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Prelude: the Kolmogorov

Forward equation



The Kolmogorov Forward equation: overview

• Given a stochastic process Xt with an associated infinitinesimal generator A, its probability density

function ft (x) defined as:

Pt0 [Xt ∈ Ω] =

∫
Ω

ft (x) dx ,

for any Ω ∈ X follows the dynamics:
∂f

∂t
= A∗ft ,

where A∗ is the adjoint operator of A.
Proof Operator
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Example 1: A diffusion

• Let Xt be a stochastic process given by the SDE:

dXt = µt (Xt) dt + σt (Xt) dWt , X0 = x0.

• The evolution of the associated density is given by:

∂f

∂t
= A∗f = − ∂

∂x
[µt (x) ft (x)] +

1

2

∂2

∂x2

[
σ2
t (x) ft (x)

]
,

with initial value f0 (x) = δ (x − x0).
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Example 2: A Markov chain

• Let Xt be a stochastic process given by:

dXt = µ (Xt ,Zt) dt, X0 = x , Z0 = z1.

where Zt is a two-state continuous-time Markov Chain Zt ∈ {z1, z2} with intensities λ1 and λ2.

• The evolution of the density is given by:

∂fit
∂t

= A∗f = − ∂

∂x
[µ (x , zi ) fit (x)]−λi fit (x) + λj fjt (x),

i , j = 1, 2, j 6= i , with initial value f10 (x) = δ (x − x0) , f20 (x) = 0.
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The Aiyagari-Bewley-Huggett

model



The workhorse model of heterogeneity

• Extension of the neoclassical model with a representative agent/complete markets to heterogeneous

agents/incomplete markets.

• Basic framework to analyze questions related to income and wealth distributions (inequality,

transmission of monetary and fiscal policies, etc.).

• Methodology can be easily extended to heterogeneous firms, heterogeneous countries, heterogeneous

banks, ...

• Perfect foresight first (aggregate shocks later).
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Hugget model with Poisson shocks: Households

• There is a continuum of mass unity of agents that are heterogeneous in their wealth a and

endowment z .

• Households solve:

max
{ct}∞t=0

E0

[∫ ∞
0

e−ρtu(ct)dt

]
,

subject to

dat = (zt + rtat − ct) dt, a0 = ā.

where idiosyncratic endowment zt ∈ {z1, z2} follows a Markov chain with intensities z1 → z2 : λ1 and

z2 → z1 : λ2.

• Exogenous borrowing limit:

at ≥ −φ < 0.
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Market clearing

• Aggregate income normalize to one: E [zt ] = 1.

• Total assets in zero net supply:
2∑

i=1

∫
aft(a, zi )da = 0,

where ft(a, zi ) is the income-wealth density (infinite dimensional object).
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Competitive equilibrium

A competitive equilibrium is composed by an interest rate rt , a value function vt(a, z), a consumption

policy ct(a, z), and a density ft(a, z) such that:

1. Given r , v is the solution of the household’s HJB equation and the optimal control is c :

ρvit(a) =
∂v

∂t
+ max

c

{
u(c) + (zi + rta− c)

∂v

∂a

}
+ λi (vjt(a)− vit(a)) .

2. Given r and c , f is the solution of the KF equation , i , j = 1, 2, j 6= i ,

∂fit
∂t

= − ∂

∂a
[(zi + rta− cit (a)) fit (x)]− λi fit (a) + λj fjt (a) .

3. Given f , the capital market clears
∑2

i=1

∫
afit(a)da = 0.
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Stationary equilibrium (deterministic steady state)

• A stationary equilibrium of this model is a time-invariant competitive equilibrium.

• Characterized by three equations (stationary HJB + KF +market clearing):

ρvi (a) = max
c

{
u(c) + (zi + ra− c)

∂v

∂a

}
+ λi (vj(a)− vi (a))

0 = − ∂

∂a
[(zi + ra− ci (a)) fi (x)]− λi fi (a) + λj fj (a)

2∑
i=1

∫
afi (a)da = 0
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How can we solve it?

• The stationary equilibrium does not yield to analytical solutions.

• We need to employ a (simple) algorithm. We begin with a guess for the interest rate r0 ∈ R. We set

n := 0.

