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A short introduction



The problem

• Let us suppose we want to approximate an unknown function:

y = f (x)

where y is a scalar and x = {x1, x2, ..., xN} a vector.

• We care about the case when N is large.

• Easy to generalize to the case where y is a vector (or a probability distribution), but notation

becomes cumbersome.

• In economics, f (x) can be a value function, a policy function, a pricing kernel, a conditional

expectation, a classifier, ...
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A neural network

• An artificial neural network (a.k.a. ANN or connectionist system) is an approximation to f (x) built as

a linear combination of M generalized linear models of x of the form:

y ∼= gNN (x; θ) = θ0 +
M∑

m=1

θmφ (zm)

where φ(·) is an arbitrary activation function and:

zm = θ0,m +
N∑

n=1

θn,mxn

• M is known as the width of the model.

• We can select θ such that gNN (x; θ) is as close to f (x) as possible given some relevant metric (e.g.,

L2 norm).

• This is known as “training” the network.
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Comparison with other approximations

• Compare:

y ∼= gNN (x; θ) = θ0 +
M∑

m=1

θmφ

(
θ0,m +

N∑
n=1

θn,mxn

)
with a standard projection:

y ∼= gCP (x; θ) = θ0 +
M∑

m=1

θmφm (x)

where φm is, for example, a Chebyshev polynomial.

• We exchange the rich parameterization of coefficients for the parsimony of basis functions.

• Later, we will explain why this is often a good idea.

• How we determine the coefficients will also be different, but this is somewhat less important.
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Deep learning

• A deep learning network is an acyclic multilayer composition of J > 1 neural networks:

y ∼= gDL (x; θ) = gNN(1)
(
gNN(2)

(
...; θ(2)

)
; θ(1)

)
where the M(1),M(2), ... and φ1(·), φ2(·), ... are possibly different across each layer of the network.

• Sometimes known as deep feedforward neural networks or multilayer perceptrons.

• “Feedforward” comes from the fact that the composition of neural networks can be represented as a

directed acyclic graph, which lacks feedback. We can have more general recurrent structures.

• J is known as the depth of the network. The case J = 1 is a standard neural network.

• As before, we can select θ such that gDL (x; θ) approximates a target function f (x) as closely as

possible under some relevant metric.
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Why are neural networks a good solution method in economics?

• From now on, I will refer to neural networks as including both single and multilayer networks.

• With suitable choices of activation functions, neural networks can efficiently approximate extremely

complex functions.

• In particular, under certain (relatively weak) conditions:

1. Neural networks are universal approximators.

2. Neural networks break the “curse of dimensionality.”

• Furthermore, neural networks are easy to code, stable, and scalable for multiprocressing.

• Thus, neural networks have considerable option value as solution methods in economics.
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Current interest

• Currently, neural networks are among the most active areas of research in computer science and

applied math.

• While original idea goes back to the 1940s, neural networks were rediscovered in the second half of

the 2000s.

• Why?

1. Suddenly, the large computational and data requirements required to train the networks efficiently

became available at a reasonable cost.

2. New algorithms such as back propagation through gradient descent became popular.

• Some well-known successes and industrial applications.
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AlphaGo

• Big splash: AlphaGo vs. Lee Sedol in March 2016.

• Silver et al. (2018): now applied to chess, shogi, Go, and StarCraft II.

• Check also:

1. https://deepmind.com/research/alphago/.

2. https://www.alphagomovie.com/

3. https:

//deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

• Very different than Deep Blue against Kasparov.

• New and surprising strategies.

• However, you need to keep this accomplishment in perspective.
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 μs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ~ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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COMPUTER SCIENCE

A general reinforcement learning
algorithm that masters chess, shogi,
and Go through self-play
David Silver1,2*†, Thomas Hubert1*, Julian Schrittwieser1*, Ioannis Antonoglou1,
Matthew Lai1, Arthur Guez1, Marc Lanctot1, Laurent Sifre1, Dharshan Kumaran1,
Thore Graepel1, Timothy Lillicrap1, Karen Simonyan1, Demis Hassabis1†

The game of chess is the longest-studied domain in the history of artificial intelligence.
The strongest programs are based on a combination of sophisticated search techniques,
domain-specific adaptations, and handcrafted evaluation functions that have been refined
by human experts over several decades. By contrast, the AlphaGo Zero program recently
achieved superhuman performance in the game of Go by reinforcement learning from self-play.
In this paper, we generalize this approach into a single AlphaZero algorithm that can achieve
superhuman performance in many challenging games. Starting from random play and given
no domain knowledge except the game rules, AlphaZero convincingly defeated a world
champion program in the games of chess and shogi (Japanese chess), as well as Go.

