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Prelude: Infinite dimensional

control



Solving infinite dimensional control problems

• The standard theory of optimization in finite dimensional spaces (e.g., Rn) can be extended to

function spaces.

• The core was developed by Euler and Lagrange in the 18th century: calculus of variations.

• Put in more rigorous footing in the 20th century.

• Milestones in the history of optimization theory: http://www.mitrikitti.fi/opthist.html.
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Gâteaux differential

• Let J (g) be a functional and let h be arbitrary in L2 (Φ) . If the limit:

δJ (g ; h) = lim
α→0

J (g + αh)− J (g)

α

exists, it is called the Gâteaux derivative of J at g in the direction h.

• If the limit exists for each h ∈ L2 (Φ) , the functional J is said to be Gâteaux differentiable at g .

• If the limit exists, it can be expressed as δJ (g ; h) = d
dαJ (g + αh) |α=0.
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Fréchet differential

• Let h be arbitrary in L2 (Φ) . If for fixed g ∈ L2 (Φ) there exists δJ (g ; h) which is linear and

continuous with respect to h such that:

lim
‖h‖L2(Φ)→0

|J (g + h)− J (g)− δJ (g ; h)|
‖h‖L2(Φ)

= 0,

then, J is said to be Fréchet differentiable at g and δJ (g ; h) is theFréchet differential of J at g with

increment h.

• If the Fréchet differential of J exists at g , then the Gâteaux differential exists at g and they are equal.

• See Luenberger (1969, p. 173).
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Infinite dimensional optimization

• A function g ∈ L2 (Φ) is a maximum of J(g) if for all functions h, ‖h − g‖L2(Φ) < ε, then

J(g) ≥ J(h).

• Fundamental Theorem of Calculus: Let J have a Gâteaux differential, a necessary condition for J to

have an maximum at g is that δJ (g ; h) = 0 for all h ∈ L2 (Φ).

• See Luenberger (1969, p. 173), Gelfand and Fomin (1991, pp. 13-14), or Sagan (1992, p. 34).
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Constrained optimization

• Let H be a mapping from L2 (Φ) into R.

• If J has a continuous Fréchet differential, a necessary condition for J to have a maximum at g under

the constraint H(g) = 0 is that there exists a function λ ∈ L2 (Φ) such that:

L(g) = J(g) + 〈λ,H(g)〉Φ

is stationary in g , i.e., δL (g ; h) = 0.

• See Luenberger (1969, p. 243).

• Example
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Application 1: Social optima

with heterogeneous agents



Optimal allocations with heterogeneous agents

• Often questions in economics require computing the optimal allocation produced by a benevolent

social planner:

• This is relatively straightforward with a representative agent...

• ...but what about a continuum of heterogeneous agents?

• Other problems may also have an infinite-dimensional space state.

• Examples: Oil extraction with a distribution of reserves, spatial AK models, ...
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How to do it

• Nuño and Moll (2018) analyze optimal control problems with a continuum of heterogeneous

agents.

• Example: constrained-efficient equilibrium in the Aiyagari model with stochastic lifetimes.
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Related literature

• Constrained-efficient problems in discrete-time models with incomplete markets and idiosyncratic risk.

• Dávila, Hong, Krusell, and Ŕıos-Rull (2012).

• Optimal control problems in continuous time:

• Lucas and Moll (2014) or Afonso and Lagos (2015).

• Mean field control:

• Bensoussan, Frehse, and Yam (2013).
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We illustrate the method with an example: Aiyagari model with finite lifetimes

• Continuous-time Aiyagari economy with stochastic lifetimes à la Blanchard-Yaari.

• A benevolent social planner chooses the individual levels of consumption, while respecting all budget

constraints

• With infinite lifetimes optimal allocation depends on the calibration (Dávila, Hong, Krusell, and

Ŕıos-Rull, 2012).

• No ergodic distribution under the original Aiyagari’s calibration.

• No Pareto distribution in the competitive equilibrium.
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Households

• Household’s utility:

E0

[∫ ∞
0

e−(ρ+η)t c
1−χ
t

1− χ
dt

]
where η is the death arrival (Poisson).

