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Basic ideas



Dynamic optimization

• Many (most?) macroeconomic models of interest require the solution of dynamic optimization

problems, both in deterministic and stochastic environments.

• Two time frameworks:

1. Discrete time.

2. Continuous time.

• Three approaches:

1. Calculus of Variations and Lagrangian multipliers on Banach spaces.

2. Hamiltonians.

3. Dynamic Programming.

• We will study dynamic programming in continuous time.
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Why dynamic programming in continuous time?

• Continuous time methods transform optimal control problems into partial differential equations

(PDEs):

1. The Hamilton-Jacobi-Bellman equation, the Kolmogorov Forward equation, the Black-Scholes

equation,... they are all PDEs.

2. Solving these PDEs turns out to be much simpler than solving the Bellman or the Chapman-Kolmogorov

equations in discrete time. Also, much knowledge of PDEs in natural sciences and applied math.

3. Key role of typical sets in the “curse of dimensionality.”

• Dynamic programming is a convenient framework:

1. It can do everything economists could get from calculus of variations.

2. It is better than Hamiltonians for the stochastic case.
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The development of “continuous-time methods”

• Differential calculus introduced in the 17th century by Isaac Newton and Gottfried Wilhelm Leibniz.

• In the late 19th century and early 20th century, it was extended to accommodate stochastic processes

(“stochastic calculus”).

• Thorvald N. Thiele (1880): Introduces the idea of Brownian motion.

• Louis Bachelier (1900): Formalizes the Brownian motion and applies to the stock market.

• Albert Einstein (1905): A model of the motion of small particles suspended in a liquid.

• Norbert Wiener (1923): Uses the ideas of measure theory to construct a measure on the path space of

continuous functions.

• Andrey Kolmogorov (1931): Diffusions depend on drift and volatility, Kolmogorov equations.

• Wolfgang Döblin (1938-1940): Modern treatment of diffusions with a change of time.

• Kiyosi Itô (1944): Itô’s Lemma.

• Paul Malliavin (1978): Malliavin calculus.
3



4



The development of “dynamic programming”

• Calculus of variations: Issac Newton (1687), Johann Bernoulli (1696), Leonhard Euler (1733),

Joseph-Louis Lagrange (1755).

• 1930s and 1940s: many problems in aerospace engineering are hard to tackle with calculus of

variations. Example: minimum time interception problems for fighter aircraft.

• Closely related to the Cold War.

• Lev S. Pontryagin, Vladimir G. Boltyanskii, and Revaz V. Gamkrelidze (1956): Maximum principle.

• Magnus R. Hestenes, Rufus P. Isaacs, and Richard E. Bellman at RAND (1950s):

1. Distinction between controls and states.

2. Principle of optimality.

3. Dynamic programming.
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Figure 2. The mathematicians at Steklov: Lev Semyonovich Pontryagin,
Vladimir Grigor’evich Boltyanskii, and Revaz Valerianovich Gamkrelidze

ception problems were tabled to Pontryagin’s group; see Plail (1998), pp. 175ff.
Already prepared since 1952 by a seminar on oscillation theory and auto-

matic control that was conducted by Pontryagin and M. A. Aizerman, a promi-
nent specialist in automatic control,19 it was immediately clear that a time
optimal control problem was at hand there. In that seminar, firstly A. A. An-
dronov’s book on the theory of oscillations20 was studied.

However, to strengthen the applications also engineers were invited. Partic-
ularly, A. A. Fel’dbaum and A. J. Lerner focused the attention to the impor-
tance of optimal processes of linear systems for automatic control.21 Pontryagin
quickly noticed that Fel’dbaum’s method had to be generalized in order to solve
the problems posed by the military. First results were published by Pontryagin
and his co-workers Vladimir Grigor’evich Boltyanskii (born April 26, 1925) and
Revaz Valerianovich Gamkrelidze (born Feb. 4, 1927) in 1956. According to
Plail (1998), pp. 117ff., based on his conversation with Gamkrelidze on May 26,

the early spring of 1955. They proposed a fifth-order system of ordinary differential equations
related to aircraft maneuvers with three control variables two of which entered the equations
linearly and were bounded (see also Gamkrelidze, 2009, in this issue).

19See Aizerman (1958).
20See Andronov, Vitt, and Khaikin (1949). The second author of this book, A. A. Vitt, had

been sent to GULag where he died. His name was forcefully removed from the first edition,
but restored in the second and later editions. The GULag was the government agency that
administered the penal labor camps of the Soviet Union. GULag is the Russian acronym
for The Chief Administration of Corrective Labor Camps and Colonies of the NKVD, the
so-called People’s Commissariat for Internal Affairs, the leading secret police organization
of the Soviet Union that played a major role in its system of political repression.

21In 1949 and 1955, Fel’dbaum investigated control systems of second order where the
absolute value of the control has to stay on its extremum, but must change its sign once.
Such a behaviour of the optimal control was later called bang-bang. Lerner (1952) generalized
Fel’dbaum’s results to higher order systems with several constrained coordinates, to some
extent with suboptimal solutions only. For more on the evolving optimization in control
theory in the USSR, see Plail (1998), pp. 163ff., and Krotov and Kurzhanski (2005).