T
he study of computer chess is as old as
computer science itself. Charles Babbage,
Alan Turing, Claude Shannon, and John
von Neumann devised hardware, algo-
rithms, and theory to analyze and play the

game of chess. Chess subsequently became a
grand challenge task for a generation of artifi-
cial intelligence researchers, culminating in high-
performance computer chess programs that play
at a superhuman level (1, 2). However, these sys-
tems are highly tuned to their domain and can-
not be generalized to other games without
substantial human effort, whereas general game-
playing systems (3, 4) remain comparatively weak.
A long-standing ambition of artificial intelli-

gence has been to create programs that can in-
stead learn for themselves from first principles
(5, 6). Recently, the AlphaGo Zero algorithm
achieved superhuman performance in the game

of Go by representing Go knowledge with the
use of deep convolutional neural networks (7, 8),
trained solely by reinforcement learning from
games of self-play (9). In this paper, we introduce
AlphaZero, a more generic version of the AlphaGo
Zero algorithm that accommodates, without
special casing, a broader class of game rules.
We apply AlphaZero to the games of chess and
shogi, as well as Go, by using the same algorithm
and network architecture for all three games.
Our results demonstrate that a general-purpose
reinforcement learning algorithm can learn,
tabula rasa—without domain-specific human
knowledge or data, as evidenced by the same
algorithm succeeding in multiple domains—
superhuman performance across multiple chal-
lenging games.
A landmark for artificial intelligence was

achieved in 1997 when Deep Blue defeated the
human world chess champion (1). Computer
chess programs continued to progress stead-
ily beyond human level in the following two
decades. These programs evaluate positions by
using handcrafted features and carefully tuned
weights, constructed by strong human players and

programmers, combined with a high-performance
alpha-beta search that expands a vast search tree
by using a large number of clever heuristics and
domain-specific adaptations. In (10) we describe
these augmentations, focusing on the 2016 Top
Chess Engine Championship (TCEC) season 9
world champion Stockfish (11); other strong chess
programs, including Deep Blue, use very similar
architectures (1, 12).
In terms of game tree complexity, shogi is a

substantially harder game than chess (13, 14): It
is played on a larger boardwith awider variety of
pieces; any captured opponent piece switches
sides and may subsequently be dropped anywhere
on the board. The strongest shogi programs, such
as the 2017 Computer Shogi Association (CSA)
world champion Elmo, have only recently de-
feated human champions (15). These programs
use an algorithm similar to those used by com-
puter chess programs, again based on a highly
optimized alpha-beta search engine with many
domain-specific adaptations.
AlphaZero replaces the handcrafted knowl-

edge and domain-specific augmentations used
in traditional game-playing programs with deep
neural networks, a general-purpose reinforce-
ment learning algorithm, and a general-purpose
tree search algorithm.
Instead of a handcrafted evaluation function

and move-ordering heuristics, AlphaZero uses a
deep neural network (p, v) = fq(s) with param-
eters q. This neural network fq(s) takes the board
position s as an input and outputs a vector of
move probabilities pwith components pa = Pr(a|s)
for each action a and a scalar value v estimating
the expected outcome z of the game from posi-
tion s, v≈E½zjs�. AlphaZero learns these move
probabilities and value estimates entirely from
self-play; these are then used to guide its search
in future games.
Instead of an alpha-beta search with domain-

specific enhancements, AlphaZero uses a general-
purposeMonteCarlo tree search (MCTS) algorithm.
Each search consists of a series of simulated
games of self-play that traverse a tree from root
state sroot until a leaf state is reached. Each sim-
ulation proceeds by selecting in each state s a
move a with low visit count (not previously
frequently explored), high move probability, and
high value (averaged over the leaf states of

RESEARCH

Silver et al., Science 362, 1140–1144 (2018) 7 December 2018 1 of 5

Fig. 1. Training AlphaZero for 700,000 steps. Elo ratings were
computed from games between different players where each player
was given 1 s per move. (A) Performance of AlphaZero in chess
compared with the 2016 TCEC world champion program Stockfish.

(B) Performance of AlphaZero in shogi compared with the 2017
CSA world champion program Elmo. (C) Performance of AlphaZero
in Go compared with AlphaGo Lee and AlphaGo Zero (20 blocks
over 3 days).

1DeepMind, 6 Pancras Square, London N1C 4AG, UK. 2University
College London, Gower Street, London WC1E 6BT, UK.
*These authors contributed equally to this work.
†Corresponding author. Email: davidsilver@google.com (D.S.);
dhcontact@google.com (D.H.)
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Further advantages

• Neural networks and deep learning often require less “inside knowledge” by experts on the area.

• Results can be highly counter-intuitive and yet, deliver excellent performance.

• Outstanding open source libraries: Tensorflow, Pytorch, Flux.

• More recently, development of dedicated hardware (TPUs, AI accelerators, FPGAs) are likely to

maintain a hedge for the area.

• The width of an ecosystem is key for its long-run success.

11



12



Limitations of neural networks and deep learning

• While neural networks and deep learning can work extremely well, there is no such a thing as a silver

bullet.

• Clear and serious trade-offs in real-life applications.

• Rule-of-thumb in the industry is that one needs around 107 labeled observations to properly train a

complex ANN with around 104 observations in each relevant group.

• Of course, sometimes “observations” are endogenous (we can simulate them), but if your goal is to

forecast GDP next quarter, it is unlikely a neural network will beat an ARIMA(n,p,q) (at least only

with macro variables).

