
Chapter 6

Make Tutorial

Make is a versatile tool which can run commands to read files, process these files in some way

(such as compiling and linking them), and write out the processed files.1 This can be quite

useful whenever edits are made since Make will automate all of the reprocessing. For example,

in software development, Make is used to compile source code into executable programs or

libraries. Make can also be used to:

1. Run scripts on data files to get summaries or plots.

2. Parse and combine text files and plots to create papers.

Imagine writing a book with all of the above and having all your plots and tables seamlessly

update when you just say change a number in a part of your code.

Make is designed so as to only update files when they need to be. Specifically, it tracks the

dependencies between files it creates and files used to create them. If one of the original files

(e.g. a data file) is changed, then Make knows to recreate, or update, the files that depend

upon this file (e.g. a plot). Make is called a “build tool”—it builds data files, plots, papers,

programs, etc. There are now many build tools available, all of which are based on the same

concepts as Make.

6.1 Setup

Make is founded upon Unix, so you should have basic familiarity with Unix commands before

learning Make.

1We’ve abridged the wonderful tutorial at Software Carpentry for our own purposes, https://

swcarpentry.github.io/make-novice/, in accordance with their creative commons license, https:

//creativecommons.org/licenses/by/4.0/. An in-depth manual for Make is http://www.gnu.org/

software/make/manual/make.html.

39

https://swcarpentry.github.io/make-novice/
https://swcarpentry.github.io/make-novice/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

40 CHAPTER 6. MAKE TUTORIAL

Download Make

Opening your Terminal and typing make -v will give the version of Make on your computer

(or an error if it’s not installed). Linux systems will generally have Make already installed.

On Macs, downloading Xcode from the App Store will automatically install Make. Go to

https://github.com/swcarpentry/windows-installer for a Windows version of Make.

Download Tutorial Code

This tutorial illustrates how to use Make in the context of a toy project, https://swcarpentry.

github.io/make-novice/files/make-lesson.zip. (If you would like to follow along by

running the code you will need Python, at https://www.anaconda.com/download/#macos.)

Set the downloaded project folder “make-lesson” as your current working directory. Here

are the contents of our project:

|- books

| |- abyss.txt

| |- isles.txt

| |- last.txt

| |- LICENSE_TEXTS.md

| |- sierra.txt

|- plotcount.py

|- wordcount.py

|- zipf_test.py

There are text files of various books in the “books” folder, as well as three Python programs

to analyze them.

For instance, the Python program “wordcount.py” counts the frequency each word in a

text file.

$ python wordcount.py books/isles.txt isles.dat

$ python wordcount.py books/abyss.txt abyss.dat

This outputted the frequency of words in “isles.txt” and “abyss.txt” to new data files “isles.dat”

and “abyss.dat.” (We will not use “plotcount.py” which makes count plots.)

The Python program “zipf_test.py” uses these data files to test “Zipf’s law.”

$ python zipf_test.py isles.dat abyss.dat > results.txt

The output of this analysis is in “results.txt.”

https://github.com/swcarpentry/windows-installer
https://swcarpentry.github.io/make-novice/files/make-lesson.zip
https://swcarpentry.github.io/make-novice/files/make-lesson.zip
https://www.anaconda.com/download/#macos
https://en.wikipedia.org/wiki/Zipf%27s_law

6.2. MAKEFILE 41

The purpose of Make is to automate all these Unix commands in a special way. That

is, when any file is altered, we want all of the files that depend on it to update—without

unnecessarily updating any other files.

6.2 Makefile

Similar to a shell script, we can create a Makefile to automate processing of the texts. Let

us create a new file called “Makefile” (no extension) with the following content:

Count words.

isles.dat : books/isles.txt

python wordcount.py books/isles.txt isles.dat

(Warning: Make is very particular about whitespace in the Makefile. Certain parts of the

code have to be indented with a tab and not spaces. Further, copying and pasting code from

pdfs can lead to incorrect newline characters.)

Let us go through each line of this short Makefile:

• The “#” denotes a comment.

• “isles.dat” is a target, a file to be created, or built.

• “books/isles.txt” is a dependency, a file that is needed to build or update the target.

Targets can have zero or more dependencies.

• The colon “:” separates targets from dependencies.

• Here, “python wordcount.py books/isles.txt isles.dat” is an action. This builds or up-

dates the target using the dependencies. Targets can have zero or more actions. These

actions form a recipe to build the target from its dependencies and can be considered

like a shell script.