Figure 1: Lev S. Pontryagin, Vladimir G. Boltyanskii, and Revaz V. Gamkrelidze
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Figure 1. The mathematicians at RAND: Magnus R. Hestenes, Rufus P. Isaacs,
and Richard E. Bellman

research and analysis to the United States armed forces.6 Around the turn
of the decades in 1950 and thereafter, RAND simultaneously employed three
great mathematicians of special interest, partly at the same time: Magnus
R. Hestenes (1906–1991), Rufus P. Isaacs (1914–1981), and Richard E. Bell-
man (1920–1984).7 We firstly turn towards Hestenes.

Around 1950, Hestenes simultaneously wrote his two famous RAND research
memoranda No. 100 and 102; see Hestenes (1949, 1950). In these reports,
Hestenes developed a guideline for the numerical computation of minimum
time trajectories for aircraft in the advent of digital computers. In particular,
Hestenes’ memorandum RM-100 includes an early formulation of what later be-
came known as the maximum principle: the optimal control vector ah (angle of
attack and bank angle) has to be chosen in such a way that it maximizes the
Hamiltonian H along a minimizing curve C0. In his report, we already find the
clear formalism of optimal control problems with its separation into state and
control variables.

The starting point was a concrete optimal control problem from aerospace
engineering: in Hestenes’ notation, the equations of motion are given by

d

dt
(m~v) = ~T + ~L+ ~D + ~W ,

dw

dt
= Ẇ (v, T, h) ,

where the lift vector ~L and the drag vector ~D are known functions of the angle
of attack α and the bank angle β. The weight vector ~W has the length w. The
thrust vector T is represented as a function of velocity v = |~v| and altitude h.

6For more information on RAND, see Plail (1998), pp. 53ff.
7Hestenes has worked for RAND in 1948–1952, Isaacs in 1948–1954/55, and Bellman tem-

porarily in 1948 and 1949, and as salaried employee in 1952-1965.

Figure 2: Magnus R. Hestenes, Rufus P. Isaacs, and Richard E. Bellman
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Optimal control

• An agent maximizes:

max
{αt}t≥0

∫ ∞
0

e−ρtu (αt , xt) dt,

subject to:
dxt
dt

= µt (αt , xt) , x0 = x .

• Here, xt ∈ X ⊂ RN is the state, αt ∈ A ⊂ RM is the control, ρ > 0 is the discount factor,

µ (·) : A× X→ RN the drift, and u (·) : A× X→ R the instantaneous reward (utility).
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Hamilton-Jacobi-Bellman

William Hamilton (1805-1865) Carl Jacobi (1804-1851) Richard Bellman (1920-1984)
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The Hamilton-Jacobi-Bellman equation

• If we define the value function:

V (t, x) = max
{αs}s≥t

∫ ∞
t

e−ρ(s−t)u (αs , xs) ds,

then, under technical conditions, it satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

ρVt (x) =
∂V

∂t
+ max

α

{
u (α, x) +

N∑
n=1

µt,n (x , α)
∂V

∂xn

}
,

with a transversality condition limT→∞ e−ρTVT (x) = 0.
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HJB: proof

1. Apply the Bellman optimality principle (and limT→∞ e−ρTVT (x) = 0):

V (t0, x) ≡ max
{αs}t0≤s≤t

[∫ t

t0

e−ρ(s−t0)u (αs , xs) ds

]
+
[
e−ρ(t−t0)V (t, xt)

]

2. Take the derivative with respect to t with the Leibniz integral rule and limt→t0 :

0 = lim
t→t0

[
max
αt

e−ρ(t−t0)u (αt , x) +

[
d
(
e−ρ(t−t0)V (t, xt)

)]
dt

]
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Example: consumption-savings problem

• A household solves:

max
{ct}t≥0

∫ ∞
0

e−ρt log (ct) dt,

subject to:
dat
dt

= rat + y − ct , a0 = ā,

where r and y are constants.

• The HJB is:

ρV (a) = max
c

{
log (c) + (ra + y − c)

dV

da

}

• Intuitive interpretation.
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Example: solution

• We guess V (a) = 1
ρ log ρ+ 1

ρ

(
r
ρ − 1

)
+ 1

ρ log
(
a + y

r

)
.

• The first-order condition is:
1

c
=

dV

da
=

1

ρ
(
a + y

r

) ,
and hence:

c = ρ

Financial wealth︷︸︸︷
a +

Human wealth︷︸︸︷
y

r


• Then, we verify the HJB:

ρV (a) = log
(
ρ
(
a +

y

r

))
+
(
ra + y − ρ

(
a +

y

r

)) dV

da
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The Hamiltonian

• Assume µn (x , α) = µt,n (xn, α) (to simplify matters).

• Define the costates λnt ≡ ∂V
∂xn

(xt) in the HJB.