• Issues of interpretation.
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Digging deeper



More details on neural networks

• Non-linear functional approximation method.

• Much hype around them and over-emphasis of biological interpretation.

• We will follow a much sober formal treatment (which, in any case, agrees with state-of-art

researchers approach).

• In particular, we will highlight connections with econometrics (e.g., NOLS, semiparametric regression,

and sieves).

• We will start describing the simplest possible neural network.
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A neuron

• N observables: x1, x2,...,xN . We stack them in x.

• Coefficients (or weights): θ0 (a constant), θ1, θ2, ...,θN . We stack them in θ.

• We build a linear combination of observations:

z = θ0 +
N∑

n=1

θnxn

Theoretically, we could build non-linear combinations, but unlikely to be a fruitful idea in general.

• We transform such linear combination with an activation function:

y = g(x; θ) = φ (z)

The activation function might have some coefficients γ on its own.

• Why do we need an activation function?
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Flow representation

WeightsInputs

θ1x1

θ2x2

θ3x3

θnxn

n∑
i=1

θixi

Net input
γ

Activation
Perceptron

classification
output

17



The biological analog

18



Activation functions I

• Traditionally:

1. Identity function:

φ (z) = z

Used in linear regression.

2. A sigmoidal function:

φ (z) =
1

1 + e−z

A particular limiting case as z grows quickly: step function.

3. Hyperbolic tangent:

φ (z) =
e2z − 1

e2z + 1

19
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Activation functions II

• Some activation functions that have gained popularity recently:

1. Rectified linear unit (ReLU):

φ (z) = max(0, z)

2. Parametric ReLU:

φ (z) = max(z , az)

3. Softplus:

φ (z) = log(1 + ez)
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Interpretation

• θ0 controls the activation threshold.

• The level of the θi ’s for i > 0 control the activation rate (the higher the θi ’s, the harder the

activation).

• Some textbooks separate the activation threshold and scaling coefficients from θ as different

coefficients in φ, but such separation moves notation farther away from standard econometrics.

• Potential identification problem between θ and more general activation functions with their own

parameters.

• But in practice θ does not have a structural interpretation, so the identification problem is of

secondary importance.

• As mentioned in the introduction, a neuron closely resembles a generalized linear model in

econometrics.
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Combining neurons into a neural network

• As before, we have N observables: x1, x2,...,xN .

• Coefficients (or weights): θ0,m (a constant), θ1,m, θ2,m, ...,θN,m.

• We build M linear combinations of observations:

zm = θ0,m +
N∑

n=1

θn,mxn

• We transform and add such linear combinations with an activation function:

y ∼= g(x; θ) = θ0 +
M∑

m=1

θmφ (zm)

• Also, quasi-linear structure in terms of vectors of observables and coefficients.

• This is known as a single layer network.
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Two classic (yet remarkable) results I

Borel measurable function

A map f : X → Y between two topological spaces is called Borel measurable if f −1(A) is a Borel set for

any open set A on Y (the Borel sets are all the open sets built through the operations of countable

union, countable intersection, and relative complement).

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)

A neural network with at least one hidden layer can approximate any Borel measurable function mapping

finite-dimensional spaces to any desired degree of accuracy.

• Intuition of the result.

• Comparison with other results in series approximations.
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Two classic (yet remarkable) results II

• Assume, as well, that we are dealing with the class of functions for which the Fourier transform of

their gradient is integrable.

Breaking the curse of dimensionality: Barron (1993)

A one-layer NN achieves integrated square errors of order O(1/M), where M is the number of nodes. In

comparison, for series approximations, the integrated square error is of order O(1/(M2/N)) where N is

the dimensions of the function to be approximated.

• More general theorems by Leshno et al. (1993) and Bach (2017).

• What about Chebyshev polynomials? Splines? Problems of convergence and extrapolation.

• There is another, yet more subtle curse of dimensionality.
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Training the network

• θ is selected to minimize the quadratic error function E (θ;Y, ŷ):

θ∗ = arg min
θ
E (θ;Y, ŷ)

= arg min
θ

J∑
j=1

E (θ; yj , ŷj)

= arg min
θ

1

2

J∑
j=1

‖yj − g (xj ; θ)‖2

• Where from do the observations Y come? Observed data vs. simulated epochs.

• How do we solve this minimization problem?

• Other objective functions are possible.
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Back propagation

• In general, we can easily calculate E(θ∗;Y , ŷ) and ∇E(θ∗;Y , ŷ) for a given θ∗.

• In particulary, for the gradient, we can use back propagation (Rumelhart et al., 1986):

∂E (θ; yj , ŷj)

∂θ0
= yj − g (xj ; θ)

∂E (θ; yj , ŷj)

∂θm
= (yj − g (xj ; θ))φ (zm) , for ∀m

∂E (θ; yj , ŷj)

∂θ0,m
= (yj − g (xj ; θ)) θmφ

′ (zm) , for ∀m

∂E (θ; yj , ŷj)

∂θn,m
= (yj − g (xj ; θ)) θmxnφ

′ (zm) , for ∀n,m

where φ′(z) is the derivative of the activation function.

