 · 1020 1.1 · 1021
ConvS2S Ensemble [9] 26.36 41.29 7.7 · 1019 1.2 · 1021
Transformer (base model) 27.3 38.1 3.3 · 1018

Transformer (big) 28.4 41.8 2.3 · 1019

Label Smoothing During training, we employed label smoothing of value εls = 0.1 [36]. This
hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

6 Results

6.1 Machine Translation

On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big)
in Table 2) outperforms the best previously reported models (including ensembles) by more than 2.0
BLEU, establishing a new state-of-the-art BLEU score of 28.4. The configuration of this model is
listed in the bottom line of Table 3. Training took 3.5 days on 8 P100 GPUs. Even our base model
surpasses all previously published models and ensembles, at a fraction of the training cost of any of
the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves a BLEU score of 41.0,
outperforming all of the previously published single models, at less than 1/4 the training cost of the
previous state-of-the-art model. The Transformer (big) model trained for English-to-French used
dropout rate Pdrop = 0.1, instead of 0.3.

For the base models, we used a single model obtained by averaging the last 5 checkpoints, which
were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We
used beam search with a beam size of 4 and length penalty α = 0.6 [38]. These hyperparameters
were chosen after experimentation on the development set. We set the maximum output length during
inference to input length + 50, but terminate early when possible [38].

Table 2 summarizes our results and compares our translation quality and training costs to other model
architectures from the literature. We estimate the number of floating point operations used to train a
model by multiplying the training time, the number of GPUs used, and an estimate of the sustained
single-precision floating-point capacity of each GPU 5.

6.2 Model Variations

To evaluate the importance of different components of the Transformer, we varied our base model
in different ways, measuring the change in performance on English-to-German translation on the
development set, newstest2013. We used beam search as described in the previous section, but no
checkpoint averaging. We present these results in Table 3.

In Table 3 rows (A), we vary the number of attention heads and the attention key and value dimensions,
keeping the amount of computation constant, as described in Section 3.2.2. While single-head
attention is 0.9 BLEU worse than the best setting, quality also drops off with too many heads.

5We used values of 2.8, 3.7, 6.0 and 9.5 TFLOPS for K80, K40, M40 and P100, respectively.
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Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to
per-word perplexities.

N dmodel dff h dk dv Pdrop εls
train PPL BLEU params
steps (dev) (dev) ×106

base 6 512 2048 8 64 64 0.1 0.1 100K 4.92 25.8 65

(A)

1 512 512 5.29 24.9
4 128 128 5.00 25.5

16 32 32 4.91 25.8
32 16 16 5.01 25.4

(B) 16 5.16 25.1 58
32 5.01 25.4 60

(C)

2 6.11 23.7 36
4 5.19 25.3 50
8 4.88 25.5 80

256 32 32 5.75 24.5 28
1024 128 128 4.66 26.0 168

1024 5.12 25.4 53
4096 4.75 26.2 90

(D)

0.0 5.77 24.6
0.2 4.95 25.5

0.0 4.67 25.3
0.2 5.47 25.7

(E) positional embedding instead of sinusoids 4.92 25.7
big 6 1024 4096 16 0.3 300K 4.33 26.4 213

Table 4: The Transformer generalizes well to English constituency parsing (Results are on Section 23
of WSJ)

Parser Training WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37] WSJ only, discriminative 88.3

Petrov et al. (2006) [29] WSJ only, discriminative 90.4
Zhu et al. (2013) [40] WSJ only, discriminative 90.4
Dyer et al. (2016) [8] WSJ only, discriminative 91.7
Transformer (4 layers) WSJ only, discriminative 91.3
Zhu et al. (2013) [40] semi-supervised 91.3

Huang & Harper (2009) [14] semi-supervised 91.3
McClosky et al. (2006) [26] semi-supervised 92.1

Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1
Transformer (4 layers) semi-supervised 92.7

Luong et al. (2015) [23] multi-task 93.0
Dyer et al. (2016) [8] generative 93.3

In Table 3 rows (B), we observe that reducing the attention key size dk hurts model quality. This
suggests that determining compatibility is not easy and that a more sophisticated compatibility
function than dot product may be beneficial. We further observe in rows (C) and (D) that, as expected,
bigger models are better, and dropout is very helpful in avoiding over-fitting. In row (E) we replace our
sinusoidal positional encoding with learned positional embeddings [9], and observe nearly identical
results to the base model.