• Then, the optimal policies are those that maximize the Hamiltonian H (α, x , λ):

max
α



H(α,x,λ)︷ ︸︸ ︷
u (α, x) +

N∑
n=1

µn (x , α)λnt


• Notice: dλnt

dt = ∂2V
∂t∂xn

+ ∂2V
∂x2

n

dxt
dt .
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Pontryagin maximum principle

• Recall the Hamilton-Jacobi-Bellman (HJB) equation:

ρVt (x) =
∂V

∂t
+ max

α

{
u (α, x) +

N∑
n=1

µn (x , α)
∂V

∂xn

}

• If we take derivatives with respect to xn in the HJB, we obtain:

ρ
∂V

∂xn
=

∂2V

∂t∂xn
+
∂u

∂xn
+
∂µn

∂xn

∂V

∂xn
+ µn (x , α)

∂2V

∂x2
n

,

which combined with dλnt

dt = ∂2V
∂t∂xn

+ ∂2V
∂x2

n

dxt
dt yields:

dλnt
dt

= ρλnt −
∂H
∂xn

• Plus the transversality conditions, limT→∞ e−ρTλnT = 0.

20



Example: now with the maximum principle

• The Hamiltonian H (c , a, λ) = log (c) + λ (ra + y − c).

• The first order condition ∂H
∂c = 0:

1

c
= λ

• The dynamics of the costate dλt

dt = ρλt − ∂H
∂a = (ρ− r)λt .

• Then, by basic ODE theory:

λt = λ0e
(ρ−r)t ,

and ct = c0e
−(ρ−r)t .

• You need to determine the initial value c0 = ρ
(
a0 + y

r

)
using the budget constraint.

• But how do you take care of the filtration in the stochastic case?
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Stochastic calculus



Brownian motion

• Large class of stochastic processes.

• But stochastic calculus starts with the Brownian motion.

• A stochastic process W is a Brownian motion (a.k.a. Wiener process) if:

1. W (0) = 0.

2. If r < s < t < u : W (u)−W (t) and W (s)−W (r) are independent random variables.

3. For s < t : W (t)−W (s) ∼ N (0, t − s).

4. W has continuous trajectories.
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Simulated paths

• Notice how E [W (t)] = 0 and Var [W (t)] = t.
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Why do we need a new concept of integral?

• We will deal with objects such as the expected value function.

• But the value function is now a stochastic function because it depends on stochastic processes.

• How do we think about that expectation?

• More importantly, we need to deal with diffusions, which will include an integral.

• We cannot apply standard rules of calculus: Almost surely, a Brownian motion is nowhere

differentiable (even though it is everywhere continuous!).

• Brownian motion exhibits self-similarity (if you know what this means, the Hurst parameter of a

Brownian motion is H = 1
2 > 0).

• We need an appropriate concept of integral: Itô stochastic integral.
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The stochastic integral

• Recall that the Riemann-Stieltjes integral of a (deterministic) function g(t) with respect to the

(deterministic) function w(t) is:∫ t

0

g(s)dw(s) = lim
n→∞

n−1∑
k=0

g(tk) [w (tk+1)− w (tk)] ,

where t0 = 0 and tn = t.

• We want to generalize the Riemann-Stieltjes integral to an stochastic environment.

• Given a stochastic process g(t), the stochastic integral with respect to the Brownian motion W (t) is:∫ t

0

g(s)dW (s) = lim
n→∞

n−1∑
k=0

g(tk) [W (tk+1)−W (tk)] ,

where t0 = 0 and tn = t and the limit converges in probability.

• Notice: both the integrand and the integrator are stochastic processes and that the integral is a

random variable.
27



Mean of the stochastic integral

E
[∫ t

0

g(s)dW (s)

]
= E

[
lim

n→∞

n−1∑
k=0

g(tk) [W (tk+1)−W (tk)]

]

= lim
n→∞

n−1∑
k=0

g(tk)E [W (tk+1)−W (tk)]

= lim
n→∞

n−1∑
k=0

g(tk) · 0 = 0
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Variance of the stochastic integral

E

[(∫ t

0

g(s)dW (s)

)2
]

= Var

[
lim

n→∞

n−1∑
k=0

g(tk) [W (tk+1)−W (tk)]

]

= lim
n→∞

n−1∑
k=0

g2(tk)Var [W (tk+1)−W (tk)]

= lim
n→∞

n−1∑
k=0

g2(tk) (tk+1 − tk) =

∫ t

0

g2(s)ds

29



Differentiation in stochastic calculus

• In an analogous way that we can define a stochastic integral, we can define a new idea derivative

with respect to Brownian motion.

• Malliavin derivative.

• Applications in finance.

• However, in this course, we will not need to use it.
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Stochastic differential equations (SDEs)

• We define a stochastic differential equation (diffusion) as

dX (t) = µ (t,X (t)) dt + σ (t,X (t)) dW (t), X (0) = x ,

as a short-cut to express:

X (t) = x +

∫ t

0

µ (t,X (s)) ds +

∫ t

0

σ (s,X (t)) dW (s)

• µ (·) is the drift and σ (t,X (t)) the volatility.