• The derivative φ′(z) will be trivial to evaluate if we use a ReLU.

• Back propagation will be particularly important below when we introduce multiple layers.
32



An approach to minimization

• One approach to optimization is to minimize a local model that approximates the true objective

function.

• The local model can be a first- or second-order Taylor approximation of the objective function.

• For example, suppose a function E is roughly approximated as a quadratic form:

E(θ) ≈ 1

2
θTAθ − bT θ + c

where A is a square, symmetric, positive-definite matrix.

• Then E(θ) is minimized by the solution to:

Aθ = b

• We can use this result to build a descent direction iteration if we know A and b (or we have

approximations to them).
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Descent direction iteration

• Starting at point θ(1), a descent direction algorithm generates sequence of steps (called iterates) that

converge to a local minimum.

• The descent direction iteration algorithm:

1. At iteration k, check whether θ(k) satisfies termination condition. If so stop; otherwise go to step 2.

2. Determine the descent direction d(k) using local information such as gradient or Hessian.

3. Compute step size α(k).

4. Compute the next candidate point: θ(k+1) ← θ(k) + α(k)d(k).

• Choice of α and d determines the flavor of the algorithm.
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Gradient descent method

• A natural choice for d is the direction of steepest descent (first proposed by Cauchy).

• The direction of steepest descent is given by the direction opposite the gradient ∇E(θ). Thus, a.k.a.

steepest descent.

• If function is smooth and the step size small, the method leads to improvement (as long as the

gradient is not zero).

• The normalized direction of steepest descent is:

d(k) = − ∇E(θ(k))

||∇E(θ(k))||

• One way to set the step size is to solve:

αk = arg min
α
E(θ(k) + αd(k))

• Under this step size choice, it can be shown d(k+1) and d(k) are orthogonal.
35



Steepest descent method
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Conjugate descent method

• Gradient descent can perform poorly in narrow valleys (it may require many steps to make progress).

• Famous example: Rosenbrock function.

• The conjugate gradient method overcomes this problem by somehow constructing to be conjugate to

the old gradient, and to all previous directions traversed.

• Define g(θ) = ∇E(θ).

• In first iteration, set: d (1) = −g(θ(1)) and θ(2) = θ(1) + α(1)d(1). Here, α(1) is arbitrary.

• Subsequent iterations set d(k+1) = −g (k+1) + β(k)d(k).
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Conjugate descent method
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Conjugate descent method

• There are two approaches to set β:

1. Fletcher-Reeves:

β(k) =
g (k)Tg (k)

g (k−1)Tg (k−1)

2. Olak-Ribiere:

β(k) =
g (k)T (g (k) − g (k−1))

g (k−1)Tg (k−1)

• The Olak-Ribiere requires an automatic reset at every iteration: β ← max(β, 0).

• If the function to minimize has flat areas, one can introduce a momentum update equation:

v (k+1) = βv (k) − αg (k)

θ(k+1) = θ(k) + v (k+1)

• The modification reverts to the gradient descent version if β = 0.

• Intuitively, the momentum update is like a ball rolling down an almost horizontal surface.

• As the ball gains momentum, the method accelerates to the valley of the function where the local

minimum is.
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Stochastic gradient descent and minibatch

• Even with back propagation, evaluating the gradient for the whole training set can be costly.

• Stochastic gradient descent: Intuition from Monte Carlos.

• An additional advantage.

• A compromise between using the whole training set and pure stochastic gradient descent: minibatch

gradient descent.

• This is the most popular algorithm to train neural networks.

• Intuition from GMM. Notice also resilience to scaling.

• In practice, we do not need a global min ( 6= likelihood).

• You can flush the algorithm to a graphics processing unit (GPU) or a tensor processing unit (TPU)

instead of a standard CPU.

40



Figure 2-6. Batch gradient descent is sensitive to saddle points, which can lead to prema‐
ture convergence

We only have a single weight, and we use random initialization and batch gradient
descent to find its optimal setting. The error surface, however, has a flat region (also
known as saddle point in high-dimensional spaces), and if we get unlucky, we might
find ourselves getting stuck while performing gradient descent.

Another potential approach is stochastic gradient descent (SGD), where at each itera‐
tion, our error surface is estimated only with respect to a single example. This
approach is illustrated by Figure 2-7, where instead of a single static error surface, our
error surface is dynamic. As a result, descending on this stochastic surface signifi‐
cantly improves our ability to navigate flat regions.

Figure 2-7. The stochastic error surface fluctuates with respect to the batch error surface,
enabling saddle point avoidance

26 | Chapter 2: Training Feed-Forward Neural Networks
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tion, our error surface is estimated only with respect to a single example. This
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cantly improves our ability to navigate flat regions.

Figure 2-7. The stochastic error surface fluctuates with respect to the batch error surface,
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26 | Chapter 2: Training Feed-Forward Neural Networks
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Alternative minimization algorithms

1. More sophisticated stochastic gradient descent: Adam (Adaptive Moment Estimation). It uses

running averages of both the gradients and the second moments of the gradients.