• Actions are indented using a single TAB character, not 8 spaces. (If the difference

between spaces and a TAB character isn’t obvious in your editor, try moving your

cursor from one side of the TAB to the other. It should jump four or more spaces.)

• Together, the target, dependencies, and actions form a rule.

Our rule above describes how to build the target “isles.dat” using the action “python word-

count.py” and the dependency “books/isles.txt.”

42 CHAPTER 6. MAKE TUTORIAL

6.3 Run Make

To build the first target in a Makefile, you need simply type make into your Terminal.

$ make

python wordcount.py books/isles.txt isles.dat

When the Makefile has multiple targets, you can specify which one to build.

$ make isles.dat

If the target “isles.dat” has been updated more recently than the dependency “books/isles.txt,”

then Make will not update the target.

$ make

make: `isles.dat' is up to date.

$ touch books/isles.txt

$ make

python wordcount.py books/isles.txt isles.dat

If we ask Make to build a file that already exists and is not a target, then it will tell us

“nothing to be done.”

$ make wordcount.py

make: Nothing to be done for `wordcount.py'.

Make will throw an error trying to build a file that does not exist and is not a target.

$ make Not_a_File

make: *** No rule to make target `Not_a_File'. Stop.

When Make is called, it automatically searches the working directory for a file titled “Make-

file.” However, if we call it something else we need to tell Make where to find it. This we can

do using the -f flag. For example, if our Makefile is named “MyOtherMakefile,” we can

build it with:

$ make -f MyOtherMakefile

Phony Targets

Suppose we want to remove all our data files *.dat. We can introduce a new target “clean,”

and associated cleaning rule, to the end of our Makefile.

6.3. RUN MAKE 43

.PHONY : clean

clean :

rm -f *.dat

Here, the target “clean” is “.PHONY” in the sense that it doesn’t refer to a file. (That’s what

this first line says.) Otherwise, if there were a file called “clean,” Make would not execute the

rule because the file would be up to date as it has no dependencies. We can now execute the

cleaning rule:

$ make clean

rm -f *.dat

Multiple Targets

Let’s add another rule to the middle of the Makefile:

abyss.dat : books/abyss.txt

python wordcount.py books/abyss.txt abyss.dat

This outputs the frequency of words in “abyss.txt” to a new “abyss.dat” file. We can now

build the target “abyss.dat:”

$ make abyss.dat

python wordcount.py books/abyss.txt abyss.dat

As the Makefile gets larger, there may be a variety of data file targets that we would like

to be able to build all at once. One way of doing this would be with a phony target “dats”

which depends on all of the targets we want to build. Let’s put the following at the beginning

of the Makefile so that it is the default target.

.PHONY : dats

dats : isles.dat abyss.dat

We can now build all the data files with either “make” or “make dats:”

$ make dats

python wordcount.py books/isles.txt isles.dat

python wordcount.py books/abyss.txt abyss.dat

This is an example of a rule that has dependencies that are targets of other rules. When Make

runs, it will check to see if the dependencies exist and, if not, will see if rules are available

44 CHAPTER 6. MAKE TUTORIAL

that will create these. If such rules exist it will invoke these first, otherwise Make will raise

an error.

Duplication

Our Makefile currently looks like:

Count words.

.PHONY : dats

dats : isles.dat abyss.dat

isles.dat : books/isles.txt

python wordcount.py books/isles.txt isles.dat

abyss.dat : books/abyss.txt

python wordcount.py books/abyss.txt abyss.dat

.PHONY : clean

clean :

rm -f *.dat

This has some duplication. For example, the names of text files and data files are repeated

in many places throughout. Makefiles are a form of code and, in any code, repetition can

lead to problems, for instance, we might rename a data file in one part of the Makefile but

forget to rename it elsewhere.

In the following sections we’ll reduce duplication with automatic variables and pattern

rules.

6.3. RUN MAKE 45

Automatic Variables

Automatic variables are reserved expressions for targets and dependencies to be used within

rules. (For all such variables: see https://www.gnu.org/software/make/manual/html_

node/Automatic-Variables.html.) The most common ones are:

• $@ is the target of the current rule.

• $< is the first dependency of the current rule.

• $ˆ is all of the dependencies of the current rule.