• Asset dynamics (per capita), assuming insurance sector:

dat = (wtzt + (rt+η) at − ct) dt

• Borrowing limit:

at ≥ 0

• Idiosyncratic labor productivity:

dzt = θ(ẑ − zt)dt + σdBt , zt ∈ [z
¯
, z̄ ]
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The KF equation

∂g

∂t
= − ∂

∂a
(s (a, z ,wt , rt , c) g)

− ∂

∂z
(θ(ẑ − z)g) +

1

2

∂2

∂z2

(
σ2g

)
−ηg + ηδa0,z0 ,

where −ηgt(a, z) is the outflow of agents due to death and ηδa0,z0 = ηδ (a) δ (z − z
¯

) is the inflow of

newborn agents with zero assets and productivity z
¯

.
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Firms and market clearing

• Competitive firms:

rt = αkα−1
t − δK

wt = (1− α) kαt

• Market clearing:

kt =

∫ ∫ z̄

z
¯

agt(a, z)dadz
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Constrained-efficient allocation

• The planner chooses individual consumption c (·) in order to maximize:

J (g (0, ·)) = max
c(·)∈C(t,a,z)

∫ ∞
0

e−ρt
∫ ∫ z̄

z
¯

u (c) gt (a, z) dadzdt

subject to the law of motion of the aggregate density, to the factor prices and to the market clearing

condition.

• The planner cannot redistribute among agents (she has to respect individual budget constraints).
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The Lagrangian

Lce (g , τ, c , j , λ) =

∫ ∞
0

e−ρt
∫

u (ct (a, z)) gt (a, z) dadzdt

+

∫ ∞
0

e−ρt
∫ ∫ z̄

z
¯

jt (a, z)

[
−∂g
∂t

+A∗gt (a, z) + ηδa0,z0

]
dadzdt

+

∫ ∞
0

e−ρtλt

[
−kt +

∫ ∞
0

∫ z̄

z
¯

agt(a, z)dadz

]
dt
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Solution

• The social value function jt (a, z) solves the planner’s HJB equation:

(ρ+ η) j = max
c≥0

c1−γ

1− γ
+ λ (a− kt) + (wtzt + rta− c)

∂j

∂a

+θ(ẑ − z)
∂j

∂z
+
σ2

2

∂2j

∂z2
+
∂j

∂t
,

with a ≥ 0.

• The Lagrange multiplier λt is:

λt =

∫ ∫ z̄

z
¯

∂j

∂a

(
∂r

∂K
a +

∂w

∂K
z

)
gt(a, z)dzda
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First-best allocation

• The planner is able to fully redistribute among agents.

• Individual wealth is now given by:

dat = (wtzt + (rt + η) at − ct + τt) dt,

where τt are transfers across agents.

• The aggregate amount of transfers is zero:∫ ∫ z̄

z
¯

τt(a, z)gt(a, z)dzda = 0
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The Lagrangian: First best

Lfb (g , τ, c , j , λ) =

∫ ∞
0

e−ρt
∫

u (ct (a, z)) gt (a, z) dadzdt

+

∫ ∞
0

e−ρt
∫ ∫ z̄

z
¯

jt (a, z)

[
−∂g
∂t

+A∗gt (a, z) + ηδa0,z0

]
dadzdt

+

∫ ∞
0

e−ρtλt

[
−kt +

∫ ∞
0

∫ z̄

z
¯

agt(a, z)dadz

]
dt

+

∫ ∞
0

e−ρtϕt

[∫ ∞
0

∫ z̄

z
¯

τt(a, z)gt(a, z)dadz

]
dt
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Solution: First best

• The social value function jt (a, z) solves the planner’s HJB equation:

(ρ+ η) j = max
c≥0

c1−γ

1− γ
+ λ (a− kt)

+ϕtτt(a, z) + (wtzt + rta− c)
∂j

∂a

+θ(ẑ − z)
∂j

∂z
+
σ2

2

∂2j

∂z2
+
∂j

∂t

• The Lagrange multiplier λt =
∫ ∫ z̄

z
¯

∂j
∂a

(
∂r
∂K a + ∂w

∂K z
)
gt(a, z)dzda and the Lagrange multiplier ϕt is

pinned-down by the market clearing condition
∫ ∫ z̄

z
¯
τt(a, z)gt(a, z)dzda = 0.
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Capital under-accumulation in the competitive equilibrium

Constrained-efficient Competitive equilibrium First-best

Aggregate capital, K 13.82 5.04 5.57

Output, Y 2.57 1.79 1.86

Capital-output ratio, K/Y 5.37 2.82 1.57

Aggregate Consumption, C 1.45 1.39 1.41

Wages, w 1.65 1.15 1.19

Interest rate (%), r -1.29 4.79 4.00

Tail exponent, ζ 2.83 5.08 0.33

Welfare (% cons. c.e.),Θ 15.13 - 15.41
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Results
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Figure 1: Competitive equilibrium
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Figure 2: Constrained-efficient allocation
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Application 2: Optimal monetary

policy with heterogeneous agents



How does household heterogeneity affect optimal monetary policy?