2. Newton and Quasi-Newton methods are unlikely to be of much use in practice. Why?

3. McMc/Simulated annealing.

4. Genetic algorithms:

• In fact, much of the research in deep learning incorporates some flavor of genetic selection.

• Basic idea.
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Further ideas

• Design of the network architecture:

1. Trade-off error/computational time.

2. Better to err on the side of too many M.

• Double descent phenomenon.
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Multiple layers I

• The hidden layers can be multiplied without limit in a feed-forward ANN.

• We build K layers:

z1m = θ10,m +
N∑

n=1

θ1n,mxn

and

z2m = θ20,m +
M∑

m=1

θ2mφ
(
z1m
)

...

y ∼= g(x ; θ) = θK0 +
M∑

m=1

θKmφ
(
zK−1m

)
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Multiple layers II

• Why do we want to introduce hidden layers?

1. It works! Our brains have six layers. AlphaGo has 12 layers with ReLUs.

2. Hidden layers induce highly nonlinear behavior.

3. Allow for clustering of variables.

• We can have different M’s in each layer ⇒ fewer neurons in higher layers allow for compression of

learning into fewer features.

• We can also add multidimensional outputs.

• Or even to produce, as output, a probability distribution, for example, using a softmax layer:

ym =
ez

K−1
m∑M

m=1 e
zK−1
m
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Application to Economics



Solving high-dimensional dynamic programming problems using Deep Learning

• Our goal is to solve the recursive continuous-time Hamilton-Jacobi-Bellman (HJB) equation globally:

ρV (x) = max
α

r(x,α) +∇xV (x)f (x,α) +
1

2
tr(σ(x))T∆xV (x)σ(x))

s.t. G (x,α) ≤ 0 and H(x,α) = 0

• Think about the cases where we have many state variables.

• Alternatives for this solution?
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Neural networks

• We define four neural networks:

1. Ṽ (x;ΘV ) : RN → R to approximate the value function V (x).

2. α̃(x;Θα) : RN → RM to approximate the policy function α.

3. µ̃(x;Θµ) : RN → RL1 , and λ̃(x;Θλ) : RN → RL2 to approximate the Karush-Kuhn-Tucker (KKT)

multipliers µ and λ.

• To simplify notation, we accumulate all weights in the matrix Θ = (ΘV ,Θα,Θµ,Θλ).

• We could think about the approach as just one large neural network with multiple outputs.
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Error criterion I

• The HJB error:

errHJB(x;Θ) ≡ r(x, α̃(s;Θα)) +∇x Ṽ (x;ΘV )f (x, α̃(x;Θα))+

+
1

2
tr [σ(x)T∆x Ṽ (x;ΘV )σ(x)]− ρṼ (x;ΘV )

• The policy function error:

errα(x;Θ) ≡∂r(x, α̃(x;Θα)

∂α
+ Dαf (x, α̃(x;Θα))T∇x Ṽ (x;ΘV )

− DαG (x, α̃(x;Θα))T µ̃(x;Θµ)− DαH(x, α̃(x;Θα))λ̃(x;Θλ),

where DαG ∈ RL1×M , DαH ∈ RL2×M , and Dαf ∈ RN×M are the submatrices of the Jacobian

matrices of G , H and f respectively containing the derivatives with respect to α.
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Error criterion II

• The constraint error is itself composed of the primal feasibility errors:

errPF1(x;Θ) ≡ max{0,G (x, α̃(x;Θα))}
errPF2(x;Θ) ≡ H(x, α̃(x;Θα))

the dual feasibility error:

errDF (x;Θ) = max{0,−µ̃(x;Θµ}
and the complementary slackness error:

errCS(x;Θ) = µ̃(x;Θ)TG (x, α̃(x;Θα))

• We combine these four errors by using the squared error as our loss criterion:

E(x;Θ) ≡
∣∣∣∣errHJB(x;Θ)

∣∣∣∣2
2

+
∣∣∣∣errα(x;Θ)

∣∣∣∣2
2

+
∣∣∣∣errPF1(x;Θ)

∣∣∣∣2
2
+

+
∣∣∣∣errPF2(x;Θ)

∣∣∣∣2
2

+
∣∣∣∣errDF (x;Θ)

∣∣∣∣2
2

+
∣∣∣∣errCS(x;Θ)

∣∣∣∣2
2
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Training

• We train our neural networks by minimizing the above error criterion through mini-batch gradient

descent over points drawn from the ergodic distribution of the state vector.

• The efficient implementation of this last step is the key to the success of our algorithm.

• We start by initializing our network weights and we perform K learning steps called epochs, where K

can be chosen in a variety of ways.

• For each epoch, we draw I points from the state space by simulating from the ergodic distribution.

• Then, we randomly split this sample into B mini-batches of size S . For each mini-batch, we define

the mini-batch error, by averaging the loss function over the batch.

• Finally, we perform mini-batch gradient descent for all network weights, with ηk being the learning

rate in the k-th epoch.
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An Example



The continuous-time neoclassical growth model I

• We start with the continuous-time neoclassical growth model because it has closed-form solutions for

the policy functions, which allows us to focus our attention on the analysis of the value function

approximation.

