
Chapter 5

Version Control: Git

The Replication Crisis continues to heat up discussion across social science. Hence princi-

pled researchers want to make their work easy to replicate and reputable journals are in-

creasingly requiring replications files. In addition, most modern research involves multiple

collaborates. If you are not careful you end up with documents named as “chapter1.tex,’

“chapter1J final.tex,” and “chapter1 comments.tex,” “chapter1 comments conflict.tex” and

so on. There must be an easier way to organize multiple version of similar files. Perhaps,

you have both 80 min. and 45 min. versions of the same presentation. Enter version control

systems. These systems track the versions of different files and the history of their revisions.

This problem becomes even more acute as you include code in your folders and not just

papers.

In other words, we need system to keep multiple revisions of our files, let us share easily

with collaborators, and let us import changes between various versions of our files easily.

Thankfully, economists are not the first group of people to face this problem. Rather is it

endemic to any collaborative system with a complicated history of revisions. Perhaps the

such project facing these issues is the Linux kernel. As a consequence, in 2005 the inventor

of Linux—Linus Torvalds—invented the version control system Git.

Since then, Git has become by far the most important version control system, and GitHub,

the largest Git repository hosting service, has become by far the largest open-source collab-

oration site. Even Microsoft now uses Git to handle its code. Git has also been making

increasing inroads into academia in general and economics in particular.

However, as they say, “there is no such thing as a free lunch.” Git is very powerful, but

as such, and as a terminal-based tool, it has a steep learning curve. In this tutorial, I will

assume that you know how to use basic shell commands and will be interacting with Git

through a terminal. (There are ways to use Git on Windows or without using a terminal,

but they will not be covered here.)

25

26 CHAPTER 5. VERSION CONTROL: GIT

5.1 Getting Started

5.1.1 Configuring Git

Git very may already be installed on your system. You can test this by running the following

command, which will tell you the version if it is installed. If it is not, you will get a command

not found error.

git --version

Git is provided by package managers such as apt-get, yum, and Homebrew and can be

installed it using standard commands. Conda-forge, the Python scientific repository also

contains it, which can be useful if you do not have root access. In installing it, you might be

missing some dependencies but the package managers should handle this appropriately.

Now, that you have installed Git, you need to do some simple configuration. Effectively,

you have to tell Git who you are so that it can keep track of who is changing the files. Note,

we will be setting configuration options for the machine as a whole. Most of Git’s options

can also be done at the repository (repo) level, but we will cover that.

git config --gobal user.name "Your Name"

git config --global user.email "Your Email"

Since Windows and Linux handle line endings differently on their files, and Git tracks

changes line by line, you want to tell Git how to handle the line endings. It can also be

helpful to tell Git to colorize its output appropriately.

git config --global cor.autocrlf input

git config --global color.ui "auto"

You will also want to set a text editor to use in your code. Nano is a good choice for Linux

if you are not used to a text editors generally. Sublime can be a good choice for macOS.

Many experienced programmers use either Vim or Emacs. They are both very powerful, but

come with a steep learning curve.

git config --global core.editor "nano -w"

git config --global core.editor "subl -n -w"

git config --global core.editor "emacs"

git config --global core.editor "vim"

5.1. GETTING STARTED 27

5.1.2 Creating a Repository

Now that Git is setup we can get to the fun part, and create a repository. First, you need to

make a directory and enter it.

mkdir example

cd planets

Now, we need initialize the directory as a Git repository.

git init

This command just tells git to setup the minimal structure to make the repository function

as a repository. If we run the ls command and tell it to show everything, we can see that Git

created a .git subdirectory that contains the information regarding the repository.

ls -a

We can now also check the status of the repository, and you can see that it has nothing

to save.

On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

Note, the observant reader might have noticed most Git commands so far are of the

form git verb options, where examples of verb include config and init. This is true generally.

Although, there are many verbs and options we have not and will not cover.

The first file we will add is a README. Having such a file is not required, but is recom-

mended. Create a file titled README in your favorite text editor that contains a description

of your project.

Having done that we run git status again, now you can see that there is an untracked file

in your repository.

On branch master

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

README

nothing added to commit but untracked files present (use "git add" to track)

28 CHAPTER 5. VERSION CONTROL: GIT

Now we see that Git realizes that there is a file README in the directory, but it is not

tracking it. In other words, it will not do anything with that file until we tell it to.

5.1.3 Ignoring Things

Before, we tell Git to track README, we will tell Git which files we want it to ignore. This

is useful for temporary and generated files. It can also be useful for very large files such as

datasets. (Very large (100’s of mebibyte files or larger), do not work well in version control

because they are often duplicated in the history.)

The way that we do this is by creating a .gitignore file. This file is just a list of files to

ignore. It can also recognize wildcard characters.

For example, say that want to ignore our datasets which are saved as csv files and we also

have some temporary files that end in .tmp, then our .gitignore file is as follows.

*.csv

*.tmp

Github also has a collection of useful gitignore files for projects in various programming

languages at https://github.com/github/gitignore. If there are multiple different file

formats in your projects, you can combine each of the languages’ gitignore files into one big

one.

5.1.4 Tracking Changes

If we run git status again, we see that we now have two untracked files.

On branch master

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

.gitignore

README

nothing added to commit but untracked files present (use "git add" to track)

We want to track both the README and the .gitignore files. To add the .gitignore file,

we can run the following command.

git add .gitignore

https://github.com/github/gitignore

5.1. GETTING STARTED 29

If we want to add all of the untracked files, we can do that as well.

git add --all

Now, that we have added the files, we need to commit the changes. The commit command

tells Git to save a snapshot of all the files we added before.

