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Prelude: Infinite dimensional
control



Solving infinite dimensional control problems

The standard theory of optimization in finite dimensional spaces (e.g., R"”) can be extended to
function spaces.

The core was developed by Euler and Lagrange in the 18th century: calculus of variations.

Put in more rigorous footing in the 20th century.

Milestones in the history of optimization theory: http://www.mitrikitti.fi/opthist.html.


http://www.mitrikitti.fi/opthist.html

Gateaux differential

e Let J(g) be a functional and let h be arbitrary in L2 (®). If the limit:

54 (g: by = lim L&+ R~ J(g)

a—0 (%

exists, it is called the Gateaux derivative of J at g in the direction h.
e If the limit exists for each h € L2 (®), the functional J is said to be GAiteaux differentiable at g.

o If the limit exists, it can be expressed as 6J (g; h) = == J (g + ah) [a—o.



Fréchet differential

e Let h be arbitrary in L2(®). If for fixed g € L? () there exists 6J (g; h) which is linear and
continuous with respect to h such that:

(gt h)—J(g) —dJ(gih)
Al 2()—0 ||h||L2(¢)

:0’

then, J is said to be Fréchet differentiable at g and ¢J (g; h) is theFréchet differential of J at g with
increment h.

e [f the Fréchet differential of J exists at g, then the Gateaux differential exists at g and they are equal.

e See Luenberger (1969, p. 173).



Infinite dimensional optimization

e A function g € L?(®) is a maximum of J(g) if for all functions h, ||h — gll12e) <. then
J(g) = J(h).

e Fundamental Theorem of Calculus: Let J have a Gateaux differential, a necessary condition for J to
have an maximum at g is that 6J(g; h) = 0 for all h € L% (®).

e See Luenberger (1969, p. 173), Gelfand and Fomin (1991, pp. 13-14), or Sagan (1992, p. 34).



Constrained optimization

Let H be a mapping from L2 (®) into R.

If J has a continuous Fréchet differential, a necessary condition for J to have a maximum at g under
the constraint H(g) = 0 is that there exists a function A € L? (®) such that:

L(g) = J(g) + A\ H(g))o

is stationary in g, i.e., 6L (g; h) = 0.

See Luenberger (1969, p. 243).



Application 1: Social optima
with heterogeneous agents



Optimal allocations with heterogeneous agents

e Often questions in economics require computing the optimal allocation produced by a benevolent
social planner:

e This is relatively straightforward with a representative agent...

e ...but what about a continuum of heterogeneous agents?

e Other problems may also have an infinite-dimensional space state.

e Examples: Oil extraction with a distribution of reserves, spatial AK models, ...



How to do it

e Nufio and Moll (2018) analyze optimal control problems with a continuum of heterogeneous
agents.

e Example: constrained-efficient equilibrium in the Aiyagari model with stochastic lifetimes.



Related literature

e Constrained-efficient problems in discrete-time models with incomplete markets and idiosyncratic risk.
e Davila, Hong, Krusell, and Rios-Rull (2012).

e Optimal control problems in continuous time:
e Lucas and Moll (2014) or Afonso and Lagos (2015).

e Mean field control:

e Bensoussan, Frehse, and Yam (2013).



We illustrate the method with an example: Aiyagari model with finite lifetimes

e Continuous-time Aiyagari economy with stochastic lifetimes & /a Blanchard-Yaari.

e A benevolent social planner chooses the individual levels of consumption, while respecting all budget

constraints

e With infinite lifetimes optimal allocation depends on the calibration (Dévila, Hong, Krusell, and
Rios-Rull, 2012).

e No ergodic distribution under the original Aiyagari’s calibration.

e No Pareto distribution in the competitive equilibrium.



Households

e Household’s utility:
ge) 1—-x
Eo / e~lotme St g
0 1-x

where 7 is the death arrival (Poisson).

e Asset dynamics (per capita), assuming insurance sector:

dat = (WI'ZI' + (rt+77) dy — Ct) dt

e Borrowing limit:
dat 2 0

e Idiosyncratic labor productivity:
dzt = 0(2 — Zt)dt + O'dBt7 Z: € [zq Z]
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The KF equation

g 0
a 7%(5(3 Z, thrhc)g)
0 . 102
5z (0(2 - 2)g) + 2922 (02g) —ng + N0aq,z5

where —ng:(a, z) is the outflow of agents due to death and 7d,, ,, = 10 (a) 6 (z — z) is the inflow of
newborn agents with zero assets and productivity z.
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Firms and market clearing

e Competitive firms:

e Market clearing:

e o= akiTt—dk

(1—a) K

Wt

kt:// ag:(a, z)dadz
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Constrained-efficient allocation

e The planner chooses individual consumption ¢ (+) in order to maximize:

J(g(0,))) = max / / / ¢) g: (a, z) dadzdt

c(-)ecC(t,a,z)

subject to the law of motion of the aggregate density, to the factor prices and to the market clearing
condition.

e The planner cannot redistribute among agents (she has to respect individual budget constraints).
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The Lagrangian

BellGn@) = / / Wi (6 a6 ekt

/ / / Ji(a,z { + A"gi (a,2) +nda, 20} dadzdt
+/ —pt), { kt+/ / agi(a z)dadz} dt
0
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e The social value function J; (a, z) solves the planner's HJB equation:

. = aj
(p+m)j = max I +A(a—ke) + (weze + rea— ) o
9j 028 8J
+9(z—2)5+77 9

with a > 0.

e The Lagrange multiplier \; is:

_ 81 or By
oo //z da <8K +3KZ> g:(a, z)dzda
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First-best allocation

e The planner is able to fully redistribute among agents.

e Individual wealth is now given by:
dar = (weze + (re + 1) ar — ¢ + 7¢) dbt,

where 7, are transfers across agents.

e The aggregate amount of transfers is zero:

/ /: 7¢(a, z)ge(a, z)dzda = 0
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The Lagrangian: First best

L (8,7,¢,J5 A / /u ¢ (a,2)) gt (a, z) dadzdt
0

/ // Ji(a,z [Z + A*g: (a,z) + nda, ZO] dadzdt
0
+/ e’ /\t{ ks + / / agi(a z)dadz} dt
0
+/ e Pty [/ /Ttazgtaz)dadz}dt
0
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Solution: First best

e The social value function Jj; (a, z) solves the planner's HIB equation:

: c!=7
(p+m)j = T§3<177+A(a—kf)
9j
—‘rcptﬂ(a, Z) + (Wtzt + rea — C) 873

L)
=g+ T2t o

e The Lagrange multiplier \; = ffj % ((%r(a + g—f(’z) g:(a, z)dzda and the Lagrange multiplier ¢; is
pinned-down by the market clearing condition | fj 7+(a, z)gt(a, z)dzda = 0.
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Capital under-accumulation in the competitive equilibrium

Constrained-efficient  Competitive equilibrium  First-best

Aggregate capital, K 13.82 5.04 5.57
Output, Y 2.57 1.79 1.86
Capital-output ratio, K/Y 5.37 2.82 1.57
Aggregate Consumption, C 1.45 1.39 1.41
Wages, w 1.65 1.15 1.19
Interest rate (%), r -1.29 4.79 4.00
Tail exponent, ¢ 2.83 5.08 0.33

Welfare (% cons. c.e.),© 15.13 - 15.41
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Value function j(a, z) Consumption c(a, z)
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Figure 1: Competitive equilibrium -



Value function j(a, z) “onsumption ¢(a, z)
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Figure 2: Constrained-efficient allocation

21



Application 2: Optimal monetary
policy with heterogeneous agents




How does household heterogeneity affect optimal monetary policy?

e Emerging positive literature about the redistributive effects of monetary policy in incomplete-markets
models with non-trivial heterogeneity.

e Examples: Auclert (2019), Kaplan, Moll, and Violante (2018),Gornemann, Kuester and Nakajima
(2016), McKay, Nakamura and Steinsson (2016), Luetticke (2018), ...

e Less progress on the normative front: the entire wealth distribution is a state in the policy-maker’s
problem.

e Nufio and Thomas (2020) solve the optimal monetary policy with commitment in a model with
non-trivial heterogeneity.
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The economy in a nutshell

Incomplete markets economy a /a Huggett (1993).

Nominal, long-term, non-contingent financial assets.

Small open-economy with risk-neutral foreign investors.

e Disutility costs of inflation (nominal rigidities).
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e Redistributive channels:

1. Fisher: surprise inflation reduces the initial (time-0) r market price of the long-term nominal bond —
redistributes wealth from creditors to debtors.

2. Liquidity: expected and unexpected lower inflation raises asset prices — relaxing borrowing limit in
market-value.

e Costly inflation (due to nominal rigidities).
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Related literature

1. Ramsey policies in incomplete-market models in which the policy-maker does not need to keep track
of the wealth distribution or the latter is finite-dimensional:

e Gottardi, Kajii, and Nakajima (2011), Bilbiie and Ragot (2017), Le Grand and Ragot (2017), Challe
(2019), and Acharya et al. (2019).

2. Ex-ante parametric form for the optimal policy + numerical optimization:
e Dyrda and Pedroni (2018) and ltskhoki and Moll (2019).

