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Basic ideas



c optimization

Many (most?) macroeconomic models of interest require the solution of dynamic optimization
problems, both in deterministic and stochastic environments.

e Two time frameworks:

1. Discrete time.

2. Continuous time.

Three approaches:
1. Calculus of Variations and Lagrangian multipliers on Banach spaces.
2. Hamiltonians.

3. Dynamic Programming.

We will study dynamic programming in continuous time.



e Continuous time methods transform optimal control problems into partial differential equations
(PDEs):

1. The Hamilton-Jacobi-Bellman equation, the Kolmogorov Forward equation, the Black-Scholes
equation,... they are all PDEs.

2. Solving these PDEs turns out to be much simpler than solving the Bellman or the Chapman-Kolmogorov
equations in discrete time. Also, much knowledge of PDEs in natural sciences and applied math.

3. Key role of typical sets in the “curse of dimensionality.”
e Dynamic programming is a convenient framework:

1. It can do everything economists could get from calculus of variations.

2. It is better than Hamiltonians for the stochastic case.



The development of “

e Differential calculus introduced in the 17th century by Isaac Newton and Gottfried Wilhelm Leibniz.

e In the late 19th century and early 20th century, it was extended to accommodate stochastic processes

(“stochastic calculus”).

Thorvald N. Thiele (1880): Introduces the idea of Brownian motion.
Louis Bachelier (1900): Formalizes the Brownian motion and applies to the stock market.
Albert Einstein (1905): A model of the motion of small particles suspended in a liquid.

Norbert Wiener (1923): Uses the ideas of measure theory to construct a measure on the path space of

continuous functions.

Andrey Kolmogorov (1931): Diffusions depend on drift and volatility, Kolmogorov equations.
Wolfgang Déblin (1938-1940): Modern treatment of diffusions with a change of time.

Kiyosi 1td (1944): [té's Lemma.

Paul Malliavin (1978): Malliavin calculus.






The development of “

e Calculus of variations: Issac Newton (1687), Johann Bernoulli (1696), Leonhard Euler (1733),
Joseph-Louis Lagrange (1755).

e 1930s and 1940s: many problems in aerospace engineering are hard to tackle with calculus of
variations. Example: minimum time interception problems for fighter aircraft.

e Closely related to the Cold War.
e Lev S. Pontryagin, Vladimir G. Boltyanskii, and Revaz V. Gamkrelidze (1956): Maximum principle.
e Magnus R. Hestenes, Rufus P. Isaacs, and Richard E. Bellman at RAND (1950s):

1. Distinction between controls and states.

2. Principle of optimality.

3. Dynamic programming.



Figure 1: Lev S. Pontryagin, Vladimir G. Boltyanskii, and Revaz V. Gamkrelidze



Figure 2: Magnus R. Hestenes, Rufus P. Isaacs, and Richard E. Bellman
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Optimal control

e An agent maximizes:

00
max / e "tu (s, x¢) dt,
0

{”t}tzo .

subject to:
dx;

E::u’t(ataxt)a Xp = X.

e Here, x, € X C RV is the state, o, € A C RM is the control, p > 0 is the discount factor,
() A x X — RN the drift, and u(-) : A x X — R the instantaneous reward (utility).

13



Hamilton-Jacobi-Bellman

William Hamilton (1805-1865) Carl Jacobi (1804-1851) Richard Bellman (1920-1984)
14



The Hamilton-Jacobi-Bellman equation

e |f we define the value function:

V(t,x) = max/ e P57y (as, x5) ds,

{as}szt t

then, under technical conditions, it satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

oV N oV
pVe(x) = 5o +m5x{u(a,x)+zut,n(x,a)GXH}.,

n=1

with a transversality condition lim1_,o, e ?T V7 (x) = 0.
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HJB: proof

1. Apply the Bellman optimality principle (and lim7_, ., e T V1 (x) = 0):

t
V(to,x) = max {/ e_/’(s_tf’)u(as,xs)ds] + [e"’(t_t")V(t,xt)