1. HJB. Given rn we solve households’ HJB equation and obtain cn.

2. KF. Given rn and cn we obtain f n.

3. Market clearing. We compute the excess demand D (rn) =
∑2

i=1

∫
af ni (a)da. If D (rn) = 0, stop,

otherwise update rn+1 and go back to 1.
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Solving the KF equation using the finite difference method, I

• We have to solve the ODE 0 = − d
dx [(zi + ra− ci (a)) fi (x)]− λi fi (a) + λj fj (a), using finite

differences. We use the notation fi,j ≡ fi (aj).

• The ODE is approximated by:

0 = −
fi,jsi,j,F1si,j,F>0 − fi,j−1si,j−1,F1si,j−1,F>0

∆a

−
fi,j+1si,j+1,B1si,j+1,B<0 − fi,jsi,j,B1si,j,B<0

∆a
−λi fi,j + λ−i f−i,j
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Solving the KF equation using the finite difference method, II

• Collecting terms, we obtain:

fi,j−1zi,j + fi,j+1xi,j + fi,jyi,j + λ−i f−i,j = 0.

where:

xi,j ≡ −
si,j,B1si,j,B<0

∆a
,

yi,j ≡ −
si,j,F1si,j,F>0

∆a
+

si,j,B1si,j,B<0

∆a
− λi ,

zi,j ≡
si,j,F1si,j,F>0

∆a
.
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Matrix formulation

• This is also a system of 2J linear equations:

AT f = 0,

where AT is the transpose of A = limn→∞An.

• In order to impose the normalization constraint we fix one value of the 0 vector equal to 0.1.

Alternatively compute the eigenvectors of AT .

• We then solve the system and obtain a solution f̂ . Finally, we renormalize as:

fi,j =
f̂i,j∑J

j=1 f̂1,j∆a +
∑J

j=1 f̂2,j∆a
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Adjoint operator = Transpose matrix

• Advantage of finite difference. Notice how the system

ρv = u(c) +Av .

A∗f = 0,

is approximated by:

ρv = u + Av .

AT f = 0.
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Results

A condition for equilibrium is r < ρ.
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Aiyagari model with diffusion: firms

• Introduce firms in the economy: a representative firm with production function

Y = F (K , L) = AKαL1−α. Capital depreciates at rate δK .

• Competitive factor markets:

rt =
∂F (Kt , 1)

∂K
− δK = α

Yt

Kt
− δK ,

wt =
∂F (Kt , 1)

∂L
= (1− α)

Yt

Lt
.
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Households

• Assume now that labor productivity evolves according to a Ornstein–Uhlenbeck process:

dzt = θ(ẑ − zt)dt + σdBt ,

on a bounded interval [z
¯
, z̄ ] with z

¯
≥ 0, where Bt is a Brownian motion.

• The HJB is now:

ρVt(a, z) =
∂V

∂t
+ max

c≥0
u(c) + [wtz + rta− c]

∂V

∂a

+ θ(ẑ − z)
∂V

∂z
+
σ2

2

∂2V

∂z2
.
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Market clearing and the KF equation

• Aggregate productivity normalize to one: E [zt ] = 1.

• Total assets equal aggregate capital: ∫
aft(a, z)dadz = Kt ,

where ft(a, z) is the wealth-productivity density.

• The KF equation:

∂f

∂t
= − ∂

∂a
([wtz + rta− c (a, z)] ft (a, z))

− ∂

∂z
(θ(ẑ − z)ft (a, z)) +

1

2

∂2

∂z2

(
σ2ft (a, z)

)
.
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The stationary equilibrium: Algorithm

• We begin with a guess for the aggregate capital K 0 ∈ R. We set n := 0.

1. HJB. Given K n we solve households’ HJB equation and obtain cn.

2. KF. Given K n and cn we obtain f n.

3. Market clearing. We update aggregate capital using a relaxation algorithm

K n+1 = (1− χ)
∫∞

0

∫ z̄

z
¯

af ni (a)dadz + χK n. If K n+1 = K n, stop, otherwise go back to 1.
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The KF with diffusions: Finite difference methods

• Proceeding as above, we obtain

AT f = 0.
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Results
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Transitional dynamics

• For the transitional dynamics we need an algorithm that iterates backward-forward:

1. Backwards: Given the steady state value function update backwards using the HJB to obtain the policies

2. Forward: Given the initial distribution, update forward the KF to propagate the distribution.
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Algorithm with finite differences

• We begin with a guess for the aggregate capital path K 0 =
{
K 0
n

}N
n=1
∈ RN . We set s := 0 and

define a time step ∆t.