• Emerging positive literature about the redistributive effects of monetary policy in incomplete-markets

models with non-trivial heterogeneity.

• Examples: Auclert (2019), Kaplan, Moll, and Violante (2018),Gornemann, Kuester and Nakajima

(2016), McKay, Nakamura and Steinsson (2016), Luetticke (2018), ...

• Less progress on the normative front: the entire wealth distribution is a state in the policy-maker’s

problem.

• Nuño and Thomas (2020) solve the optimal monetary policy with commitment in a model with

non-trivial heterogeneity.
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The economy in a nutshell

• Incomplete markets economy à la Huggett (1993).

• Nominal, long-term, non-contingent financial assets.

• Small open-economy with risk-neutral foreign investors.

• Disutility costs of inflation (nominal rigidities).
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Transmission channels of monetary policy

• Redistributive channels:

1. Fisher: surprise inflation reduces the initial (time-0) r market price of the long-term nominal bond →
redistributes wealth from creditors to debtors.

2. Liquidity: expected and unexpected lower inflation raises asset prices → relaxing borrowing limit in

market-value.

• Costly inflation (due to nominal rigidities).
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Related literature

1. Ramsey policies in incomplete-market models in which the policy-maker does not need to keep track

of the wealth distribution or the latter is finite-dimensional:

• Gottardi, Kajii, and Nakajima (2011), Bilbiie and Ragot (2017), Le Grand and Ragot (2017), Challe

(2019), and Acharya et al. (2019).

2. Ex-ante parametric form for the optimal policy + numerical optimization:

• Dyrda and Pedroni (2018) and Itskhoki and Moll (2019).

3. Finite-dimensional Lagrangian methods:

• Bhandari et al. (2018) and Açikgöz et al. (2018).

4. Infinite-dimensional calculus in problems with non-degenerate distributions:

• Dávila et al. (2012), Lucas and Moll (2014), and Nuño and Moll (2018).
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Model: output and prices

• Household k ∈ [0, 1] is endowed with ykt units of output:

• ykt follows 2-state Poisson process, y1 < y2, with intensities λ1 and λ2.

• Domestic price level Pt follows

dPt = πtPtdt
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Assets

• Long-term bond issued at time t pays stream of geometrically-decaying nominal coupons{
δe−δ(s−t)

}
s≥t .

• Nominal face value of net wealth follows:

dAkt = (Anew
kt − δAkt) dt

• Budget constraint:

QtA
new
kt = Pt (ykt − ckt) + δAkt

• Define akt ≡ Akt/Pt : real face value of net wealth.

27



Household problem

• The household solves:

vt(a, y) = max
{cs}s∈[t,∞)

Et

∫ ∞
t

e−ρ(s−t) [u(cks)− x(πs)] ds

subject to:

ȧkt = st (ak , yk) =
1

Qt

(ykt − ckt + δakt)︸ ︷︷ ︸
UREt(a,y)

− (δ + πs) Qtakt︸ ︷︷ ︸
NNPt(a,y)≡amt

 ,
and the exogenous borrowing limit

akt ≥ φ, φ ≤ 0
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International investors (bond pricing)

• Risk-neutral investors can invest elsewhere at riskless real rate r̄ .

• Unit price of the nominal non-contingent bond:

Q(t) =

∫ ∞
t

δe−(r̄+δ)(s−t)−
∫ s
t
πsduds
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Dynamics of the income-wealth density

• Density fit(a) ≡ ft(a, yi ) dynamics given by Kolmogorov Forward equation:

∂fit(a)

∂t
= − ∂

∂a
[sit (a) fit(a)]− λi fit(a) + λj fjt(a),

i , j = 1, 2, j 6= i .
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Central bank

• Central bank can trade a short-term nominal claim with foreign investors.

• It sets the instantaneous nominal rate Rt of that facility. By no-arbitrage: Rt = r̄ + πt .

• Equivalent to assume that the central bank chooses directly the inflation rate {πt}t≥0.