• Any stochastic process (without jumps) can be approximated by a diffusion.
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Example I: Brownian motion with drift

• Simplest example (random walk with drift in discrete time)

dX (t) = µdt + σdW (t), X (0) = x0,

where:

X (t) = x0 +

∫ t

0

µds +

∫ t

0

σdW (s)

= x0 + µt + σW (t)

• Then X (t) ∼ N
(
x + µt, σ2t

)
. This is not stationary.

• Equivalent to a random walk with drift in discrete time.
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Example II: Ornstein-Uhlenbeck process

• Continuous-time counterpart of an AR(1) in discrete time:

dX (t) = θ
(
X − X (t)

)
dt + σdW (t), X (0) = x0

• Named after Leonard Ornstein and George Eugene Uhlenbeck, although in economics and finance is

a.k.a. the Vaš́ıček model of interest rates (Vaš́ıček, 1977).

• Stationary process with mean reversion:

E [X (t)] = x0e
−θt + X

(
1− e−θt

)
and

Var [X (t)] =
σ2

2θ

(
1− e−2θt

)
• Take the limits as t →∞!
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Euler–Maruyama method

• Except in a few cases (such as the ones before), we do not know how to get an analytic solution for a

SDE.

• How do we get an approximate numerical solution of a SDE?

• Euler–Maruyama method: Extension of the Euler method for ODEs.

• Given a SDE:

dX (t) = µ (t,X (t)) dt + σ (t,X (t)) dW (t), X (0) = x ,

it can be approximated by:

X (t + ∆t)− X (t) = µ (t,X (t)) ∆t + σ (t,X (t)) ∆W (t),

where ∆W (t)
iid∼ N (0,∆t).
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Euler–Maruyama method (Proof)

• If we integrate the SDE:

X (t + ∆t)− X (t) =

∫ t+∆t

t

µ (t,X (s)) ds +

∫ t+∆t

t

σ (s,X (t)) dW (s)

≈ µ (t,X (t)) ∆t + σ (t,X (t)) (W (t + ∆t)−W (t))

where W (t + ∆t)−W (t) = ∆W (t)
iid∼ N (0,∆t).

• The smaller the ∆t, the better the method will work.

• Let us look at some code.
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Stochastic calculus

• Now, we need to learn how to manipulate SDEs.

• Stochastic calculus = “normal” calculus + simple rules:

(dt)2 = 0, dt · dW = 0, (dW )2 = dt

• The last rule is the key. It comes from:

E
[
W (t)2

]
= Var [W (t)] = t,

and:

Var
[
W (t)2

]
= E

[
W (t)4

]︸ ︷︷ ︸
3t2

− E
[
W (t)2

]2
= 2t2 � t
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Functions of stochastic processes: Itô’s formula

• Chain rule in standard calculus. Given f (t, x) and x(t):

df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
=⇒ df =

∂f

∂t
dt +

∂f

∂x
dx

• Chain rule in stochastic calculus (Itô’s lemma). Given f (t,X ) and:

dX (t) = µ (t,X (t)) dt + σ (t,X (t)) dW (t),

we get:

df =

(
∂f

∂t
+
∂f

∂x
µ+

1

2

∂2f

∂x2
σ2

)
dt+

∂f

∂x
σdW
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Itô’s formula: proof

• Taylor expansion of f (t,X ):

df =
∂f

∂t
dt +

∂f

∂x
dX +

1

2

∂2f

∂x2
(dX )2 +

1

2

∂2f

∂t2
(dt)2 +

∂2f

∂t∂X
dt · dX

• Given the rules:

dX = µdt + σdW ,

(dX )2 = µ2 (dt)2 + σ2 (dW )2 + 2µσdtdW = σ2dt,

(dt)2 = 0,

dt · dX = µ (dt)2 + σdtdW = 0.

• Then:

df =

(
∂f

∂t
+
∂f

∂x
µ+

1

2

∂2f

∂x2
σ2

)
dt +

∂f

∂x
σdW
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Multidimensional Itô’s formula

• Given f (t, x1, x2, ..., xn), and

dXi (t) = µi (t,X1(t), ...,Xn(t)) dt + σi (t,X1(t), ...,Xn(t)) dWi (t),

i = 1, ..., n,

then

df =
∂f

∂t
dt +

n∑
i=1

∂f

∂xi
dXi +

1

2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
dXidXj
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Application: Geometric Brownian motion (GBM)

• Basic model for asset prices (non-negative):

dX (t) = µX (t)dt + σX (t)dW (t), X (0) = x0,

where

X (t) = x0 +

∫ t

0

µX (s)ds +

∫ t

0

σX (s)dW (s)

• How can we solve it?
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GBM solution using Itôs formula

• Define Z (t) = ln (X (t)) , the Itô’s formula gives us:

dZ (t) =

(
∂ ln (x)

∂t
+
∂ ln (x)

∂x
µx +

1

2

∂2 ln (x)

∂x2
σ2x2

)
dt

+
∂ ln (x)

∂x
σxdW

=

(
0 +

1

x
µx − 1

2

1

x2
σ2x2

)
dt +

1

x
σxdW

=

(
µ− 1

2
σ2

)
dt + σdW

=⇒ Z (t) = ln (x0) +

(
µ− 1

2
σ2

)
t + σW (t)

• Therefore:

X (t) = x0e
(µ− 1

2σ
2)t+σW (t)
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Dynamic programming with

stochastic processes



The problem

• An agent maximizes:

V0(x) = max
{αt}t≥0

E0

∫ ∞
0

e−ρtu (αt ,Xt) dt,

subject to:

dXt = µt (Xt , αt) dt + σt (Xt , αt) dWt , X0 = x .