This lets us eliminate some duplication in the actions of the data file rules.

isles.dat : books/isles.txt

python wordcount.py $< $@

abyss.dat : books/abyss.txt

python wordcount.py $< $@

Here, we replaced books with “$<,” and the data files with “$@.” These automatic variables

get replaced when Make is run:

$ make isles.dat

python wordcount.py books/isles.txt isles.dat

Pattern Rules

Our Makefile still has repeated content. Specifically, the rules for each data file are identical

except for the book name. We can replace these rules with a single pattern rule. This rule

specifies how to build any data file from a text file in the books directory:

%.dat : books/%.txt

python wordcount.py $< $*.dat

The % is a Make wildcard, it is placeholder for any data file name. The $* is an automatic

variable that matches the “stem” of the target. (Here, $* will match %.) Now we can build

the data file for any book, for instance:

$ make last.dat

python wordcount.py books/last.txt last.dat

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html
https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

46 CHAPTER 6. MAKE TUTORIAL

Multiple Dependencies

Our data files are a product of not only the text files, but of the script “wordcount.py” that

processes them. We should explicitly list the processing code as a dependency.

%.dat : books/%.txt wordcount.py

python wordcount.py $< $*.dat

This way, when the Python code is changed, Make will rebuild the data files.

$ make isles.dat

make: `isles.dat' is up to date.

$ touch wordcount.py

$ make isles.dat

python wordcount.py books/isles.txt isles.dat

Build Results

We can add a build for our “results.txt” to the beginning of the Makefile.

Generate summary table.

results.txt : zipf_test.py isles.dat abyss.dat last.dat

python $< *.dat > $@

In the process of building “results.txt,” Make will make sure that all of its data files depen-

dencies are up to date. Here is the output,

$ make

python wordcount.py books/isles.txt isles.dat

python wordcount.py books/abyss.txt abyss.dat

python wordcount.py books/last.txt last.dat

python zipf_test.py isles.dat abyss.dat last.dat > results.txt

6.4 Conclusion

Beyond automation, Makefiles act as a type of documentation. They explicitly record the

inputs to and outputs from steps in our analysis and the dependencies between files. Thus,

reducing the number of things we have to remember.

The following is our final Makefile code:

6.4. CONCLUSION 47

Generate summary table.

results.txt : zipf_test.py isles.dat abyss.dat last.dat

python $< *.dat > $@

Count words.

.PHONY : dats

dats : isles.dat abyss.dat

%.dat : books/%.txt wordcount.py

python wordcount.py $< $*.dat

.PHONY : clean

clean :

rm -f *.dat

The following picture illustrates all of the dependencies:

	Why High-Performance Computing in Economics?
	Computation and Economic Theory

	Why Software Engineering?
	The Goal
	Correctness
	Efficiency
	Maintainability
	Reproducibility
	Documentation
	Scalability
	Portability

	The Means
	Textbooks and classic monographs
	The manual: your best friend
	Additional resources

	Tools and Techniques
	Warnings

	OS and Basic Utilities
	Unix Tutorial
	Version Control: Git
	Getting Started
	Configuring Git
	Creating a Repository
	Ignoring Things
	Tracking Changes

	Git File Structure
	Staging Area
	Git Branches and Merging
	Dealing with Conflicts
	Rebase, Revert, & Remove

	Hosting
	Publishing & Licensing
	Collaboration

	Conclusion

	Make Tutorial
	Setup
	Makefile
	Run Make
	Conclusion

	Dynamic Notebooks: Jupyter, Markdown, and Pandoc
	Jupyter
	Markdown
	Pandoc

	Julia Tutorial
	Why Julia?
	Installing Julia
	Packages
	Types
	Fundamental commands
	Variables
	Arithmetic operators
	Logical operators
	Boolean operators and ascertain functions
	Standard mathematical functions

	Arrays
	Vectors
	Matrices
	Sparse matrices
	Characters
	Strings
	I/O

	Programming Structures
	Functions
	Recursion, closures, and currying
	MapReduce
	Loops
	Conditionals

	Other Data Structures
	Tuples
	Dictionaries
	Sets
	Composite types
	Mutable Composite Types
	Parametric Composite Types
	Type Union

	Metaprogramming
	Plots
	Random Numbers
	Multiple Files
	Timing
	Parallel
	Some Advanced Topics
	A Worked-out Example