1. HJB. Given K s and vN we solve households’ HJB equation backwards

ρv n = un+1 + An+1v n +
v n+1 − v n

∆t
,

and obtain {An}Nn=1.

2. KF. Given f 0, and {An}Nn=1 we compute the KF forward

f n+1 − f n

∆t
= (An)

T f n+1.

3. Market clearing. We update aggregate capital K s+1. If K s+1 = K s , stop, otherwise go back to 1.
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How to update capital

• The simplest strategy is to use a relaxation algorithm, giving the same weight to any time point.

• It is often faster (and sometimes the only option) to use some nonlinear equation solver (Newton’s

method or similar).
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Example: initial distribution
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Transitional dynamics
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Precautionary savings

• Savings in the HA model with incomplete markets > RA model with complete markets:

• Steady state interest rate r < ρ, whereas in a RA r = ρ.

• This is due to precautionary savings:

• Households save to get some insurance against the possibility of hitting the borrowing limit.
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The problem of introducing

aggregate shocks



Aiyagari model with aggregate shocks

• Consider the Aiyagari model that we explained above and assume that the production function is now

Y = F (Z ,K , L) = ZKαL1−α with aggregate TFP Z following a diffusion:

dZt = µz (Zt) dt + σz (Zt) dWt

where Wt is a Brownian motion.
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The key difference with the case without aggregate shocks

• Without aggregate shocks, the aggregate state of the economy ft (·) is absorbed into time t:

• The aggregate impact on individual households is captured by ∂v
∂t

.

• This is no longer the case with aggregate shocks. The aggregate state is now (Zt , ft (·)).
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Household HJB with aggregate shocks

• The HJB results in:

ρVt(a, z ,Z , f ) = max
c≥0

u(c) + [wz + ra− c]
∂V

∂a
+ θ(ẑ − z)

∂V

∂z
+
σ2

2

∂2V

∂z2

+ µz (Z )
∂V

∂Z
+
σ2
z (Z )

2

∂2V

∂Z 2
+
δV

δf

∂f

∂t
.

• The term δV
δZ is a functional derivative (more on this later) and cannot be treated as a standard

derivative.

• The numerical techniques explained so far are not suitable for this case.
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A solution: perturbation



A solution is to work with the linearized system

• We can compute the linear dynamics around the deterministic steady state.

• This allows us to obtain a solution, albeit one only valid when aggregate dynamics are approximately

linear

• Ahn, Kaplan, Moll, Winberry, and Wolf (2017) in continuous time. Original discrete time method by

Reiter (2009).
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The algorithm

1. Compute the deterministic steady state.

2. Compute the first-order Taylor expansion around steady state.

3. Solve linear stochastic differential equation (SDE).
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The linear SDE

• We have:

dvt = [−u (vt)− A (vt ; pt) vt + ρvt ] dt

dgt =
[
AT (vt ; pt) gt

]
dt

pt = F (gt ;Zt)

dZt = µz (Zt) dt + σz (Zt) dWt
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A simpler alternative

• The solution to this problem may require some dimensionality reduction techniques to solve the

resulting high-dimensional SDE.

• A simpler alternative was proposed by Boppart, Krusell, and Mitman (2018): employ “MIT shocks.”

• This alternative obtains the first-order perturbation solution just by computing transitional dynamics

in an economy without aggregate uncertainty.
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MIT shocks

• Consider the model without aggregate shocks. The initial state is the deterministic steady state fss (·).

• The parameter that substitutes the aggregate variables (TFP) evolves with time according to:

∆Z0 = µz (Z0) ∆t + σz (Z0)
√

∆t

∆Zt = µz (Zt) ∆t, t > 0,

where Z0 = Zss .

• Compute the transitional dynamics of this system.
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The response to a MIT shock is the impulse response function of the model

• If the model is approximately linear, the response to a MIT shock is the impulse response function of

the model.

• These methodology is easily scalable to problems with N shocks, just compute N impulse responses.