{(YS}rogsgr to

2. Take the derivative with respect to t with the Leibniz integral rule and lim;_,;:

d (e—r(t—t)\/
0= ||m [maxep(tto)u(at7x)+ [ (e o (tvxt))]‘|

t—ty | o dt
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Example: consumption-savings problem

e A household solves: -
max / e "log(c;) dt,
0

{Ct}rzo
subject to:
da + a a
— =ra — ¢, =a,
dt tTY t 0 )

where r and y are constants.

e The HIB is:

PV (@) _mfx{'Og(c)+(ra+y—c)C;‘;}

e Intuitive interpretation.

17



Example: solution

e We guess V(a):%logp—}—%(i—l) +%|og(a+{).

The first-ord dition is:
e The first-order condition is 1 av 1

cT @ pry)

and hence:
Human wealth
Financial wealth A~
=~ y
c=p a + =
r

e Then, we verify the HJB:

oV (a) =tog (p(a+ X)) + (raty—n(a+¥)) &

18



The Hamiltonian

o Assume i, (X, @) = g, (Xn, @) (to simplify matters).

e Define the costates \,; = ng (x¢) in the HJB.

e Then, the optimal policies are those that maximize the Hamiltonian H (a, x, A):

H(c,x,\)

N
max < u(a,x) + Z tn (X, @) Apt

n=1

dApe 4 82V dx,

* Notice: <5 arax 9x2 dt
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Pontryagin maximum principle

e Recall the Hamilton-Jacobi-Bellman (HJB) equation:
N
oV
+ max {u(a,x) + ;un (x, @) 8)(,,}

Vi) = 5

02V

PV du n
0x,,

e If we take derivatives with respect to x, in the HJB, we obtain:
Oty OV
+in (6,0)

ov

P ox, ~ Otox, Oxn Oxn
: - o de 0 PV dx: .
which combined with <52 = ata\; + Tx\g/ﬁ yields:
dAnt = o\ 377-1
dt = (A 0x,

e Plus the transversality conditions, limt_,., e T\, 7 = 0.

20



Example: now with the maximum principle

e The Hamiltonian H (c,a,\) = log(c) + A(ra+y — ¢).

e The first order condition %—tt = (0
1
=\
c

The dynamics of the costate 23t = p\, — % = (p —r) A,.

Oa

Then, by basic ODE theory:
Ar = /\oe("”)t,

and ¢; = cge (P 1L,

You need to determine the initial value ¢g = p (ao + %) using the budget constraint.

But how do you take care of the filtration in the stochastic case?

21



Stochastic calculus



Brownian motion

e Large class of stochastic processes.

e But stochastic calculus starts with the Brownian motion.

e A stochastic process W is a Brownian motion (a.k.a. Wiener process) if:
1. W(0)=0.
2. Ifr<s<t<u:W(u)— W(t) and W(s) — W(r) are independent random variables.
3. Fors<t: W(t)— W(s) ~N(0,t—s).

4. W has continuous trajectories.

22



Simulated paths

e Notice how E[W (t)] =0 and Var [W (t)] = t.
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y do we need a new concept of integral?

e We will deal with objects such as the expected value function.

e But the value function is now a stochastic function because it depends on stochastic processes.
e How do we think about that expectation?

e More importantly, we need to deal with diffusions, which will include an integral.

e We cannot apply standard rules of calculus: Almost surely, a Brownian motion is nowhere
differentiable (even though it is everywhere continuous!).

e Brownian motion exhibits self-similarity (if you know what this means, the Hurst parameter of a
Brownian motion is H = 3 > 0).

e We need an appropriate concept of integral: 1td stochastic integral.