• σ (·) : A× X→ RN .

• We consider feedback control laws αt = αt (Xt) (no improvement possible if they depend on the

filtration Ft).
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HJB equation with SDEs

ρVt (x) =
∂V

∂t
+ max

α

{
u (α, x) +

N∑
n=1

µt,n (x , α)
∂V

∂xn
+

1

2

N∑
n1,n2=1

(
σ2
t (x , α)

)
n1,n2

∂2V

∂xn1∂xn2

}
,

where σ2
t (x , α) = σt (x , α)σ>t (x , α) ∈ RN×N is the variance-covariance matrix.
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HJB with SDEs: proof

1. Apply the Bellman optimality principle:

Vt0 (x) = max
{αs}t0≤s≤t

Et0

[∫ t

t0

e−ρ(s−t0)u (αs ,Xs) ds

]
+ Et0

[
e−ρ(t−t0)Vt(Xt)

]
2. Take the derivative with respect to t, apply Itô’s formula and take limt→t0 :

0 = lim
t→t0

[
max
αt

e−ρ(t−t0)u (αt , x) +
Et0

[
d
(
e−ρ(t−t0)V (t,Xt)

)]
dt

]

Notice:

Et0

[
d
(
e−ρ(t−t0)V (t,Xt)

)]
= Et0

[
e−ρ(t−t0)

(
−ρV +

∂V

∂t
+ µ

∂V

∂x
+
σ2

2

∂2V

∂x2

)
dt

]
+e−ρ(t−t0)Et0

[
σ
∂V

∂x
dWt

]
︸ ︷︷ ︸

0
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The infinitesimal generator

• The HJB can be compactly written as:

ρV =
∂V

∂t
+ max

α
{u (α, x) +AV } ,

where A is the infinitesimal generator of the stochastic process Xt , defined as:

Af = lim
t↓0

E0 [f (Xt)]− f (x)

t

=
N∑

n=1

µn
∂f

∂xt,n
+

1

2

N∑
n1,n2=1

(
σ2
)
n1,n2

∂2f

∂xn1∂xn2

• Intuitively: the infinitesimal generator describes the movement of the process in an infinitesimal time

interval.
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Boundary conditions

• The boundary conditions of the HJB equation are not free to be chosen, they are imposed by the

dynamics of the state at the boundary ∂X.

• Only three possibilities:

1. Reflection barrier: The process is reflected at the boundary: dV
dx

∣∣∣∣
∂X

= 0.

2. Absorbing barrier: The state jumps at a different point y when the barrier is reached: V (x)

∣∣∣∣
∂X

= V (y).

3. State constraint: The policy αt guarantees that the process does not abandon the boundary.
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Example: Merton portfolio model

• An agent maximize its discounted utility:

V (x) = max
{ct ,∆t}t≥0

E
∫ ∞

0

e−ρt log (ct) dt,

by investing in ∆t shares of a stock (GBM) and saving the rest in a bond with return r :

dSt = µStdt + σStdWt

dBt = rBtdt

• The value of the portfolio evolves according to:

dXt = ∆tdSt + r (Xt −∆tSt) dt − ctdt

= ∆t (µStdt + σStdWt) + r (Xt −∆tSt) dt − ctdt

= [rXt + ∆tSt (µ− r)] dt + ∆tσStdWt − ctdt
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Merton model: The HJB equation

• We redefine one of the controls:

ωt =
∆tSt
Xt

• The HJB results in:

ρV (x) = max
c,ω

{
log (c) + [rx + ωx (µ− r)− c]

∂V

∂x
+
σ2ω2x2

2

∂2V

∂x2

}

• The FOC are:

1

c
− ∂V

∂x
= 0,

x (µ− r)
∂V

∂x
+ ωσ2x2 ∂

2V

∂x2
= 0
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Solution to Merton portfolio model

• Guess and verify:

V (x) =
1

ρ
log (x) + κ2,

∂V

∂x
=

1

ρx
,

∂2V

∂x2
= − 1

ρx2

with κ1 and κ2 constants.

• The FOC are:
1

c
− 1

ρx
= 0 =⇒ c = ρx ,

x (µ− r)
κ1

x
− ωσ2x2κ1

x2
= 0 =⇒ ω =

(µ− r)

σ2
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The case with Poisson processes

• The HJB can also be solved for the case of Poisson shocks.

• The state is now:

dXt = µ (Xt , αt ,Zt) dt, X0 = x , Z0 = z0.