• We can then back out the policy function from this approach and compare it to the results of the

next step in which we approximate the policy functions themselves with a neural net.

• A single agent deciding to either save in capital or consume with a HJB equation :

ρV (k) = max
c

U(c) + V ′(k)[F (k)− δ ∗ k − c]

• Notice that c = (U ′)−1(V ′(k)). With CRRA utility, this simplifies further to c = (V ′(k))−
1
γ .

• We set γ = 2, ρ = 0.04, F (k) = 0.5 ∗ k0.36, δ = 0.05.
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The continuous-time neoclassical growth model II

• We approximate the value function V (k) with a neural network, Ṽ (k; Θ) with an “HJB error”:

errHJB =ρṼ (k ; Θ)− U

(
(U ′)−1

(
∂Ṽ (k ; Θ)

∂k

))

− ∂Ṽ (k ; Θ)

∂k

[
F (k)− δ ∗ k − (U ′)−1

(
∂Ṽ (k; Θ)

∂k

)]

• Details:

1. 3 layers.

2. 8 neurons per layers.

3. tanh(x) activation.

4. Normal initialization N
(

0, 4
√

2
ninput+noutput

)
with input normalization.
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(a) Value with closed-form policy
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(c) Consumption with closed-form policy
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(e) HJB error with closed-form policy
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Approximating the policy function

• Let us not use the closed-form consumption policy function but rather approximate said policy

function directly with a policy neural network C̃ (k ; ΘC ).

• The new HJB error:

errHJB = ρṼ (k; ΘV )− U
(
C̃ (k ; ΘC )

)
− ∂Ṽ (k; ΘV )

∂k

[
F (k)− δ ∗ k − C̃ (k; ΘC )

]

• Now we have a policy function error:

errC = (U ′)−1
(
∂Ṽ (k ; ΘV )

∂k

)
− C̃ (k; ΘC )
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(b) Value with policy approximation
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(d) Consumption with policy approximation
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(f) HJB error with policy approximation
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(g) Policy error with policy approximation
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Alternative ANNs



Alternative ANNs

• Convolutional neural networks.

• Feedback ANN such as the Hopfield network.

• Self-organizing maps (SOM).

• ANN and reinforcement learning.
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CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input

Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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Reinforcement learning



Reinforcement learning

• Main idea: Algorithms that use training information that evaluates the actions taken instead of

deciding whether the action was correct.

• Purely evaluative feedback to assess how good the action taken was, but not whether it was the best

feasible action.

• Useful when:

1. The dynamics of the state is unkown but simulation is easy: model-free vs. model-based reinforcement

learning.

2. Or the dimensionality is so high that we cannot store the information about the DP in a table.

• Work surprisingly well in a wide range of situations, although no methods that are guaranteed to

work.

• Key for success in economic applications: ability to simulate fast (link with massive parallelization).

Also, it complements very well with neural networks.
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Comparison with alternative methods

• Similar (same?) ideas are called approximate dynamic programming or neuro-dynamic programming.

• Traditional dynamic programming: we optimize over best feasible actions.

• Supervised learning: purely instructive feedback that indicates best feasible action regardless of

action actually taken.

• Unsupervised learning: hard to use for optimal control problems.

• In practice, we mix different methods.

• Current research challenge: how do we handle associate behavior effectively?
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Example: Multi-armed bandit problem

• You need to choose action a among k available options.

• Each option is associated with a probability distribution of payoffs.

• You want to maximize the expected (discounted) payoffs.

• But you do not know which action is best, you only have estimates of your value function (dual

control problem of identification and optimization).

• You can observe actions and period payoffs.

• Go back to the study of “sequential design of experiments” by Thompson (1933, 1934) and Bellman

(1956).
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Theory vs. practice

• You can follow two pure strategies:

1. Follow greedy actions: actions with highest expected value. This is known as exploiting.

2. Follow non-greedy actions: actions with dominated expected value. This is known as exploring.

• This should remind you of a basic dynamic programming problem: what is the optimal mix of pure

strategies?

• If we impose enough structure on the problem (i.e., distributions of payoffs belong to some family,

stationarity, etc.), we can solve (either theoretically or applying standard solution techniques) the

optimal strategy (at least, up to some upper bound on computational capabilities).

• But these structures are too restrictive for practical purposes outside the pages of Econometrica.
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A policy-based method I

• Proposed by Thathachar and Sastry (1985).

• A very simple method that uses the averages Qn(a) of rewards Ri (a), i = {1, ..., n}, actually received:

Qn(a) =
1

n

n−1∑
i=1

Ri (a)

• We start with Q0(a) = 0 for all k . Here (and later), we randomize among ties.

• We update Qn(a) thanks to the nice recursive update based on linearity of means:

Qn+1(a) = Qn(a) +
1

n
[Rn(a)− Qn(a)]

Averages of actions not picked are not updated.
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A policy-based method II

• How do we pick actions?

1. Pure greedy method: arg maxa Qt(a).

2. ε-greedy method. Mixed best action with a random trembling.