24



Chebyshev polynomial of order 11
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The stochastic integral

e Recall that the Riemann-Stieltjes integral of a (deterministic) function g(t) with respect to the
(deterministic) function w(t) is:
n—1

| tsdnte) = fim 3 (o) o (tsa) — w (8],

k=0
where ty = 0 and t, = t.

e \We want to generalize the Riemann-Stieltjes integral to an stochastic environment.

e Given a stochastic process g(t), the stochastic integral with respect to the Brownian motion W/(t) is:
n—1

t
| eteaws) - Jim 3t W (1) = W ().
where to = 0 and t, = t and the limit converges in probability.
e Notice: both the integrand and the integrator are stochastic processes and that the integral is a

random variable. .



Mean of the stochastic integral

E { /0 t g(s)dW(s)} - E

Jim 3 g0 W (t1:1) - wm)]]

= nlemZg(tk)E[W(tk+1) — W ()]
k=0

n—1
= lim ) g(t) 0=0
n—o0
k=0

28



Variance of the stochastic integral

E

(/ tg(s)dvv(s))zl — Var

- ,,'L”;Oig2(tk)Var[W(tk+1) - W (&)
k=0

nirgoz_:g(tk)[w(tk+1) - W(tk)]l

n—1

= lim 2(ti) (1 — t) = t ?(s)ds

29



iation in stochastic calculus

e In an analogous way that we can define a stochastic integral, we can define a new idea derivative
with respect to Brownian motion.

Malliavin derivative.

Applications in finance.

e However, in this course, we will not need to use it.

30



s Textbooks

Introduction
to Malliavin
Calculus

David Nualart
and Eulalia Nualart
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Stochastic differential equations (SDEs)

e We define a stochastic differential equation (diffusion) as
dX (t) = p(t, X(t)) dt + o (£, X(£)) dW (1), ~ X(0) = x,

as a short-cut to express:

X (t) :X+/O u(t,X(s))der/O o (s, X(t))dW(s)

e 1 (-) is the drift and o (t, X(t)) the volatility.

e Any stochastic process (without jumps) can be approximated by a diffusion.

32



Example |I: Brownian motion with drift

e Simplest example (random walk with drift in discrete time)
dX(t) = pdt +odW(t), X(0)= xo,

where:

t t

X(t) = x0+/ /1,d5+/ odW(s)
0 0
= xo+put+oW(t)

o Then X (t) ~ N (x + put,0?t). This is not stationary.

e Equivalent to a random walk with drift in discrete time.

33



Example II: Ornstein-Uhlenbeck process

e Continuous-time counterpart of an AR(1) in discrete time:
dX(t) =0 (X — X (t)) dt + cdW(t), X(0)=xo

e Named after Leonard Ornstein and George Eugene Uhlenbeck, although in economics and finance is
a.k.a. the Vasitek model of interest rates (Vasitek, 1977).

e Stationary process with mean reversion:
E[X(t)] = xoe "+ X (1 — %)

and
2

Var [X(t)] = ‘219 (1— e=20%)

e Take the limits as t — ool

34



Euler—Maruyama method

e Except in a few cases (such as the ones before), we do not know how to get an analytic solution for a
SDE.

e How do we get an approximate numerical solution of a SDE?
e Euler-Maruyama method: Extension of the Euler method for ODEs.

e Given a SDE:
dX (t) = p(t, X(t)) dt + o (¢, X(t)) dW(t), X(0) = x,

it can be approximated by:
X (t+ At) — X (t) = p(t, X(t)) At + o (£, X(t)) AW(2),
where AW(t) S N (0, At).

35



Euler—Maruyama method (Proof)

e If we integrate the SDE:

t+At t+At
X(t+ At) - X(t) = / w(t, X(s))ds+ o (s, X(t))dW(s)

~ p,(t,X(t))AtJro(t,X(;))(W(t+At)—W(t))
where W (t + At) — W () = AW(t) © N (0, At).

e The smaller the At, the better the method will work.

e Let us look at some code.