• But what can we do when the model is strongly nonlinear?
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A solution for nonlinear models:

bounded rationality



Prelude: The original Krusell-Smith methodology

• Krusell and Smith (1998) proposed an alternative solution concept: bounded rationality.

• Households in the model approximate the distribution by a number of its moments., e.g., the mean∫∞
0

∫ z̄

z
¯
aft(a, z)dadz = Kt .

• The HJB simplifies to:

ρVt(a, z ,Z ,K ) = max
c≥0

u(c) + [wtz + rta− c]
∂V

∂a
+ θ(ẑ − z)

∂V

∂z
+
σ2

2

∂2V

∂z2

+ µz (Z )
∂V

∂Z
+
σ2
z (Z )

2

∂2V

∂Z 2
+ KµK (K ,Z )

∂V

∂K
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How can we compute the PLM of capital µK (K ,Z )?

Propose a parametric form of the perceived law of motion (PLM) µK (K ,Z ;θ) = θ0 + θ1K + θ2KZ + θ3Z .

Begin with an initial guess of θ0 =
(
θ0

0, θ
0
1, θ

0
2, θ

0
3

)
.

Set n := 0.

1. Given µK

(
K ,Z ;θ0

)
solve the HJB equation and obtain matrix A.

2. Simulate using Monte Carlo {Zs}Ss=0: ∆Zs = µz (Zs−1) ∆t + σz (Zs−1)
√

∆tεs , where εs ∼ N (0, 1).

3. Compute the dynamics of the distribution using the KF equation and use it to obtain aggregate

capital:
∫∞

0

∫ z̄

z
¯
aft(a, z)dadz = Kt .

4. Run an OLS ∆Ks

Ks∆t = µK (Ks ,Zs ;θ) over the simulated sample {Zs ,Ks}Ss=0 to update coefficients

θn+1. If θn+1 = θn stop, otherwise go back to step 1.
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How does it perform?

• In the Aiyagari model with aggregate shocks the Krusell-Smith methodology performs quite well.

This is due to two different forces:

1. Approximate aggregation. Aggregate capital provides a good approximation to the distribution because

the individual consumption policy rules are approximately linear (except for households very close to the

borrowing limit),

2. Linear aggregate dynamics. The (log)linear law of motion provides a good approximation of the

aggregate dynamics of capital because the model is quite linear.

• But this latter kind of problems can be solved more efficiently (the number of states does not grow

with the number of shocks) using the Boppart, Krusell, and Mitman (2018) methodology already

described.
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What if the aggregate dynamics are strongly nonlinear?

• The Krusell and Smith (1998) methodology can be extended to analyze models with aggregate

nonlinear dynamics: Fernández-Villaverde, Hurtado, and Nuño (2020).

• The key difference is to have a non-parametric perceived law of motion, updated using machine

learning.

• It allows us to analyze the interactions between precautionary savings and endogenous aggregate risk.
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Example: Financial frictions and

the wealth distribution



Motivation

• Recently, many papers have documented the nonlinear relations between financial variables and

aggregate fluctuations.

• For example, Jordà et al. (2016) have gathered data from 17 advanced economies over 150 years to

show how output growth, volatility, skewness, and tail events all seem to depend on the levels of

leverage in an economy.

• Similarly, Adrian et al. (2019a) have found how, in the U.S., sharply negative output growth follows

worsening financial conditions associated with leverage.

• Can a fully nonlinear DSGE model account for these observations?

• To answer this question, we postulate, compute, and estimate a continuous-time DSGE model with a

financial sector, modeled as a representative financial expert, and households, subject to uninsurable

idiosyncratic labor productivity shocks.
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The main takeaway

• The interaction between the supply of bonds by the financial sector and the precautionary demand for

bonds by households produces significant endogenous aggregate risk.

• This risk induces an endogenous regime-switching process for output, the risk-free rate, excess

returns, debt, and leverage.

• Mechanism: endogenous aggregate risk begets multiple stochastic steady states or SSS(s), each with

its own stable basin of attraction.

• Intuition: different persistence of wages and risk-free rates in each basin.

• The regime-switching generates:

1. Multimodal distributions of aggregate variables (Adrian et al., 2019b).

2. Time-varying levels of volatility and skewness for aggregate variables (Fernández-Villaverde and Guerrón,

2020).

