
Chapter 7

Dynamic Notebooks: Jupyter,

Markdown, and Pandoc

In this chapter, we describe how to create, handle, and share dynamic notebooks. The

objective is to provide you with easy-to-use interactive notebooks, a modern-day equivalent

of traditional laboratory notebooks, where scientists recorded the steps of their investigations,

their inputs, and their findings. An interactive notebook is a convenient medium to mix text,

commands, and output such as graphs or tables in a shape that you can store and share with

third parties. For example, you can easily generate full static and simplified HTML, LATEX,

and pdf files and reveal.js slides (check https://revealjs.com/#/) from a Jupyter’s

notebook with minimal effort. This will help you to achieve the goals of good software

engineering (reproducibility, documentation, etc.) outlined in Chapter 2.

In Section 7.1, we will introduce Jupyter, a popular and open-source interactive notebook.

Jupyter’s notebooks are organized around cells, their fundamental building block. The menu

options that create and manipulate cells are intuitive to navigate and require very little

explanation. Jupyter, therefore, provides a simple but flexible environment for researchers

and teachers in economics who want to develop software and document their progress with a

minimal investment in learning how to work with a notebook. In Section 7.2, we will briefly

describe Markdown, a lightweight markup language that is both readable and versatile and

that provides many of the capabilities of LATEX.1 We will close in Section 7.3 with a concise

introduction to Pandoc, a translator from one markup language to another. Pandoc will help

you move from Markdown to LATEXor HTML (or even Word) and vice versa without fuss.

1A markup language creates a file that is annotated by tags and where there is a difference between
the document and the text that the document generates. LATEXis an example of a markup language with
typesetting instructions. XML is an example of a markup language with structural markers. Markup languages
stand in comparison with word processors based on the idea os WYSIWYG (what you see is what you get).

49

https://revealjs.com/#/

50 CHAPTER 7. DYNAMIC NOTEBOOKS: JUPYTER, MARKDOWN, AND PANDOC

7.1 Jupyter

Jupyter is a network protocol for interactive computing.2 The name is a portmanteau of

Julia, Python, and R, three programming languages for which it was designed. However,

today you can also employ Jupyter with many other languages and frameworks such as

Scala, Haskell, Ruby, Spark and, with the Cling interpreter, even with C++.3 Jupyter

evolved from IPython, an (I)nteractive Python shell (thus its name). As the shell grew to

allow its use with other programming languages, it made sense to transition to a language-

agnostic setup.

Figure 7.1: Notebook components

Jupyter allows you to introduce instructions in the language of choice, send them to

the kernel of that language for execution, display the result, and store it, and all within

through your browser. The structure of the system appears in Figure 7.1, from the Jupyter’s

documentation webpage.4

Technically, Jupyter creates a notebook that is a JavaScript Object Notation (JSON;

pronounced “jay-son”) file and the notebook server communicates both with the browser

(front-end; through HTTP and websockets) and the kernel (the back-end; through ØMQ, an

2See http://jupyter.org/ for further details and documentation and https://blog.jupyter.org/ for
a blog on the project with news and updates. An introductory textbook is Toomey (2016).

3https://github.com/root-project/cling. Note that Cling generates interpreted code, not compiled
one.

4https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html.

http://jupyter.org/
https://blog.jupyter.org/
https://github.com/root-project/cling
https://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html.

7.1. JUPYTER 51

asynchronous messaging library). JSON is an open-standard format for data transmission

that aims at being both simple to read and write for humans and easy to parse by computers.

It is organized around collections of name/value pairs and ordered lists of values. Normal

users of Jupyter do not need any knowledge of JSON, although the notebook will have an

option to edit its JSON metadata for advanced configuration.5

You can run Jupyter online at https://try.jupyter.org/ without the need of installing

it in your computer (or the support for the programming language that you employ). If you

are a Julia, you can also run https://www.juliabox.com/. These online tools will give

you much of the capabilities of Jupyter right away. They are a great way to get a taste for

Jupyter and for experimenting with languages such as Julia, Python, and R with next to

zero start-up cost.

However, eventually, you may want to install Jupyter in your computer and not having

to depend on a (potentially slow) remote server and an internet connection. In Chapter 8,

we will suggest that you install JuliaPro, a powerful Julia distribution that comes with

Jupyter bundled. Perhaps you can jump to that chapter and read the section on how to in-

stall JuliaPro and get Jupyter to work with your OS. If you do not want to install JuliaPro,

you can follow the instructions in https://jupyter.readthedocs.io/en/latest/install.

html#install and install Anaconda, a very complete Python distribution with extra compo-

nents gathered toward data science such as Spyder.6 Once you have installed any of these

tools, Jupyter will rely on your default browser to get and display information. If that does

not suit you, you can either change your default browser or modify Jupyter’s configuration

to force the server use a different browser than your default (check the internet to learn how

to do it in your OS).