36



Stochastic calculus

e Now, we need to learn how to manipulate SDEs.

e Stochastic calculus = "normal” calculus 4 simple rules:

(dt)* =0, dt-dW =0, (dW)*>=dt

e The last rule is the key. It comes from:
E [W(t)?] = Var [W(t)] = t,
and:
Var [W(t)2] =E [W(t)*] —E [W(t)2]* =22 < ¢

N—_——
3t2

37



Functions of stochastic processes: 1t6’s formula

e Chain rule in standard calculus. Given f(t, x) and x(t):

df of Of dx of of
a—a+aaz>df—adt+adx

e Chain rule in stochastic calculus (1td's lemma). Given f(t, X) and:
dX(t) = pu(t, X(t)) dt + o (t, X(t)) dW(t),
we get:
df = (g'; + ((;iu+;gz)<£02> dt+%adW

38



I1td’s formula: proof

e Taylor expansion of f(t, X):
of

df = —dt +
ot

e Given the rules:
dX
(dX)?
(dt)?
dt - dX

e Then:

of 1P%F, o  1OPf Pf

ZdX + dX)? + 2 =— X
X+ 3 (@) T 57 + gzt
= pdt+odW,

= 2 (dt)® + 0% (dW)? + 2uodtdW = o2 dt,

= 0,

= p(dt)® + odtdW = 0.

2
+1ﬂ 2> dt + gadW

at " ox" T 20x27 Ix

39



Multidimensional 1t6’s formula

o Given f(t,x1,X2, ..., Xn),

then

dX,'(l')

i

= pi(t, X1(t), ..., Xn(t)) dt + o; (t, X1(t), ..., Xu(t)) dWi(t),

dt+2—dX ln ~ _O°f ———dX;dX;
2 ax,{)

40



Application: Geometric Brownian motion (GBM)

e Basic model for asset prices (non-negative):
dX(t) = pX(t)dt + o X(t)dW(t), X(0)= xo,

where
X (t) =xo +/0 puX(s)ds +/0 o X(s)dW(s)

e How can we solve it?

41



GBM solution using Ités formula

e Define Z(t) = In(X(t)), the Itd's formula gives us:

B dIn(x)  9dlIn(x) 19%In(x) , ,
dz(t) = ( ot + I MX+§78X2 o°x* | dt
LI L aw
Ox

1 11 1
= 04 —ux — =—=02x? | dt + —oxdW
X 2 x2 X
1,
= w— o dt + odW
1,
= Z(t) =In(x) + p=50 t+oW(t)

e Therefore:
X(t) = xoe("_%‘72)t+”w(t)

42



Dynamic programming with
stochastic processes




The problem

e An agent maximizes:

Vo(x) = max Eo/ e "tu(ae, X¢) dt,
0

{at}tZO

subject to:
dXt:[Lt (Xt,(lt) dt+0’t (Xt,(l't) th, X() = X.

e () AxX—RN
e We consider feedback control laws oy = o (X;) (no improvement possible if they depend on the

filtration 7).

43



HJB equation with SDEs

oV & vV 1K, RV
pVe(x) = 5o + ij{U(mX) + D hen(x,0) a2 > (), dx()x2}

n=1 m,m=1

where 02 (x,a) = o; (x,a) o/ (x,a) € RN*N is the variance-covariance matrix.

44



HJB with SDEs: proof

1. Apply the Bellman optimality principle:

ot
Vi(x)= max E, U ep(St")u(as,Xs)ds} +E, [efﬂ(f*fo)vt(xt)}
to

as}togsgt

2. Take the derivative with respect to t, apply [t&'s formula and take lim;_,:

E d 7p(t*t0)\/ t. X
0= lim [maxe”(tt“)u(at,x)-&- o [d(e (t, X:))]

t—t | o dt

Notice:

vV 9V 2V
,p(tfto) _ 7/)(t7t0) _ - _ -
E, [d (e V(t,Xt))} E, {e ( PVt b+ 2 > dt}

45



The infinitesimal generator

e The HJB can be compactly written as:

pV = aa—\t/—&—max{u(a,x)—&—.AV}.,

where A is the infinitesimal generator of the stochastic process X;, defined as:

Eo [f (Xe)] = F (%)

tl0 t
N N
of 1 2 al
= 2z ts 2 (nm 5x on
1 3 ny,m=1

e Intuitively: the infinitesimal generator describes the movement of the process in an infinitesimal time
interval.