3. Supercycles of borrowing and deleveraging (Reinhart and Rogoff, 2009).
41



0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

42



HA vs. RA

• Our findings are in contrast with the properties of the representative household version of the model.

• While the consumption decision rule of the households is close to linear with respect to the household

state variables, it is sharply nonlinear with respect to the aggregate state variables.

• This point is more general: agent heterogeneity might matter even if the decision rules of the agents

are linear with respect to individual state variables.

• Thus, changes in the forces behind precautionary savings affect aggregate variables, and we can offer

a novel and simultaneous account of:

1. The recent heightened fragility of the advanced economies to adverse shocks.

2. The rise in wealth inequality witnessed before the 2007-2008 financial crisis.

3. The increase in debt and leverage experienced during the same period.

4. The low risk-free interest rates of the last two decades.
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Methodological contribution

• New approach to (globally) compute and estimate with the likelihood approach HA models:

1. Computation: we use tools from machine learning.

2. Estimation: we use tools from inference with diffusions.

• Strong theoretical foundations and many practical advantages.

1. Deal with a large class of arbitrary operators efficiently.

2. Algorithm that is i) easy to code, ii) stable, iii) scalable, and iv) massively parallel.

3. Examples and code at https://github.com/jesusfv/financial-frictions
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The firm

• Representative firm with technology:

Yt = Kα
t L

1−α
t

• Competitive input markets:

wt = (1− α)Kα
t L
−α
t

rct = αKα−1
t L1−α

t

• Aggregate capital evolves:
dKt

Kt
= (ιt − δ) dt + σdZt

• Instantaneous return rate on capital drkt :

drkt = (rct − δ) dt + σdZt
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The expert I

• Representative expert holds capital K̂t and issues risk-free debt B̂t at rate rt to households.

• Expert can be interpreted as a financial intermediary.

• Financial friction: expert cannot issue state-contingent claims (i.e., outside equity) and must absorb

all risk from capital.

• Expert’s net wealth (i.e., inside equity): N̂t = K̂t − B̂t .

• Together with market clearing, our assumptions imply that economy has a risky asset in positive net

supply and a risk-free asset in zero net supply.
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The expert II

• The law of motion for expert’s net wealth N̂t :

dN̂t = K̂tdr
k
t − rtB̂tdt − Ĉtdt

=
[
(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

]
dt + σω̂tN̂tdZt

where ω̂t ≡ K̂t

N̂t
is the leverage ratio.

• The law of motion for expert’s capital K̂t :

dK̂t = dN̂t + dB̂t

• The expert decides her consumption levels and capital holdings to solve:

max
{Ĉt ,ω̂t}

t≥0

E0

[∫ ∞
0

e−ρ̂t log(Ĉt)dt

]
given initial conditions and a NPG condition.
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Households I

• Continuum of infinitely-lived households with unit mass.

• Heterogeneous in wealth am and labor supply zm for m ∈ [0, 1].

• Gt (a, z): distribution of households conditional on realization of aggregate variables.

• Preferences:

E0

[∫ ∞
0

e−ρt
c1−γ
t − 1

1− γ
dt

]

• We could have more general Duffie and Epstein (1992) recursive preferences.

• ρ > ρ̂. Intuition from Aiyagari (1994) (and different from BGG class of models!).
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Households II

• zt units of labor valued at wage wt .

• Labor productivity evolves stochastically following a Markov chain:

1. zt ∈ {z1, z2} , with z1 < z2.

2. Ergodic mean of zt is 1.

3. Jump intensity from state 1 to state 2: λ1 (reverse intensity is λ2).

• Households save at ≥ 0 in the riskless debt issued by experts with an interest rate rt . Thus, their

wealth follows:

dat = (wtzt + rtat − ct) dt = s (at , zt ,Kt ,Gt) dt

• Optimal choice: ct = c (at , zt ,Kt ,Gt).

• Total consumption by households:

Ct ≡
∫

c (at , zt ,Kt ,Gt) dGt (a, z)
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Market clearing

1. Total amount of labor rented by the firm is equal to labor supplied:

Lt =

∫
zdGt = 1

Then, total payments to labor are given by wt .