There is also additional optional material for installation. First, you can install Jupyter

Widgets, which will provide you with widgets such as sliders, textboxs, status bars, etc.

You can learn more about them at https://ipywidgets.readthedocs.io/en/stable/.

Second, other widgets to include inteactive tables, graphs, and maps and other visual-

ization tools are available at http://jupyter.org/widgets.html. Third, you can install

JupyterHub, a multi-user Hub, for example, to teach a class on computational methods

(https://jupyterhub.readthedocs.io/en/latest/). You probably will not need any of

these extensions until you become an expert user of Jupyter, so we will ignore them for the

moment.

When you enter into the notebook, either online or in the version installed in your com-

5See https://www.json.org/. JSON’s syntax and conventions would be very familiar to programmers
with experience in “curly brackets” languages such as C, C++, Java, JavaScript, or Python. JSON can
interact, however, with nearly all major (and most minor) programming languages.

6https://pythonhosted.org/spyder/.

https://try.jupyter.org/
https://www.juliabox.com/
https://jupyter.readthedocs.io/en/latest/install.html#install
https://jupyter.readthedocs.io/en/latest/install.html#install
https://ipywidgets.readthedocs.io/en/stable/
http://jupyter.org/widgets.html
https://jupyterhub.readthedocs.io/en/latest/
https://www.json.org/
https://pythonhosted.org/spyder/.

52 CHAPTER 7. DYNAMIC NOTEBOOKS: JUPYTER, MARKDOWN, AND PANDOC

puter,7 you will see something similar to Figure 7.2. The local address will be of the form

http://localhost:8889/tree? or similar) (in this and all the next figures, we are deleting

the OS- and browser-specific menus at the outer frame of the display; the figure shows what

you see inside your browser window).

Figure 7.2: Entry into Jupyter

Let us inspect us the display. First, at the top left, you see the Jupyter logo. You can

always click on it to go back to the original homepage that appeared at the start of your

session. On the top right you have a Logout button to left Jupyter. Below this top line,

and occupying nearly all the display, there is a Files tab with a directory of folders (in this

case, the online folders provided by the Project Jupyter) and notebooks, with extension

ipynb . The folders and notebooks are ordered either by name or by last modification. You

can click on the corresponding buttons to change the criteria and decide whether you want

an ascending or descending order. To the left of the name of each folder or file there is

white empty box. If you click on it, a menu will appear to perform standard files operations

(duplicate, shutdown, view, edit, delete). duplicate is particularly useful to have

a copy of your notebook for experimentation. You also have a checkbox with a drop-down

menu to select Folders, All Notebooks, Running and Files .

To the right of the Files tab you will see two other tabs: Running and Clusters .

The Running will display the OS terminals and notebooks being run at any given moment

7How to enter into the notebook will depend on your choice of interaction with Jupyter. In Chapter 8 we
describe how to jumpstart Jupyter from JuliaPro. The online versions are intuitive to open once you go to
their webpages and click on the menus.

7.1. JUPYTER 53

(we will describe below how to initiate a terminal), with an option to shut them down and

information on their last change. The Clusters tab is for working with clusters and we can

ignore it in this chapter.8

In the top right corner of the display, you can find the new checkbox, where a drop-down

menu allows you to select the language that you want for your notebook or open a plain text

file, create a folder, or initiate a terminal with your OS. You also have a button to upload

a previous notebook or you can just drag-and-drop an existing one and a refresh button to

update the display. If you select, for example, Julia, for your new notebook, you will see

something similar to Figure 7.3.

Figure 7.3: A Julia notebook

Let us inspect this new display. On the top left, close to the Jupyter logo, you will see

Untitled , the default name for your notebook. If you click on it, you can change the name

to something more memorable, in this case Example . Jupyter will assign the extension

ipynb automatically.

The next thing you will note is a cell with a blue line at the left that starts with In []: .