46



Boundary conditions

e The boundary conditions of the HJB equation are not free to be chosen, they are imposed by the
dynamics of the state at the boundary 0X.

e Only three possibilities:

dv _
ax

1. Reflection barrier: The process is reflected at the boundary:

2. Absorbing barrier: The state jumps at a different point y when the barrier is reached: V (x)| = V (y).
X

3. State constraint: The policy . guarantees that the process does not abandon the boundary.

47



Example: Merton portfolio model

e An agent maximize its discounted utility:

V(x) = max ]E/ e "log(c;) dt,
( ) {CtBAf}rzo 0 ( t)

by investing in A; shares of a stock (GBM) and saving the rest in a bond with return r:
dSt = ﬂstdt + O'Stth
dBt = rBtdt

e The value of the portfolio evolves according to:

dX: = AdS: +r(Xe — A:S;) dt — cidt
Ay (uSedt + 0S5 dWe) + r (Xe — ArSy) dt — cedt
[rX: + ArSe (1 — r)] dt + Ao SpdW — cidt

48



Merton model: The HJB equation

o We redefine one of the controls:

e The HJB results in:

oV d?wix? ?V
pV(x) = r?fdx{log(c) + [x+wx(p—r)—] ™ + anz}

e The FOC are:

1 oV
c TV
82
x(n—r) 5 +wolx’ - =

49



Solution to Merton portfolio model

e Guess and verify:

1
VE) = Slog(x)+ re,
ov. 1
ox  px’
o’V 1
ox2 px?
with k1 and k; constants.
e The FOC are:
1 1
——— = 0= c=px,
c  px
x(u—r)@ —wa2x2% = 0=w= (,u—2r)
X X o

50



The case with Poisson processes

e The HJB can also be solved for the case of Poisson shocks.

e The state is now:
dXe = p(Xe, o, Z¢) dit, Xo=x, Zo= 2.

e Z; is a two-state continuous-time Markov chain Z; € {z,z}. The process jumps from state 1 to
state 2 with intensity A1 and vice-versa with intensity A;.

e The HJB in this case is

oV; oV,
pVii (x) = on —&-mj\x{u(oz,x)—|—,u(x,oz,z,-)6)(}—1—/\,-(\4—\/,-)7

i,j=1,2, i # j, where Vi(x) = V(x, z).

e We can have jump-diffusion processes (Lévy processes): HJB includes the two terms (volatility and
jumps).

51



Viscosity solutions

e Relevant notion of “solutions” to HJB introduced by Pierre-Louis Lions and Michael G. Crandall in
1983 in the context of PDEs.

e Classical solution of a PDE (to be defined below) are too restrictive.

e We want a weaker class of solutions than classical solutions.

e More concretely, we want to allow for points of non-differentiability of the value function.
e Similarly, we want to allow for convex kinks in the value function.

e Different classes of “weaker solutions.”
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What is a viscosity solution?

e There are different concepts of what a “solution” to a PDE F (x, Dw(x), D?w(x)) =0, x € X is:

1. “Classical” (Strong) solutions. There is a smooth function u € C*(X) N C(X) such that
F (x, Du(x), D*u(x)) =0, x € X.

e Hard to find for HJBs.

2. Weak solutions. There is a function u € H'(X) (Sobolev space) such that for any function ¢ € H'(X),
then [, F (x, Du(x), D*u(x)) ¢(x)dx = 0, x € X.

e Problem with uniqueness in HJBs.