• Zt is a two-state continuous-time Markov chain Zt ∈ {z1, z2}. The process jumps from state 1 to

state 2 with intensity λ1 and vice-versa with intensity λ2.

• The HJB in this case is

ρVti (x) =
∂Vi

∂t
+ max

α

{
u (α, x) + µ (x , α, zi )

∂Vi

∂x

}
+ λi (Vj − Vi ),

i , j = 1, 2, i 6= j , where Vi (x) ≡ V (x , zi ).

• We can have jump-diffusion processes (Lévy processes): HJB includes the two terms (volatility and

jumps).
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Viscosity solutions

• Relevant notion of “solutions” to HJB introduced by Pierre-Louis Lions and Michael G. Crandall in

1983 in the context of PDEs.

• Classical solution of a PDE (to be defined below) are too restrictive.

• We want a weaker class of solutions than classical solutions.

• More concretely, we want to allow for points of non-differentiability of the value function.

• Similarly, we want to allow for convex kinks in the value function.

• Different classes of “weaker solutions.”
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What is a viscosity solution?

• There are different concepts of what a “solution” to a PDE F
(
x ,Dw(x),D2w(x)

)
= 0, x ∈ X is:

1. “Classical” (Strong) solutions. There is a smooth function u ∈ C 2(X ) ∩ C(X̄ ) such that

F
(
x ,Du(x),D2u(x)

)
= 0, x ∈ X .

• Hard to find for HJBs.

2. Weak solutions. There is a function u ∈ H1(X ) (Sobolev space) such that for any function φ ∈ H1(X ),

then
∫
X
F
(
x ,Du(x),D2u(x)

)
φ(x)dx = 0, x ∈ X .

• Problem with uniqueness in HJBs.

3. Viscosity solutions. There is a locally bounded u that is both a subsolution and a supersolution of

F
(
x ,Dw(x),D2w(x)

)
= 0, x ∈ X .

• If it exists, it is unique.
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Subsolutions and supersolutions

• An upper semicontinuous function u in X is a “subsolution” if for any point x0 ∈ X and any C 2

function φ ∈ C 2(X ) such that φ(x0) = u(x0) and φ≥u in a neighborhood of x0, we have:

F (x0, φ(x0),Dφ(x0),D2φ(x0))≤0

• An upper semicontinuous function u in X is a “supersolution” if for any point x0 ∈ X and any C 2

function φ ∈ C 2(X ) such that φ(x0) = u(x0) and φ≤u in a neighborhood of x0, we have:

F (x0, φ(x0),Dφ(x0),D2φ(x0))≥0
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More on viscosity solutions

• Viscosity solution is unique.

• A baby example: consider the boundary value problem F (u′) = |u′| − 1 = 0, on (−1, 1) with

boundary conditions u(−1) = u(1) = 0. The unique viscosity solution is the function u(x) = 1− |x |.

• Coincides with solution to sequence problem of optimization.

• Numerical methods designed to find viscosity solutions.

• Check, for more background, User’s Guide to Viscosity Solutions of Second Order Partial Differential

Equations by Michael G. Crandall, Hitoshi Ishii, and Pierre-louis Lions.

• Also, Controlled Markov Processes and Viscosity Solutions by Wendell H. Fleming and Halil Mete

Soner.
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Finite difference method



Solving dynamic programming problems = solving PDEs

• We want to numerically solve the Hamilton-Jacobi-Bellman (HJB) equation:

ρVti (x) =
∂Vi

∂t
+ max

α

{
u (α, x) +

N∑
n=1

µnt (x , α, zi )
∂Vi

∂xn

+ λi (Vj − Vi )

+
1

2

N∑
n1,n2=1

(
σ2
t (x , α)

)
n1,n2

∂2Vi

∂x1∂xn2

}
,

with a transversality condition limT→∞ e−ρTVT (x) = 0, and some boundary conditions defined by

the dynamics of Xt .
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Overview of methods to solve PDEs

1. Perturbation: consider a Taylor expansion of order n to solve the PDEs around the deterministic

steady state (not covered here, similar to discrete time).

2. Finite difference: approximate derivatives by differences.

3. Projection (Galerkin): project the value function over a subspace of functions (non-linear version

covered later in the course).

4. Semi-Lagragian. Transform it into a discrete-time problem (not covered here, well known to

economists)
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A (limited) comparison from Parra-Álvarez (2018)
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Numerical advantages of continuous-time methods: Preview

1. “Static” first order conditions. Optimal policies only depend on the current value function:

∂u

∂α
+

N∑
n=1

∂µn

∂α

∂V

∂xn
+

1

2

N∑
n1,n2=1

∂

∂α

(
σ2
t (x , α)

)
n1,n2

∂2V

∂xn1∂xn2

= 0

2. Borrowing constraints only show up in boundary conditions as state constraints.

• FOCs always hold with equality.

3. No need to compute expectations numerically.

• Thanks to Itô’s formula.

4. Convenient way to deal with optimal stopping and impulse control problems (more on this later

today).