3. Finite-dimensional Lagrangian methods:
e Bhandari et al. (2018) and Acikgoz et al. (2018).

4. Infinite-dimensional calculus in problems with non-degenerate distributions:

e Ddvila et al. (2012), Lucas and Moll (2014), and Nufio and Moll (2018).
25



Model: output and prices

e Household k € [0, 1] is endowed with yj; units of output:

e v follows 2-state Poisson process, y1 < y», with intensities A1 and Az.

e Domestic price level P; follows
dPt = '/TtPtdt

26



e Long-term bond issued at time t pays stream of geometrically-decaying nominal coupons
{5e75(57t)}

s>t”
e Nominal face value of net wealth follows:

dAe = (AT — 5A) dt

e Budget constraint:
Q¢ wa = [P (th - th) + 6 Akt

e Define ay = Ak:/P;: real face value of net wealth.
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Household problem

e The household solves:

v(ay) = max / =759 [y(cye) — x(s)] ds
) t

{CS}se[t,oc

subject to:

. 1

ake = St (ak, yk) = = | (Vke — ke +0ake) — (0 +75)  Qrae ;

Qt —_— ——— ~——
URE;(a,y) NNP:(a,y)=ay
and the exogenous borrowing limit
Akt 2 d)v ¢ S 0
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International investors (bond pricing)

e Risk-neutral investors can invest elsewhere at riskless real rate r.

e Unit price of the nominal non-contingent bond:

Q(t) = /OO e~ (FHO)(s=t)=J; medu g
t
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Dynamics of the income-wealth density

e Density fi(a) = f:(a,y;) dynamics given by Kolmogorov Forward equation:

afit(a) o 72 ]
ot~ aa

(a) fie(a)] — Aifie(a) + Ajfie(a),

iaj: 1727./# e
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Central bank

e Central bank can trade a short-term nominal claim with foreign investors.

e |t sets the instantaneous nominal rate R; of that facility. By no-arbitrage: R: = F + 7.

e Equivalent to assume that the central bank chooses directly the inflation rate {7}, .
e Central bank’s utilitarian welfare criterion:

USE = Z/ (a,yi) fo (a,yi) da

= IE:"o(a,y) [vo(a, y)]

= [ e B e lay) e
JO
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Central bank problem

e The Ramsey problem is:
JRf ()] = max USE

ﬂ'f}rzo
subject to:
e the law of motion of the distribution.
e the bond pricing equation.

e the individual HJB equation.

e the first-order condition of households.
e JR and 7 are not ordinary functions, but functionals as they map a distribution £, (-) into R.

e The problem is time-inconsistent.
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How can we solve it?

e We construct a functional Lagragian Lo [f, T, Q, v, c].

e This is a problem of constrained optimization in an infinite-dimensional Hilbert space — Gateaux
derivative.

e Example, the Gateaux derivative with respect to density f is:

lim ['0 [f—f—()éh,’]’l’, Q: V7C] _‘CO [f77T7 Qa v, C]

a—0 (%

where h is an arbitrary function in the same function space as f.
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Optimal inflation

Domestic net nominal position motive

x'(me) = covgay) [-NNP:(a,y), MUC (a,y)]

Cross-border net nominal position motive

+]Eﬂ(a,y) [_NN'Dt (a>y)] Eﬁ(a,y) [MUCt (3~}/)] + ,u/tQta

and:
Domestic interest rate exposure motive
t
_reF _ 1
e = / e Ji(FHm+6 p)dzi{covfs(a,y) [ , MUC, (27 }/)]
0 Qs
Cross-border interest rate exposure motive

+Efs(a,y) [ ]Efs(a.,y) [MUG; (a,y)]}ds,

where MUC; (a,y) = v’ (¢ (a,y)) denotes the marginal utility of consumption.
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ributive inflationary bias at time 0

e Provided the aggregate NNP is non-positive, E(, ) [-NNPy (a,y)] /Qo = —a0 > 0, optimal inflation
at time-0 is strictly positive, mg > 0.

e Even if economy’s aggregate NNP is zero, as long as u’/(c) < 0 (concave preferences) and there is net
wealth dispersion, the central bank has a reason to inflate.

e Different from classical “inflationary bias” in NK models.

time-0 value function initial wealth dist. in market value
disutility of inflation 5

=~ €9 d 1
am am m
AL ‘Q°.ZLQO (oo) Q@ | Q™ (Qo) ¢

i=1

= Egmn(am,y) [-NNPy (a™) MUG, (3™, y)]
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Optimal lon

e In the limit as p — 7, the optimal steady-state inflation rate under commitment tends to zero:

lim 7o, = 0.
p~>r

e Reminiscent of same result in NK models, but very different reason (two counteracting redistributive

motives).
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Numerical solution and calibration

e Given an initial distribution, the model is solved using finite difference methods as in Achdou et al.