3. Viscosity solutions. There is a locally bounded v that is both a subsolution and a supersolution of
F (x, Dw(x), D’w(x)) =0, x € X.

e If it exists, it is unique.
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Subsolutions and supersolutions

e An upper semicontinuous function v in X is a “subsolution” if for any point xo € X and any C?
function ¢ € C?(X) such that ¢(x0) = u(xo) and ¢>u in a neighborhood of xg, we have:

F(x0, 9(x0), Dp(x0), D*¢(x0)) <0

e An upper semicontinuous function u in X is a “supersolution” if for any point x; € X and any C?
function ¢ € C?(X) such that ¢(x0) = u(xg) and ¢<u in a neighborhood of xg, we have:

F(x0, ¢(x0), Do(x0), D*$(x0)) >0

54



More on viscosity solutions

Viscosity solution is unique.

A baby example: consider the boundary value problem F(u') = |v/| —1 =0, on (—1,1) with
boundary conditions u(—1) = u(1) = 0. The unique viscosity solution is the function u(x) =1 — |x|.

Coincides with solution to sequence problem of optimization.
Numerical methods designed to find viscosity solutions.

Check, for more background, User’s Guide to Viscosity Solutions of Second Order Partial Differential
Equations by Michael G. Crandall, Hitoshi Ishii, and Pierre-louis Lions.

Also, Controlled Markov Processes and Viscosity Solutions by Wendell H. Fleming and Halil Mete
Soner.
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Finite difference method




Solving dynamic programming problems = solving PDEs

e We want to numerically solve the Hamilton-Jacobi-Bellman (HJB) equation:

oV; N oV;
pVil) = o +m5x{u<a,x>+nzlum (xr002) 2
+ AV - V)
N
1 2 %V,
+ innZ:]- (Ut (X7a))n1.n2 3X13Xn2 }7

with a transversality condition lim7_. e ?T V1 (x) = 0, and some boundary conditions defined by
the dynamics of X;.
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Overview of methods to solve PDEs

1. Perturbation: consider a Taylor expansion of order n to solve the PDEs around the deterministic
steady state (not covered here, similar to discrete time).

2. Finite difference: approximate derivatives by differences.

3. Projection (Galerkin): project the value function over a subspace of functions (non-linear version
covered later in the course).

4. Semi-Lagragian. Transform it into a discrete-time problem (not covered here, well known to

economists)

57



A (limited) comparison from

K/Kss

FIGURE 2. Numerical error for benchmark model under Proposition 3.1. The graph plots
the log10 magnitude of the relative numerical error made by using the approximated value
function along the interval [0.5K*, 1.5K**]. The error is relative to the true value function. 58



Numerical advantages of continuous-time methods: Preview

1. “Static” first order conditions. Optimal policies only depend on the current value function:
N

Otin 8V 1 a ., rv.
Z O 8X,, 2 Z da (o (X’a»"lv"z 0% OXpy 0

n1,n2:1

2. Borrowing constraints only show up in boundary conditions as state constraints.

e FOCs always hold with equality.

3. No need to compute expectations numerically.

e Thanks to Ité's formula.

4. Convenient way to deal with optimal stopping and impulse control problems (more on this later
today).

5. Sparsity (with finite differences).
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Our benchmark: consumption-savings with incomplete markets

e An agent maximizes:

max E [/ e_”tu(ct)dt} ,
{Cf}tzo 0

daf = (Zt + rag — Ct) dt~ ap = a

subject to:

where z; € {z1, 2} is a Markov chain with intensities z1 — z : A\; and z — 71 : Ap.

e Exogenous borrowing limit:
a > —9
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The Hamilton-Jacobi-Bellman equation

e The value function in this problem:

[e ]
vi(a) = max Eq {/ e "'u(c;)ds|ag = a, 20 = z;
Jo

Ct}tzo

must satisfy the HJB equation:
pvi(a) = max{u(c) + s; (a) vi (a)} + i (vi(a) — vi(a)),

where s; (a) is the drift,
si(a) =z +ra—c(a), i=1,2

e The first-order condition is:
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How can we solve it?

e The model proposed above does not yield an analytical solution.