• Central bank’s utilitarian welfare criterion:

UCB
0 ≡

2∑
i=1

∫ ∞
φ

v0 (a, yi ) f0 (a, yi ) da

= Ef0(a,y) [v0(a, y)]

=

∫ ∞
0

e−ρtEft(a,y) [u (ct (a, y) , πt)] dt
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Central bank problem

• The Ramsey problem is:

JR [f0 (·)] = max
{πt}t≥0

UCB
0

subject to:

• the law of motion of the distribution.

• the bond pricing equation.

• the individual HJB equation.

• the first-order condition of households.

• JR and π are not ordinary functions, but functionals as they map a distribution ft (·) into R.

• The problem is time-inconsistent.

32



How can we solve it?

• We construct a functional Lagragian L0 [f , π,Q, v , c].

• This is a problem of constrained optimization in an infinite-dimensional Hilbert space → Gâteaux

derivative.

• Example, the Gâteaux derivative with respect to density f is:

lim
α→0

L0 [f + αh, π,Q, v , c]− L0 [f , π,Q, v , c]

α

where h is an arbitrary function in the same function space as f .
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Optimal inflation

x ′ (πt) =

Domestic net nominal position motive︷ ︸︸ ︷
covft(a,y) [−NNPt (a, y),MUCt (a, y)]

+

Cross-border net nominal position motive︷ ︸︸ ︷
Eft(a,y) [−NNPt (a, y)]Eft(a,y) [MUCt (a, y)] + µtQt ,

and:

µt =

∫ t

0

e−
∫ t
s

(r̄+πz+δ−ρ)dz 1

Qs
{

Domestic interest rate exposure motive︷ ︸︸ ︷
covfs (a,y) [UREs (a, y),MUCs (a, y)]

+

Cross-border interest rate exposure motive︷ ︸︸ ︷
Efs (a,y) [UREs (a, y)]Efs (a,y) [MUCs (a, y)]}ds,

where MUCt (a, y) ≡ u′ (ct (a, y)) denotes the marginal utility of consumption.
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Redistributive inflationary bias at time 0

• Provided the aggregate NNP is non-positive, Ef0(a,y) [−NNP0 (a, y)] /Q0 = −ā0 ≥ 0, optimal inflation

at time-0 is strictly positive, π0 > 0.

• Even if economy’s aggregate NNP is zero, as long as u′′(c) < 0 (concave preferences) and there is net

wealth dispersion, the central bank has a reason to inflate.

• Different from classical “inflationary bias” in NK models.

disutility of inflation︷︸︸︷
ψπ0 = −Q0

2∑
i=1

∫ ∞
φQ0

time-0 value function︷ ︸︸ ︷
vi0

(
am

Q0

)
d

dQ0

initial wealth dist. in market value︷ ︸︸ ︷
1

Q0
fi0

(
am

Q0

) dam

= Ef m0 (am,y) [−NNP0 (am)MUC0 (am, y)]
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Optimal long-run inflation

• In the limit as ρ→ r̄ , the optimal steady-state inflation rate under commitment tends to zero:

lim
ρ→r̄

π∞ = 0.

• Reminiscent of same result in NK models, but very different reason (two counteracting redistributive

motives).
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Numerical solution and calibration

• Given an initial distribution, the model is solved using finite difference methods as in Achdou et al.

(2017).

• Calibrate to a prototypical European small open economy, time unit = 1 year.

• u(c) = log (c), x(π) = ψ
2 π

2 (Rotemberg pricing).

• f0 (·) = fss (·) under π = 0.
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Calibration

Value Description Source/Target

r̄ 0.03 world real interest rate standard

ψ 5.5 scale inflation disutility slope NKPC in Calvo model

δ 0.19 bond amortization rate Macaulay duration = 4.5 yrs

λ1 0.72 transition rate U to E monthly job finding rate 0.1%

λ2 0.08 transition rate E to U unemployment rate 10%

y1 0.73 income in U state Hall & Milgrom (2008)

y2 1.03 income in E state E (y) = 1

ρ

φ

0.0302

-3.6

subjective discount rate

borrowing limit

{
NIIP/GDP (-25%)

HH debt/GDP (90%)
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Time-0 optimal policy

Figure 3: Transitional dynamics.
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Understanding the redistributive motives
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Figure 4: Equilibrium objects t = 0.
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Redistributive effects of optimal inflation
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Figure 5: Consumption density at time 0.
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Welfare analysis

Aggregate welfare is defined as:

Ef0(a,y) [v0 (a, y)] =

∫ ∞
0

e−ρtEft(a,y) [u (ct (a, y))− x (πt)] dt ≡W [c]

Welfare losses of a zero-inflation policy relative to the optimal commitment

Economy-wide Lending HHs Indebted HHs

0.05 -0.17 0.22

Note: welfare losses are expressed as a % of permanent consumption
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The importance of debt duration
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Figure 6: Optimal inflation under different debt durations.
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Optimal response to shocks from a timeless perspective

• Let individual income now be given by {y1Yt , y2Yt}, with

dYt = ηY (1− Yt) dt + σdZt ,

where Zt a Brownian motion (ηY = 0.5, σ = 0.01).