• Easy to generalize to more sophisticated strategies.

• In particular, we can connect with genetic algorithms (AlphaGo).
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28 Chapter 2: Multi-armed Bandits

select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
"-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the Qt(a) converge to q⇤(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1� ", that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical e↵ectiveness of
the methods.

Exercise 2.1 In "-greedy action selection, for the case of two actions and " = 0.5, what is
the probability that the greedy action is selected? ⇤

2.3 The 10-armed Testbed

To roughly assess the relative e↵ectiveness of the greedy and "-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k -armed bandit problems with k = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, q⇤(a), a = 1, . . . , 10,

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)

Reward
distribution

1 2 63 54 7 8 9 10

Action
Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q⇤(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean q⇤(a) unit variance
normal distribution, as suggested by these gray distributions.
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2.3. The 10-armed Testbed 29

were selected according to a normal (Gaussian) distribution with mean 0 and variance 1.
Then, when a learning method applied to that problem selected action At at time step t,
the actual reward, Rt, was selected from a normal distribution with mean q⇤(At) and
variance 1. These distributions are shown in gray in Figure 2.1. We call this suite of test
tasks the 10-armed testbed. For any learning method, we can measure its performance
and behavior as it improves with experience over 1000 time steps when applied to one of
the bandit problems. This makes up one run. Repeating this for 2000 independent runs,
each with a di↵erent bandit problem, we obtained measures of the learning algorithm’s
average behavior.

Figure 2.2 compares a greedy method with two "-greedy methods ("=0.01 and "=0.1),
as described above, on the 10-armed testbed. All the methods formed their action-value
estimates using the sample-average technique. The upper graph shows the increase in
expected reward with experience. The greedy method improved slightly faster than the
other methods at the very beginning, but then leveled o↵ at a lower level. It achieved a
reward-per-step of only about 1, compared with the best possible of about 1.55 on this
testbed. The greedy method performed significantly worse in the long run because it

 (greedy)
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Steps
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Figure 2.2: Average performance of "-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with di↵erent bandit problems. All methods used sample
averages as their action-value estimates.
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A more general update rule

• Let’s think about a modified update rule:

Qn+1(a) = Qn(a) + α [Rn(a)− Qn(a)]

for α ∈ (0, 1].

• This is equivalent, by recursive substitution, to:

Qn+1(a) = (1− α)nQ1(a) + α

n−1∑
i=1

α(1− α)n−iRi (a)

• We can also have a time-varying αn(a), but, to ensure convergence with probability 1 as long as:
∞∑
i=1

αn(a) =∞

∞∑
i=1

α2
n(a) =∞
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Improving the algorithm

• We can start with “optimistic” Q0 to induce exploration.

• We can implement an upper-confidence-bound action selection

arg max
a

[
Qn(a) + c

√
log n

Nn(a)

]

• We can have a gradient bandit algorithms based on a softmax choice:

πn (a) = P (An = a) =
eHn(a)∑k
b=1 e

Hn(b)

where

Hn+1 (An) = Hn (An) + α (1− πn (An))
(
Rn (a)− Rn

)
Hn+1 (a) = Hn (a)− απn (a)

(
Rn (a)− Rn

)
for all a 6= An

This is a slightly hidden version of a stochastic gradient algorithm that we will see soon when we talk

about deep learning.
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34 Chapter 2: Multi-armed Bandits

2.6 Optimistic Initial Values

All the methods we have discussed so far are dependent to some extent on the initial
action-value estimates, Q1(a). In the language of statistics, these methods are biased
by their initial estimates. For the sample-average methods, the bias disappears once all
actions have been selected at least once, but for methods with constant ↵, the bias is
permanent, though decreasing over time as given by (2.6). In practice, this kind of bias
is usually not a problem and can sometimes be very helpful. The downside is that the
initial estimates become, in e↵ect, a set of parameters that must be picked by the user, if
only to set them all to zero. The upside is that they provide an easy way to supply some
prior knowledge about what level of rewards can be expected.

Initial action values can also be used as a simple way to encourage exploration. Suppose
that instead of setting the initial action values to zero, as we did in the 10-armed testbed,
we set them all to +5. Recall that the q⇤(a) in this problem are selected from a normal
distribution with mean 0 and variance 1. An initial estimate of +5 is thus wildly optimistic.
But this optimism encourages action-value methods to explore. Whichever actions are
initially selected, the reward is less than the starting estimates; the learner switches to
other actions, being “disappointed” with the rewards it is receiving. The result is that all
actions are tried several times before the value estimates converge. The system does a
fair amount of exploration even if greedy actions are selected all the time.