2. Total amount of debt of the expert equals the total households’ savings:

Bt ≡
∫

adGt (da, dz) = B̂t

with law of motion dB̂t = dBt = (wt + rtBt − Ct) dt.

3. The total amount of capital in this economy is owned by the expert:

Kt = K̂t

Thus, dK̂t = dKt =
(
Yt − δKt − Ct − Ĉt

)
dt + σKtdZt and ω̂t = Kt

Nt
, where N̂t = Nt = Kt − Bt .

4. Also:

ιt =
Yt − Ct − Ĉt

Kt
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Density

• The households distribution Gt (a, z) has density (i.e., the Radon-Nikodym derivative) gt(a, z).

• The dynamics of this density conditional on the realization of aggregate variables are given by the

Kolmogorov forward (KF) equation:

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2

where git(a) ≡ gt(a, zi ), i = 1, 2.

• The density satisfies the normalization:

2∑
i=1

∫ ∞
0

git(a)da = 1
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Equilibrium

An equilibrium in this economy is composed by a set of prices
{
wt , rct , rt , r

k
t

}
t≥0
, quantities{

Kt ,Nt ,Bt , Ĉt , cmt

}
t≥0

, and a density {gt (·)}
t≥0

such that:

1. Given wt , rt , and gt , the solution of the household m’s problem is ct = c (at , zt ,Kt ,Gt).

2. Given rkt , rt , and Nt , the solution of the expert’s problem is Ĉt , Kt , and Bt .

3. Given Kt , firms maximize their profits and input prices are given by wt and rct .

4. Given wt , rt , and ct , gt is the solution of the KF equation.

5. Given gt and Bt , the debt market clears.
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Characterizing the equilibrium I

• First, we proceed with the expert’s problem. Because of log-utility:

Ĉt = ρ̂Nt

ωt = ω̂t =
rct − δ − rt

σ2

• We can use the equilibrium values of rct , Lt , and ωt to get the wage:

wt = (1− α)Kα
t

the rental rate of capital:

rct = αKα−1
t

and the risk-free interest rate:

rt = αKα−1
t − δ − σ2 Kt

Nt
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Characterizing the equilibrium II

• Expert’s net wealth evolves as:

dNt =

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Nt︸ ︷︷ ︸

µN
t (Bt ,Nt)

dt + σKt︸︷︷︸
σN
t (Bt ,Nt)

dZt

• And debt as:

dBt =

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2 Kt

Nt

)
Bt − Ct

)
dt

• Nonlinear structure of law of motion for dNt and dBt .

• We need to find:

Ct ≡
∫

c (at , zt ,Kt ,Gt) gt (a, z) dadz

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2
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The DSS

• No aggregate shocks (σ = 0), but we still have idiosyncratic household shocks.

• Then:

r = rkt = rct − δ = αKα−1
t − δ

and

dNt =
(
αKα−1

t − δ − ρ̂
)
Ntdt

• Since in a steady state the drift of expert’s wealth must be zero, we get:

K =

(
ρ̂+ δ

α

) 1
α−1

and:

r = ρ̂ < ρ

• The value of N is given by the dispersion of the idiosyncratic shocks (no analytic expression). 56



How do we find aggregate consumption?

• As in Krusell and Smith (1998), households only track a finite set of n moments of gt(a, z) to form

their expectations.

• No exogenous state variable (shocks to capital encoded in K ). Instead, two endogenous states.

• For ease of exposition, we set n = 1. The solution can be trivially extended to the case with n > 1.

• More concretely, households consider a perceived law of motion (PLM) of aggregate debt:

dBt = h (Bt ,Nt) dt

where

h (Bt ,Nt) =
E [dBt |Bt ,Nt ]

dt
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A new HJB equation

• Given the PLM, the household’s Hamilton-Jacobi-Bellman (HJB) equation becomes:

ρVi (a,B,N) = max
c

c1−γ − 1

1− γ
+ s

∂Vi

∂a
+ λi [Vj(a,B,N)− Vi (a,B,N)]

+h (B,N)
∂Vi

∂B
+ µN (B,N)

∂Vi

∂N
+

[
σN (B,N)

]2
2

∂2Vi

∂N2

i 6= j = 1, 2, and where

s = s (a, z ,N + B,G )

• We solve the HJB with a first-order, implicit upwind scheme in a finite difference stencil.