5. Sparsity (with finite differences).
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Our benchmark: consumption-savings with incomplete markets

• An agent maximizes:

max
{ct}t≥0

E0

[∫ ∞
0

e−ρtu(ct)dt

]
,

subject to:

dat = (zt + rat − ct) dt, a0 = ā

where zt ∈ {z1, z2} is a Markov chain with intensities z1 → z2 : λ1 and z2 → z1 : λ2.

• Exogenous borrowing limit:

at ≥ −φ
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The Hamilton-Jacobi-Bellman equation

• The value function in this problem:

vi (a) = max
{ct}t≥0

E0

[∫ ∞
0

e−ρtu(ct)ds|a0 = a, z0 = zi

]
must satisfy the HJB equation:

ρvi (a) = max
c
{u(c) + si (a) v ′i (a)}+ λi (vj(a)− vi (a)) ,

where si (a) is the drift,

si (a) = zi + ra− c (a) , i = 1, 2

• The first-order condition is:

u′(ci (a)) = v ′i (a)
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How can we solve it?

• The model proposed above does not yield an analytical solution.

• Therefore we resort to numerical techniques in order to find a solution.

• TIn particular, we employ an upwind finite difference scheme (Achdou et al., 2017).

• This scheme converges to the viscosity solution of the problem.
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Grid

• We approximate the value function v(a) on a finite grid with step ∆a : a ∈ {a1, ..., aJ}, where

aj = aj−1 + ∆a = a1 + (j − 1) ∆a

for 2 ≤ j ≤ J. The bounds are a1 = −φ and aJ = a∗.

• We use the notation vj ≡ v(aj), j = 1, ..., J.
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Finite differences

• v ′(aj) can be approximated with a forward (F ) or a backward (B) approximation,

v ′i (aj) ≈ ∂F vi,j ≡
vi,j+1 − vi,j

∆a

v ′i (aj) ≈ ∂Bvi,j ≡
vi,j − vi,j−1

∆a
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Forward and backward approximations
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Upwind scheme

• The choice of ∂F vi,j or ∂Bvi,j depends on the sign of the drift function si (a) = zi + ra− (u′)
−1

(v ′i (a)):

1. If siF (aj) ≡ zi + raj − (u′)
−1

(∂F vi,j)> 0 −→ ci,j = (u′)
−1

(∂F vi,j).

2. Else, if siB (aj) ≡ zi + raj − (u′)
−1

(∂Bvi,j)< 0 −→ ci,j = (u′)
−1

(∂Bvi,j).

3. Otherwise, si (a) = 0 −→ ci,j = zi + raj .

• Why? Key for stability.
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HJB approximation, I

• Let superscript n denote the iteration counter.

• The HJB equation is approximated by:

vn+1
i,j − vn

i,j

∆
+ ρvn+1

i,j = u(cni,j) + sni,j,F1sni,j,F>0∂F v
n+1
i,j

+sni,j,B1sni,j,B<0∂Bv
n+1
i,j

+λi
(
vn+1
−i,j − vn+1

i,j

)
,

for j = 1, ..., J, where 1 (·) is the indicator function and:

sni,j,F = (zi + raj)− (u′)
−1 (

∂F v
n
i.j

)
sni,j,B = (zi + raj)− (u′)

−1 (
∂Bv

n
i.j

)
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HJB approximation, II

• Collecting terms, we obtain:

vn+1
i,j − vn

i,j

∆
+ ρvn+1

i,j = u(cni,j) + vn+1
i,j−1x

n
i,j + vn+1

i,j yn
i,j + vn+1

i,j+1z
n
i,j + vn+1

−i,j λi ,

where:

xni,j ≡ −
sni,j,B1sni,j,B<0

∆a
,

yn
i,j ≡ −

sni,j,F1sni,j,F>0

∆a
+

sni,j,B1sni,j,B<0

∆a
− λi ,

zni,j ≡
sni,j,F1sni,j,F>0

∆a
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Boundary conditions

• State constraint a ≥ 0 −→ sni,1,B = 0 −→ xni,1 = 0.

• State constraint a ≤ a∗ −→ sni,J,F = 0 −→ zni,J = 0.
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Matrix notation

• The HJB is a system of 2J linear equations which can be written in matrix notation as:

1

∆

(
vn+1 − vn

)
+ ρvn+1 = un + Anvn+1

• This is equivalent to a discrete-time, discrete-space dynamic programming problem
(

1
∆ = 0

)
:

v = u + βΠv ,

where Π = I + 1
(1−ρ)A and β = (1− ρ) .
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Matrix A

• Matrix A is the discrete-space approximation of the infinitesimal generator A.

• Advantage: this is a sparse matrix.

An =



yn
1,1 zn1,1 0 · · · λ1 0 0 · · · 0

xn1,2 yn
1,2 zn1,2 · · · 0 λ1 0 · · · 0

0 xn1,3 yn
1,3 zn1,3 · · · 0 λ1 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0
. . . xn1,J yn

1,J 0 0 0 0 λ1

λ2 0 0 · · · yn
2,1 zn2,1 0 · · · 0

0 λ2 0 · · · xn2,2 yn
2,2 zn2,2 0 · · ·

0 0 λ2 · · · 0 xn2,3 yn
2,3 zn2,3 0

...
. . .