Figure 2.3 shows the performance on the 10-armed bandit testbed of a greedy method
using Q1(a) = +5, for all a. For comparison, also shown is an "-greedy method with
Q1(a) = 0. Initially, the optimistic method performs worse because it explores more,
but eventually it performs better because its exploration decreases with time. We call
this technique for encouraging exploration optimistic initial values. We regard it as
a simple trick that can be quite e↵ective on stationary problems, but it is far from
being a generally useful approach to encouraging exploration. For example, it is not
well suited to nonstationary problems because its drive for exploration is inherently
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20%

40%

60%

80%

100%

%
Optimal
action

0 200 400 600 800 1000

Plays

optimistic, greedy
Q0 = 5,  !!= 0

realistic, ! -greedy
Q0 = 0,  !!= 0.11

1

Steps
1

Optimistic, greedy
Q1 =5, "=0

Realistic,   -greedy"
Q1 =0, "=0.1

Figure 2.3: The e↵ect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, ↵ = 0.1. 81



36 Chapter 2: Multi-armed Bandits

where ln t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would have
to be raised to in order to equal t), Nt(a) denotes the number of times that action a has
been selected prior to time t (the denominator in (2.1)), and the number c > 0 controls
the degree of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-root
term is a measure of the uncertainty or variance in the estimate of a’s value. The quantity
being max’ed over is thus a sort of upper bound on the possible true value of action a, with
c determining the confidence level. Each time a is selected the uncertainty is presumably
reduced: Nt(a) increments, and, as it appears in the denominator, the uncertainty term
decreases. On the other hand, each time an action other than a is selected, t increases but
Nt(a) does not; because t appears in the numerator, the uncertainty estimate increases.
The use of the natural logarithm means that the increases get smaller over time, but are
unbounded; all actions will eventually be selected, but actions with lower value estimates,
or that have already been selected frequently, will be selected with decreasing frequency
over time.

Results with UCB on the 10-armed testbed are shown in Figure 2.4. UCB often
performs well, as shown here, but is more di�cult than "-greedy to extend beyond bandits
to the more general reinforcement learning settings considered in the rest of this book.
One di�culty is in dealing with nonstationary problems; methods more complex than
those presented in Section 2.5 would be needed. Another di�culty is dealing with large
state spaces, particularly when using function approximation as developed in Part II of
this book. In these more advanced settings the idea of UCB action selection is usually
not practical.

1 250 500 750 1000

0

0.5

1

1.5

�-greedy  � = 0.1

UCB  c = 2

Average
reward

Steps

Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown,
UCB generally performs better than "-greedy action selection, except in the first k steps, when
it selects randomly among the as-yet-untried actions.

Exercise 2.8: UCB Spikes In Figure 2.4 the UCB algorithm shows a distinct spike
in performance on the 11th step. Why is this? Note that for your answer to be fully
satisfactory it must explain both why the reward increases on the 11th step and why it
decreases on the subsequent steps. Hint: if c = 1, then the spike is less prominent. ⇤
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42 Chapter 2: Multi-armed Bandits

2.10 Summary

We have presented in this chapter several simple ways of balancing exploration and
exploitation. The "-greedy methods choose randomly a small fraction of the time, whereas
UCB methods choose deterministically but achieve exploration by subtly favoring at each
step the actions that have so far received fewer samples. Gradient bandit algorithms
estimate not action values, but action preferences, and favor the more preferred actions
in a graded, probabilistic manner using a soft-max distribution. The simple expedient of
initializing estimates optimistically causes even greedy methods to explore significantly.

It is natural to ask which of these methods is best. Although this is a di�cult question
to answer in general, we can certainly run them all on the 10-armed testbed that we
have used throughout this chapter and compare their performances. A complication is
that they all have a parameter; to get a meaningful comparison we have to consider
their performance as a function of their parameter. Our graphs so far have shown the
course of learning over time for each algorithm and parameter setting, to produce a
learning curve for that algorithm and parameter setting. If we plotted learning curves
for all algorithms and all parameter settings, then the graph would be too complex and
crowded to make clear comparisons. Instead we summarize a complete learning curve
by its average value over the 1000 steps; this value is proportional to the area under the
learning curve. Figure 2.6 shows this measure for the various bandit algorithms from
this chapter, each as a function of its own parameter shown on a single scale on the
x-axis. This kind of graph is called a parameter study. Note that the parameter values
are varied by factors of two and presented on a log scale. Note also the characteristic
inverted-U shapes of each algorithm’s performance; all the algorithms perform best at
an intermediate value of their parameter, neither too large nor too small. In assessing

Average
reward

over first 
1000 steps

1.5

1.4

1.3

1.2

1.1
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�-greedy
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gradient
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greedy with
optimistic

initialization
α = 0.1

1 2 41/21/41/81/161/321/641/128

" ↵ c Q0

Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter.
Each point is the average reward obtained over 1000 steps with a particular algorithm at a
particular setting of its parameter.
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Other algorithms

• Monte Carlo prediction.

• Temporal-difference (TD) learning:

V n+1 (st) = V n (st) + α (rt+1 + βV n (st+1)− V n (st))

• SARSA ⇒ On-policy TD control:

Qn+1 (at,st) = Qn (at,st) + α (rt+1 + βQn (at+1,st+1)− Qn (at,st))

• Q-learning ⇒ Off-Policy TD Control:

Qn+1 (at,st) = Qn (at,st) + α

(
rt+1 + βmax

at+1

Qn (at+1,st+1)− Qn (at,st)

)

• Value-based methods.

• Actor-critic methods. 84
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