By clicking on it, you can type any text or code that you want. For example, we can type

some basic text information and, in the menu button whose first option is Code , we can

select Markdown to tell the notebook this is Markdown text, and then we click on Run , to

get something like Figure 7.4. When we cover Markdown in Section 7.2, you will learn how to

write sophisticated text with documentation of your code, your procedures, etc. For example

you could use text cells to describe the main goal of the project or to explain where the data

8This would also require the installation of IPython parallel . See https://github.com/ipython/

ipyparallel for documentation.

https://github.com/ipython/ipyparallel
https://github.com/ipython/ipyparallel

54 CHAPTER 7. DYNAMIC NOTEBOOKS: JUPYTER, MARKDOWN, AND PANDOC

comes from and how you are loading it from some files.

Figure 7.4: A first cell

You can do the same with a short piece of code (you do not need to worry too much about

the syntax of Julia at this moment, although it should be rather self-explanatory) except

that you select the option Code and click either Run or Swift+return . The result, with

Out [2]: , appears in Figure 7.5.

Figure 7.5: More operations

During the computation time (which, here, would be trivial but that it can take awhile

7.1. JUPYTER 55

in more complex evaluations), you will see In [*]: . There is a stop button to interrupt the

evaluation if desired.

You can also run more sophisticated code, such as a creating a graph as displayed in

Figure 7.6, where we load a plotting package into Julia and use it to plot the sine and cosine

functions.

Figure 7.6: A first cell

You can explore the rest of the menus and buttons yourself. You will discover buttons to

insert cell, to cut, copy, and paste them, and to move them up and down. Also, you can set

up a checkpoint, a state of the notebook to which you can revert if the next steps were not

satisfactory for you, and some security options to avoid sharing code with malicious software

embedded.

The last interesting feature is in the menu File>Download as . You will see a number

of choice of formats to download your notebook, including HTML, Markdown, LATEX, and pdf

files. Generating the pdf file requires that you have all the required LATEXpackages. In Mac,

in addition, you need the commands for fonts in the terminal:

56 CHAPTER 7. DYNAMIC NOTEBOOKS: JUPYTER, MARKDOWN, AND PANDOC

sudo tlmgr install adjustbox

sudo tlmgr install collection-fontsrecommended

and XQuartz installed.

Finally, you can share your notebooks on your Github repository with Binder, https:

//mybinder.org/.

7.2 Markdown

Markdown is a lightweight markup language. With many less instructions than LATEX, it can

provide you with much of the power of the later. Markdown allows for literate programming

and report generation.

See https://daringfireball.net/projects/markdown/ for the whole syntax and doc-

umentation of Markdown and Mailund (2017) for a complete review.

Some basic commands. First headers (you can go up to level 6):

Header level 1

Header level 2

Header level 3

Extensions Julia: Weave.

Extensions R: Knitr, Sweave, and rmarkdown.

7.3 Pandoc

See, again, Mailund (2017) and https://pandoc.org/.

https://mybinder.org/
https://mybinder.org/
https://daringfireball.net/projects/markdown/
https://pandoc.org/

	Why High-Performance Computing in Economics?
	Computation and Economic Theory

	Why Software Engineering?
	The Goal
	Correctness
	Efficiency
	Maintainability
	Reproducibility
	Documentation
	Scalability
	Portability

	The Means
	Textbooks and classic monographs
	The manual: your best friend
	Additional resources

	Tools and Techniques
	Warnings

	OS and Basic Utilities
	Unix Tutorial
	Version Control: Git
	Getting Started
	Configuring Git
	Creating a Repository
	Ignoring Things
	Tracking Changes

	Git File Structure
	Staging Area
	Git Branches and Merging
	Dealing with Conflicts
	Rebase, Revert, & Remove

	Hosting
	Publishing & Licensing
	Collaboration

	Conclusion

	Make Tutorial
	Setup
	Makefile
	Run Make
	Conclusion

	Dynamic Notebooks: Jupyter, Markdown, and Pandoc
	Jupyter
	Markdown
	Pandoc

	Julia Tutorial
	Why Julia?
	Installing Julia
	Packages
	Types
	Fundamental commands
	Variables
	Arithmetic operators
	Logical operators
	Boolean operators and ascertain functions
	Standard mathematical functions

	Arrays
	Vectors
	Matrices
	Sparse matrices
	Characters
	Strings
	I/O

	Programming Structures
	Functions
	Recursion, closures, and currying
	MapReduce
	Loops
	Conditionals

	Other Data Structures
	Tuples
	Dictionaries
	Sets
	Composite types
	Mutable Composite Types
	Parametric Composite Types
	Type Union

	Metaprogramming
	Plots
	Random Numbers
	Multiple Files
	Timing
	Parallel
	Some Advanced Topics
	A Worked-out Example