6.3 English Constituency Parsing

To evaluate if the Transformer can generalize to other tasks we performed experiments on English
constituency parsing. This task presents specific challenges: the output is subject to strong structural
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Practical implementation II

• Train and validation data.

• Different approaches:

1. Supervised fine-tuning (SFT): The raw model is pre-trained on a large dataset and then trained on

smaller but higher-quality datasets.

2. Reinforcement Learning from Human Feedback (RLHF).

3. Generating vs. ranking answers.

• Check https://thegradient.pub/ai-is-domestification/.

• Also, on prompt engineering:

https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/.
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GPT Assistant training pipeline
Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

init 
from

Stage

Dataset

Algorithm

Model

Notes

init 
from

init from SFT 
use RM
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Why RLHF?
It works better.
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Code

• Python + PyTorch allow for an easy implementation of this architecture.

• Code online:

1. http://nlp.seas.harvard.edu/annotated-transformer/.

2. https://www.youtube.com/watch?v=kCc8FmEb1nY and https://github.com/karpathy/nanoGPT.

• You want to run the code on GPUs.
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Step VIII: Extensions



Simplifying

• The original transformer architecture also has a decoder component. Why?

• It turns out we do not need an encoder or a decoder.

• We can dispense with one of the two.

1. Autoencoders: BERT.

2. Autoregressive language models: GPT.

• Cross-attention: Q’s and K’s come from outside sources of information.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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52 2 Pre-trained Language Models

the [MASK] eats cheese 

Transformer 
Encoder Blocks 

mouse 

the mouse 

Transformer 
Decoder Blocks 

the mouse eats cheese 
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Transformer Encoder-Decoder 
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the mouse eats 

GPT Language ModelBERT Autoencoder 
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Fig. 2.16 Autoencoders like BERT (left) and autoregressive LMs like GPT-2 (middle) use 
transformer blocks to generate contextual embeddings of tokens. The transformer (right) combines 
a transformer encoder and an autoregressive transformer decoder to produce a translation. All 
models predict the probability of tokens with a logistic classifier L. Collectively these models are 
called Pre-trained Language Models (PLMs) 
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Fig. 2.17 Timeline for the development of embeddings, pre-training and fine-tuning 

and therefore have an inductive bias of translation invariance and locality. Recurrent 
networks apply the same network to each input position and have a temporal 
invariance and locality. The BERT architecture makes only few assumptions about 
the structural dependency in data. The GPT model is similar to the RNN as it 
assumes a Markovian structure of dependencies to the next token. As a consequence, 
PLMs often require more training data to learn the interactions between different 
data points, but can later represent these interactions more accurately than other 
model types. 

Historically, learned embedding vectors were used as representations of words 
for downstream tasks (Fig. 2.17). As early as 2003 Bengio et al. [15] proposed a 
distributed vector representation of words to predict the next word by a recurrent 
model. In 2011 Collobert et al. [32] successfully employed word embeddings 
for part-of-speech tagging, chunking, named entity recognition, and semantic role 
labeling. In 2013 Mikolov et al. [93] derived their word embeddings using a logistic 
classifier. In 2015 Dai et al. [33] trained embeddings with an RNN language model 
in a self-supervised way and later applied it to text classification. In 2017 McCann 
et al. [87] pre-trained multilayer LSTMs for translation computing contextualized 
word vectors, which are later used for various classification tasks.
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Frontier work: QAs and Assistants

• QAs: either quote from a text or created from scratch.

• Hope to avoid domain knowledge.

• Design of assistants through prompt design and pre-train.

• Unfortunately, some of the details of frontier models are not public.

• But check: https://youtu.be/bZQun8Y4L2A.
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