. . .
...

...
. . .

. . .
. . .

. . .

0 0 0 λ2 0 · · · 0 xn2,J yn
2,J


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How to solve it

• Given un =



u(cn1,1)
...

u(cn1,J)

u(cn2,1)
...

u(cn
2,J

)


, vn+1 =



vn+1
1,1
...

vn+1
1,J

vn+1
2,1
...

vn+1
2,J


,

the system can in turn be written as:

Bnvn+1 = bn, Bn =

(
1

∆
+ ρ

)
I − An, bn = un +

1

∆
vn
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The algorithm

1. Begin with an initial guess v0
i,j =

u(zi+raj )
ρ .

2. Set n = 0.

3. Then:

3.1 Policy update: Compute ∂F v
n
i.j , ∂Bv

n
i.j , and cni,j .

3.2 Value update: Compute vn+1
i,j solving the linear system of equations.

3.3 Check: If vn+1
i,j is close enough to vn

i,j , stop. If not, set n := n + 1 and go to 1.

73



Results
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The case with diffusions

• Assume now that labor productivity evolves according to a Ornstein–Uhlenbeck process:

dzt = θ(ẑ − zt)dt + σdBt ,

on a bounded interval [z
¯
, z̄ ] with z

¯
≥ 0, where Bt is a Brownian motion.

• The HJB is now:

ρV (a, z) = max
c≥0

u(c) + s (a, z , c)
∂V

∂a
+ θ(ẑ − z)

∂V

∂z
+
σ2

2

∂2V

∂z2
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The new grid

• We approximate the value function V (a, z) on a finite grid with steps ∆a and ∆z : a ∈ {a1, ..., aI},
z ∈ {z1, ..., zJ}.

• We use now the notation Vi,j := V (ai , zj), i = 1, ..., I ; j = 1, ..., J.

• It does not matter if we consider forward or backward for the first derivative with respect to the

exogenous state.

• Use central for the second derivative:

∂V (ai , zj)

∂z
≈ ∂zVi,j :=

Vi,j+1 − Vi,j

∆z
,

∂2V (ai , zj)

∂z2
≈ ∂zzVi,j :=

Vi,j+1 + Vi,j−1 − 2Vi,j

(∆z)2
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HJB approximation

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u(cni,j) + V n+1
i−1,j%i,j + V n+1

i,j βi,j + V n+1
i+1,jχi,j + V n+1

i,j−1ξ + V n+1
i,j+1ςj ,

%i,j = −
sni,j,B1sni,j,B<0

∆a
,

βi,j = −
sni,j,F1sni,j,F>0

∆a
+

sni,j,B1sni,j,B<0

∆a
−θ(ẑ − zj)

∆z
− σ2

(∆z)2 ,

χi,j =
sni,j,F1sni,j,F>0

∆a
,

ξ =
σ2

2 (∆z)2 ,

ςj =
σ2

2 (∆z)2 +
θ(ẑ − zj)

∆z
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Boundary conditions

• The boundary conditions with respect to z are:

∂V (a, z
¯
)

∂z
=
∂V (a, z̄)

∂z
= 0,

as the process is reflected.

• At the boundaries in the j dimension, the HJB becomes:

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u(cni,1) + V n+1
i−1,j%i,1 + V n+1

i,1 (βi,1 + ξ) + V n+1
i+1,1χi,1 + V n+1

i,2 ς1,

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u(cni,J) + V n+1
i−1,J%i,J + V n+1

i,J (βi,J + ςJ) + V n+1
i+1,Jχi,J + V n+1

i,J−1ξJ
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The problem

• In matrix notation as:
V n+1 − V n

∆
+ ρV n+1 = un + AnV n+1,

where (sparsity again):

An =



β1,1 + ξ χ1,1 0 · · · 0 ς1 0 0 · · · 0

%2,1 β2,1 + ξ χ2,1 0 · · · 0 ς1 0 · · · 0

0 %3,1 β3,1 + ξ χ3,1 0 · · · 0 ς1 · · · 0
...

. . .
. . .

. . .
. . . 0 0 0 · · · 0

0 0 0 %I ,1 βI ,1 + ξ χI ,1 0 0 · · · 0

ξ 0 · · · 0 %1,2 β1,2 χ1,2 0 · · · 0

0 ξ · · · 0 0 %2,2 β2,2 χ2,2 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

0 0 0 0 · · · 0 0 %I−1,J βI−1,J + ςJ χI−1,J

0 0 0 0 · · · 0 0 0 %I ,J βI ,I + ςJ


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Results
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Why does the finite difference method work?

• The finite difference method converges to the viscosity solution of the HJB as long as it satisfies

three properties:

1. Monotonicity.

2. Stability.

3. Consistency.

• The proposed method does satisfy them (proof too long, check Fleming and Soner, 2006).
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