• Sparse system. Why?

• Alternatives for solving the HJB? Meshfree, FEM, deep learning, ...
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An algorithm to find the PLM

1) Start with h0, an initial guess for h.

2) Using current guess hn, solve for the household consumption, cm, in the HJB equation.

3) Construct a time series for Bt by simulating by J periods the cross-sectional distribution of

households with a constant time step ∆t (starting at DSS and with a burn-in).

4) Given Bt , find Nt , Kt , and:

ĥ =

{
ĥ1, ĥ2..., ĥj ≡

Btj+∆t − Btj

∆t
, ..., ĥJ

}

5 ) Define S = {s1, s2, ..., sJ}, where sj =
{
s1
j , s

2
j

}
=
{
Btj ,Ntj

}
.

6) Use
(

ĥ,S
)

and a universal nonlinear approximator to obtain hn+1, a new guess for h.

7) Iterate steps 2)-6) until hn+1 is sufficiently close to hn.
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A universal nonlinear approximator

• We approximate the PLM with a neural network (NN):

h (s; θ) = θ1
0 +

Q∑
q=1

θ1
qφ

(
θ2

0,q +
D∑
i=1

θ2
i,qs

i

)
where Q = 16, D = 2, and φ(x) = log(1 + ex).

• θ is selected as:

θ∗ = arg min
θ

1

2

J∑
j=1

∥∥∥h (sj ; θ)− ĥj

∥∥∥2

• Easy to code, stable, and good extrapolation properties.

• You can flush the algorithm to a GPU, a TPU, a FPGA, or a AI accelerator instead of a standard

CPU.
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A universal nonlinear approximator

• We approximate the PLM with a neural network (NN):

h (s; θ) = θ1
0 +

Q∑
q=1

θ1
qφ

(
θ2

0,q +
D∑
i=1

θ2
i,qs

i

)
where D = 2 and φ(·) is an activation function.

• We choose the softplus function: φ(x) = log(1 + ex). Robustness to ReLUs.

• Q = 16 is set by regularization.

• Note difference with a projection or a series approximation:

h (s; θ) = θ0 +
Q∑

q=1

θqψq (s)

• When we have many hidden layers, the network is called deep.

• When do we want to have deep networks? Poggio et al. (2017). 62



Determining coefficients

• θ is selected to minimize the quadratic error function E
(
θ; S, ĥ

)
:

θ∗ = arg min
θ
E
(
θ; S, ĥ

)
= arg min

θ

J∑
j=1

E
(
θ; sj, ĥj

)

= arg min
θ

1

2

J∑
j=1

∥∥∥h (sj ; θ)− ĥj

∥∥∥2

• We use steepest descent with line search (we tried stochastic and mini-batch gradient descent as

well).

• In practice, we do not need a global min ( 6= likelihood).

• You can flush the algorithm to a graphics processing unit (GPU) or a tensor processing unit (TPU)

instead of a standard CPU.
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Estimation with aggregate variables I

• D + 1 observations of Yt at fixed time intervals [0,∆, 2∆, ..,D∆]:

Y D
0 = {Y0,Y∆,Y2∆, ...,YD} .

• More general case: sequential Monte Carlo approximation to the Kushner-Stratonovich equation

(Fernández-Villaverde and Rubio Raḿırez, 2007).

• We are interested in estimating a vector of structural parameters Ψ.

• Likelihood:

LD

(
Y D

0 |Ψ
)

=
D∏

d=1

pY
(
Yd∆|Y(d−1)∆; Ψ

)
,

where

pY
(
Yd∆|Y(d−1)∆; Ψ

)
=

∫
fd∆(Yd∆,B)dB.

given a density, fd∆(Yd∆,B), implied by the solution of the model.
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Estimation with aggregate variables II

• After finding the diffusion for Yt , f
d
t (Y ,B) follows the Kolmogorov forward (KF) equation in the

interval [(d − 1)∆, d∆]:

∂ft
∂t

= − ∂

∂Y

[
µY (Y ,B)ft(Y ,B)

]
− ∂

∂B

[
h(B,Y

1
α − B)f dt (Y ,B)

]
+

1

2

∂2

∂Y 2

[(
σY (Y )

)2
ft(Y ,B)

]

• The operator in the KF equation is the adjoint of the infinitesimal generator of the HJB.