Therefore we resort to numerical techniques in order to find a solution.

Tln particular, we employ an upwind finite difference scheme (Achdou et al., 2017).

This scheme converges to the viscosity solution of the problem.
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e We approximate the value function v(a) on a finite grid with step Aa: a € {ay, ..., a,}, where
aj:aj_1+Aa:a1+(j—1)Aa
for 2 < j < J. The bounds are a; = —¢ and a; = a*.

e We use the notation v; = v(a;), j =1,...,J.
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Finite differences

e V/(a;) can be approximated with a forward (F) or a backward (B) approximation,

Vir — i
! ~ — Vij+1 i
vi(a)) ~ Orvij=—"7—
Vi v
/ N S (Y] ivj
Vi(aj) ~ aBV’yJ = Aa
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Upwind scheme

e The choice of drv; j or Ogv;; depends on the sign of the drift function s;(a) = z;+ ra— () ! (vi(a)):
1. If sif (aj) =2z +raj — (Ul)71 (8FV,',J') >0— Cij= (U/)71 (8FV,'7J').
2. Else, if SiB (aj) =2z + raj — (U’)71 (OBV,‘J) <0— Cij = (u')_l (6Bv,-,j).

3. Otherwise, si(a) =0 — ¢;j = zi + ra;.

e Why? Key for stability.
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HJB approximation, |

e Let superscript n denote the iteration counter.

e The HJB equation is approximated by:

Vn+1 o

iJj ij _ n n n+1
N = uleiy) +sij sy, >00F V)

n n+1
+5i,81sp; 5<008Y;;

n+1 n+1
Y ("—i.,j Vi ) )

for j =1,...,J, where 1(-) is the indicator function and:

sliF = (zi + ra;) — (u')71 (8Fv;'7j)
siig = (zi+ra)— (u’)f1 (8Bv,-"’j)
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HJB approximation, ||

e Collecting terms, we obtain:

n+1 _\n
i il

where:

—U(C-n~)+V’J 1 I_/

n
S7j,81sr; 5<0

Aa

n
_ SpjFLsy, >0

4 V’nflylj + Vn+1 Z + Vn+1/\

ij+1<i —i,j

n
sij.Lsy, 5<0

Aa

n
Si,F st r>0

Aa

Aa e
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Boundary con

e State constraint a>0 — 57y 5 =0 — x; = 0.

e State constraint a < a* — s, =0 — z", =0.
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Matrix notation

e The HJB is a system of 2J linear equations which can be written in matrix notation as:

(Vn+1 o Vn) +pvn+1 _ un =+ Anvn+1

B>~

e This is equivalent to a discrete-time, discrete-space dynamic programming problem (% = 0):
v=u-+ v,

WhereI'I:I+(li—p)Aand/5:(17p).
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e Matrix A is the discrete-space approximation of the infinitesimal generator A.

e Advantage: this is a sparse matrix.

VL @ 0 e A 00 0
X2 Yio 22 - 0 X 0o - 0
0 Xf,3 Y1n,3 Z1n,3 s 0 ) Y 0
An — O . i Xan y1”7J 0 0 0 0 )\1
A2 0 0 56 y2”71 22”71 0 L. 0
0 A2 0 - x§p vfo 2, O
0 0 A2 “en 0 X2I7’3 }/2,1’3 22,1’3 0
| 0 0 0 Ao 0 0 x5, yzn,J |
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How to solve it

u(cfy) | e
Cn n+1

e Given u" = 2 an) , vt = VanJr1 ,
“(C271) Va1
n n.+1

L “(Cz,J) J L va) |

the system can in turn be written as:

B"Vn+1:b"’ B" — (1 +P> I_An7 b" = u" + ="
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The algorithm

1. Begin with an initial guess v,% = @
2. Set n=0.
3. Then:

n

3.1 Policy update: Compute Orv/;, dgVv/;, and c/;.

3.2 Value update: Compute v,-’jj*l solving the linear system of equations.

3.3 Check: If v,-”’j+1 is close enough to v/}, stop. If not, set n:= n+1 and go to 1.
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(a) Value function, v(a) (b) Consumption, c(a)
4 ‘ ‘ ‘ ‘ ‘ 115 ‘ ‘ ‘ ‘ ‘

3 I I I I I 0.85 I I I I I
-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4

Assets, a Assets, a
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The case with diffusions

e Assume now that labor productivity evolves according to a Ornstein—Uhlenbeck process:
dZt = 9(2 — Zt)dt + O'dBt,
on a bounded interval [z, z] with z> 0, where B; is a Brownian motion.

e The HIB is now:

ov o2 92V

oV .
pV(a, z) = max u(c)+s(a,z,c) — +6(2 —2) 57 + 92

Oa
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The new grid

e We approximate the value function V/(a, z) on a finite grid with steps Aa and Az: a € {a1,...,a/},
ze{z,...,z;}.

e We use now the notation V;;:= V(aj,z), i=1,...,1; j=1,...J.

e It does not matter if we consider forward or backward for the first derivative with respect to the
exogenous state.

e Use central for the second derivative:

oV (ai, z) Vij+1— Vi
gv\di4j) o,V ;== "
82 S AZ )
PVianz) 5\ .- Vit Vijo1r =2V
922 “oh (Az)?
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HJB approximation

n+1 n
Vit - v
A

Qij

))IJ

Xij

¢

S

S

+ Vi = () +

Vn+1 0i J Vn+1

n+1 n+1 n+1
V+1JXIJ + V T8+ ,J+1@Jv

Sij,8Lsp; 5 <0
- Aa
_ S;Zj7Flsf’1.j,F>0 S"’stBlsfn,j,B<0 0(z - Zj) o’
- Aa + Aa Az (Az)?
_ S’J'»Flsi”,j,F>0
N Aa
o2
C2(Az)?
B o? 9(2 — z))
- 2(Az)? Az
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Boundary conditions

e The boundary conditions with respect to z are:

0V(a,z) 0V(a,z)

= -0
0z 0z '
as the process is reflected.

e At the boundaries in the j dimension, the HJB becomes:

VARV,
A 2 +p\/lnj+1 = ( ll)+vn110'1+vir,7fl (ﬁf71+5)+Vn11X’1+Vir.,2+1<17

V_n_+1 —yn
S gV = () + VI s VI (B )+ VR s + VTR
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The problem

e In matrix notation as:

n+1 _ n
|4 4 + pvn+1 _ un + A" \/IH»I7
A
where (sparsity again):
[ Bii+&  xat 0 300 0 <1 0 0 0 T
021 Poi+E X1 0 0 1 0 0
0 03,1 B31+& Xx31 0 0 <1 0
g . - . 5 0 0 0 0
A — 0 0 0 orn Bia+é xin 0 0 0
§ 0 0 01,2 B2 X1.2 0 0
0 13 0 0 022 oo X2p2 0
0 0 0 0 0 0 o1y Bi—ig+Ss  Xi—1y
L 0 0 0 0 0 0 0 01,J Bii+ss
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(a) Value function v(a, 2) (b) Consumption c(a, z)

-16 16
-18 14

12
-20

1.5
1

4 4
0.5

Wealth, a ~ Productivity, z Wealth, a Productivity, z 80



Why does the finite difference method work?

e The finite difference method converges to the viscosity solution of the HJB as long as it satisfies
three properties:

1. Monotonicity.
2. Stability.

3. Consistency.

e The proposed method does satisfy them (proof too long, check Fleming and Soner, 2006).

81