(2017).
e Calibrate to a prototypical European small open economy, time unit = 1 year.
o u(c) =log(c), x(m) = £n? (Rotemberg pricing).

o fy(-) =fs(-) under 7 = 0.
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Calibration

Value Description Source/Target
r 0.03 world real interest rate standard
P HEb) scale inflation disutility slope NKPC in Calvo model
1) 0.19 bond amortization rate Macaulay duration = 4.5 yrs
A1 0.72 transition rate U to E monthly job finding rate 0.1%
Ao 0.08 transition rate E to U unemployment rate 10%
3% 0.73 income in U state Hall & Milgrom (2008)
)2 1.03 income in E state E(y)=1
p 0.0302 subjective discount rate NIIP/GDP (-25%)
10) -3.6 borrowing limit HH debt/GDP (90%)
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Time-0 optimal policy
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Figure 3: Transitional dynamics. 3



Understanding the redistributive motives

(a) Net nominal position (b) Unhedged interest rate exposure
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Redistributive effects of optimal inflation

(a) Unemployed, f§(c,y1) (b) Employed, f§(c,y2)
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Figure 5: Consumption density at time 0.
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Welfare analysis

Aggregate welfare is defined as:

Ef(ay) [vo (a,y)] = /OOO e MR ay) [u(ce (a,y)) — x (me)] dt = W(c]

Welfare losses of a zero-inflation policy relative to the optimal commitment

Economy-wide Lending HHs Indebted HHs
0.05 -0.17 0.22

Note: welfare losses are expressed as a % of permanent consumption
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The importance of debt duration

14

Baseline (4.5 years)
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Figure 6: Optimal inflation under different debt durations.
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Optimal response to shocks from a timeless perspective

e Let individual income now be given by {y1 Y;, y» Y:}, with
dYt = T]Y (1 e Yt) dt + O'dZt’

where Z; a Brownian motion (ny = 0.5,0 = 0.01).

e We apply the results in Boppart, Krusell and Mittman (2018) to show how this is equivalent to
analyze an MIT shock with amplitude o.

e We consider policy ‘from a timeless perspective,” in the sense of Woodford (2003):

1. the initial wealth distribution is the stationary distribution implied by the optimal commitment

fo (-) = foo (1).
2. the initial condition o = 0 is replaced by (o = fico.
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Optimal response to a negative TFP shock
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Figure 7: Generalized impulse response function of an aggregate income shock.
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e Lots of cool new applications.

e Venture into your own research!
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Example: an alternative derivation of the HJB

e An agent maximizes:

Vo(x) = max Eo/ e "tu (e, Xy) dt,
0

O‘f}tzo

subject to:
dXt = Wt (Xt-,at) dt+0't (Xt,(l't) th, X() = X0

e o(-): X x A— RN, We consider feedback control laws a; = o (X;).
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If we express it in terms of probabilities

max / e*pt/u(ut,x) g: (x) dxdt,
0 .

{at}zzo .

subject to:

agti o
ot -8

g (x) =3d(x —xo)
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The Lagrangian

/OO e ! / u(ay, x) gr (x) dxdt
/ / ( Oe: A*g) dxdlt,

where v; (x) is the Lagrange multiplier associated to the KF equation.
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Integrating by parts

o B o 0 (vie—rt
/O e“’t/w (x) (—(f;) dxdt = /o e_”t/gt (X)%dxdt

+ /go (x) vo (x)dx

—  lim /lgr (x) e ?Tvr (x)dx

T—oo
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Applying the definition of adjoint operator

/ e_”t/vt (X)A*gdxdt:/ e_”t//lvgt (x) dxdt
0 0
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Wrapping up

L(g,)

- ./(;ooept./u(ufvx)gt(X)dth

+ / e‘/’t/ (Av + 7 _ pv) gt (x) dxdt
0 ot

+ /'5(X*XO)V0(X)dX

— lim /'gT ) U (x) dx

T—o0 .
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Gateaux derivative with respect to the density

d d [ :
9 Lg+eha)my = L[ et / (e ) T:(00) 2 e (et
de de Jo .

d [ _ [ v

— / e’ / Av + — — pv | [ge (X) + €h; (x)] dxdt|c—o

= = ||m /[gT ) + ehr (x)] e PTvr (x) dx|e=o

_|_
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Taking derivatives

diﬁ(g+eh,a)|€:0 = / e*”t/u(at,x) he (x)dxdt
€ 0

/ et / (Av + ov _ pv) h: (x)dxdt
Jo . ot

— lim /hT(x)e—f’TvT(x)dx

+

T—oo
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Applying the Fundamental Theorem of Calculus

o 2L(g+ €h,a)|c—o = 0 for any function h belonging to Sobolev space H? ().

e Then:

fpVJr%Jru(a,X)JrAVZO

lim e ?Tvr(x)=0
T—o0
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Proceeding the same for the optimal control

e We recover the HJB equation:
oV
pV = Fn + max {u(a, x) + Av},

where the value function is the Lagrange multiplier associated to the KF equation.
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