• Thus, the solution of the KF equation amounts to transposing and inverting a sparse matrix that has

already been computed.

• Our approach provides a highly efficient way of evaluating the likelihood once the model is solved.

• Conveniently, retraining of the neural network is easy for new parameter values.
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Parametrization

Parameter Value Description Source/Target

α 0.35 capital share standard

δ 0.1 yearly capital depreciation standard

γ 2 risk aversion standard

ρ 0.05 households’ discount rate standard

λ1 0.986 transition rate u.-to-e. monthly job finding rate of 0.3

λ2 0.052 transition rate e.-to-u. unemployment rate 5 percent

y1 0.72 income in unemployment state Hall and Milgrom (2008)

y2 1.015 income in employment state E (y) = 1

ρ̂ 0.0497 experts’ discount rate K/N = 2
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Figure 1: Loglikelihood over σ.
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Mean Standard deviation Skewness Kurtosis

Y basin HL 1.5802 0.0193 0.0014 2.869

Y basin LL 1.5829 0.0169 0.1186 3.0302

rbasin HL 4.92 0.3364 0.0890 2.866

rbasin LL 4.89 0.2947 -0.0282 3.0056

wbasin HL 1.0271 0.0125 0.0014 2.8691

wbasin LL 1.0289 0.0111 0.1186 3.0302

Table 1: Moments conditional on basin of attraction.
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Appendix



A quick tour on Hilbert spaces and operators

• Let L2 (Φ) be the space of functions with a square that is Lebesgue-integrable over Φ ⊂ R.

• L2 (Φ) is a Banach space (a complete normed vector space) with the norm

‖g‖L2(Φ) =
√∫

Φ
|g(x)|2 dx .

• The space L2 (Φ) with the inner product 〈u, g〉Φ =
∫

Φ
u(x)g(x)dx , ∀u, g ∈ L2 (Φ), is a Hilbert

space.

• An operator T is a mapping from one vector space to another.

• The adjoint operator T ∗ of a linear operator T in a Hilbert space is defined by the equation:

〈u,Tg〉Φ = 〈T ∗u, g〉Φ .
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Adjoint operator

• We may verify that A and A∗, defined as:

AV =
N∑

n=1

µn
∂V

∂xn
+

1

2

N∑
n1,n2=1

(
σ2
)
n1,n2

∂2V

∂xn1∂xn2

.

A∗f ≡ −
N∑

n=1

∂

∂xn
[µn (x) f (x)] +

1

2

N∑
n1,n2=1

∂2

∂xn1∂xn2

[(
σ2
)
n1,n2

ft (x)
]
,

are adjoint operators in L2 (R):

〈f ,AV 〉 =

∫
f (x)

(
N∑

n=1

µn
∂V

∂xi
+

1

2

N∑
n1,n2=1

(
σ2
)
n1,n2

∂2V

∂xn1∂xn2

)
dx

=

∫
V

(
−

N∑
n=1

∂

∂xn
(f µn) dx +

N∑
n1,n2=1

∂2

∂xn1∂xn2

(
f

(
σσ>

)
i,k

2

)
dx

)
dx

=

∫
VA∗fdx = 〈A∗f ,V 〉

Back
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The Kolmogorov Forward equation: proof, I

• We define the density ft (x) of a stochastic process as:

Et0 [h(Xt)] =

∫
h(x)ft (x) dx ,

or any suitable function h(x).

• Then: ∫
h(x)ft (x) dx = Et0 [h(Xt)] = h(x0) + Et0

[∫ t

t0

Ahds
]

+Et0

[∫ t

t0

σ
∂h

∂x
dWs

]
︸ ︷︷ ︸

0

.
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The Kolmogorov Forward equation: proof, II

• Taking derivatives with respect to t:∫
h(x)

∂f

∂t
dx = Et0 [Ah] =

∫
Ah (x) ft (x) dx ,

or equivalently,
〈
∂f
∂t , h

〉
= 〈Ah, ft〉.

• Applying the definition of adjoint operator
〈
∂f
∂t , h

〉
= 〈A∗ft , h〉 for any function h.

• Hence:
∂f

∂t
= A∗ft

Back
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