• We apply the results in Boppart, Krusell and Mittman (2018) to show how this is equivalent to

analyze an MIT shock with amplitude σ.

• We consider policy ‘from a timeless perspective,’ in the sense of Woodford (2003):

1. the initial wealth distribution is the stationary distribution implied by the optimal commitment

f0 (·) = f∞ (·).

2. the initial condition µ0 = 0 is replaced by µ0 = µ∞.
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Optimal response to a negative TFP shock
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Figure 7: Generalized impulse response function of an aggregate income shock.
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Summing up

• Lots of cool new applications.

• Venture into your own research!

46



Example: an alternative derivation of the HJB

• An agent maximizes:

V0(x) = max
{αt}t≥0

E0

∫ ∞
0

e−ρtu (αt ,Xt) dt,

subject to:

dXt = µt (Xt , αt) dt + σt (Xt , αt) dWt , X0 = x0

• σ (·) : X× A→ RN . We consider feedback control laws αt = αt (Xt).
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If we express it in terms of probabilities

max
{αt}t≥0

∫ ∞
0

e−ρt
∫
u (αt , x) gt (x) dxdt,

subject to:

∂gt
∂t

= A∗g

g0 (x) = δ (x − x0)
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The Lagrangian

L(g , α) =

∫ ∞
0

e−ρt
∫

u (αt , x) gt (x) dxdt

+

∫ ∞
0

e−ρt
∫

vt (x)

(
−∂gt
∂t

+A∗g
)
dxdt,

where vt (x) is the Lagrange multiplier associated to the KF equation.
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Integrating by parts

∫ ∞
0

e−ρt
∫

vt (x)

(
−∂gt
∂t

)
dxdt =

∫ ∞
0

e−ρt
∫

gt (x)
∂ (vte

−ρt)

∂t
dxdt

+

∫
g0 (x) v0 (x)dx

− lim
T→∞

∫
gT (x) e−ρT vT (x)dx
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Applying the definition of adjoint operator

∫ ∞
0

e−ρt
∫

vt (x)A∗gdxdt =

∫ ∞
0

e−ρt
∫
Avgt (x) dxdt
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Wrapping up

L(g , α) =

∫ ∞
0

e−ρt
∫

u (αt , x) gt (x) dxdt

+

∫ ∞
0

e−ρt
∫ (
Av +

∂v

∂t
− ρv

)
gt (x) dxdt

+

∫
δ (x − x0)v0 (x) dx

− lim
T→∞

∫
gT (x) e−ρT vT (x) dx
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Gâteaux derivative with respect to the density

d

dε
L(g + εh, α)|ε=0 =

d

dε

∫ ∞
0

e−ρt
∫

u (αt , x) [gt (x) + εht (x)] dxdt|ε=0

+
d

dε

∫ ∞
0

e−ρt
∫ (
Av +

∂v

∂t
− ρv

)
[gt (x) + εht (x)] dxdt|ε=0

− d

dε
lim

T→∞

∫
[gT (x) + εhT (x)] e−ρT vT (x) dx |ε=0

53



Taking derivatives

d

dε
L(g + εh, α)|ε=0 =

∫ ∞
0

e−ρt
∫

u (αt , x) ht (x)dxdt

+

∫ ∞
0

e−ρt
∫ (
Av +

∂v

∂t
− ρv

)
ht (x)dxdt

− lim
T→∞

∫
hT (x)e−ρT vT (x) dx
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Applying the Fundamental Theorem of Calculus

• d
dεL(g + εh, α)|ε=0 = 0 for any function h belonging to Sobolev space H2 (Φ).

• Then:

−ρV +
∂v

∂t
+ u (α, x) +Av = 0

lim
T→∞

e−ρT vT (x) = 0
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Proceeding the same for the optimal control

• We recover the HJB equation:

ρV =
∂V

∂t
+ max

α
{u (α, x) +Av} ,

where the value function is the Lagrange multiplier associated to the KF equation. Back
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