Definition 1 commit A commit is a permanent snapshot of the files that Git tracks stored

in the .git directory. It is associated with a unique identifier (hash). Also known as a revision.

The m option tells Git that to associate this commit with the message that follows it. A

good commit message contains a brief (< 50 characters) description of what was changed in

the commit. You are informing your future self or your collaborators what changes you made

in the commit.

git commit -m "Created the Repository."

Now that we have a current, we can view the git log.

commit 8809817caae8b7abff13d482d86817b5774a28ea (HEAD -> master)

Author: Your Name <Your Email>

Date: Todays Date Current Time -0500

Created the Repository.

The git log is a list of past commits, it shows the git hash, which is how git keeps track of

the commits, who made the changes, the date and time, and the associated message. When we

try to undo commits later, we can look at the log to figure out which commit we want to come

back to. The hash in this case is 8809817caae8b7abff13d482d86817b5774a28ea. HEAD always

refers to current commit. In other words, in commit 8809817caae8b7abff13d482d86817b5774a28ea

at the current date, you took the current changes in HEAD and saved them to the master

branch.

If you have already some files, and you want to add their changes and save them, you

can combine the git add and git commit commands into one, by adding the -a option to git

commit. This command does not add any new files though, like git add does.

git commit -a -m "Your message."

As long as you are working linearly, and do not want to return to a previous revision or

incorporate changes from your coauthors, this is essentially all there is to it. In 5.3, we will

discuss how to push your changes to the cloud, but for now you know enough to get started.

30 CHAPTER 5. VERSION CONTROL: GIT

5.2 Git File Structure

Before we discuss how to resolve issues, go back in time, and other powerful and complicated

ways of dealing with your history, we must understand how Git structures this history. There

are two main classes of locations where Git places files. The first, which we just discussed

ends with a commit, and the second starts with the commit. We will will consider the first

now.

5.2.1 Staging Area

.git

FILE1.txt

FILE2.txt

git commit

staging area

repository

git add FILE2.txt

git add FILE1.txt

Figure 5.1: Git Staging 1

The workflow I just described for Git can be broken into three locations. On the left,

(where FILE1.txt and FILE2.txt are), we have the working directory. This is where you make

changes, and is outside of the .git directory.

The second place is the staging area. git add moves stuff from the working directory

to the staging area, and then git commit moves it from the staging area to the permanent

repository. So the first question we have is what is the inverse of git add. How can remove

files from the staging area?

Say you have modified the README and added the changes. The output of git status is

as follows.

On branch master

Changes to be committed:

1Copyright (c) Software Carpentry, License. Used with Permission.

http://software-carpentry.org/
https://creativecommons.org/licenses/by/4.0/

5.2. GIT FILE STRUCTURE 31

(use "git reset HEAD <file>..." to unstage)

modified: README

As we can see, if want to remove changes from the staging area, we can use git reset.

Recall that HEAD is the name of the current commit. Let’s run the suggested command and

see what happens. Using git reset with the HEAD commit and without any options does not

change the history at all nor does it change what is going on the working directory, and so it

is a rather safe command.2

Once you have reset the changes in the stating area, git status returns the following.

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: README

no changes added to commit (use "git add" and/or "git commit -a")

Sometimes you need to change either the repository itself or the current working directory.

It is helpful to understand how a Repository is setup when everything is nice and linear. In

Git lingo, when we have only one branch.

Let’s say that I want to throw out the changes to README in the working directory, and

go back to what was in HEAD. Not only do I want to remove the changes from the staging

area like I did above, I want to throw them out complete. Warning! When you do this will

lose any unsaved work!

git checkout HEAD -- README

The git checkout command checks out the specified file from a previous commit. The code

above checks out the README from the HEAD commit. If we wanted to checkout two files,

we could do it as follows. The -- here tells Git that that what follows it are filenames. This

is true generally. For example, we could reset certain files using similar syntax.

git checkout COMMIT_IDENTIFIER -- file1, file2

2Warning!!! Here be Dragons! git reset does have options --hard and --soft that can be used to rewrite
history, and so it can be used to rewrite history as well and to throw out commits that you no longer want.

32 CHAPTER 5. VERSION CONTROL: GIT

5.2.2 Git Branches and Merging

Now we turn to the most confusing part of Git—How to keep track of multiple versions of

the same file in history. In other words, we will discuss how a repository is laid out in terms

of commits.

A Git repository is a history of commits and how they relate. As long no one brings in

any changes from collaborators and does not go back in time, everything is nice an linear,

and the repository looks as follows, and the repository looks like 5.2.

Figure 5.2: Linear Git History

Commit 1 Commit 2 Commit 3 HEAD

Lets consider the following. You have a history like you did in 5.2, but you decide you

want to go back in time to Commit 2. However, you do not want to throw out the changes

afterwards. To do this, you can run the following commands.

git add --all

git commit -m "Rewrote the introduction to the README."

git checkout COMMIT_3 -b old_intro

The first two commands above, you should recognize. They save all that you have done

so far to the repository. The third command checks out an old commit for changes. In doing

so it rewrites the current working directory, as the checkout command did before. The last

two options though you probably do not recognize. The -b option tells Git to create a new

branch and call it old intro.

What is a branch, you ask? A branch is a sequence of commits. Perhaps, this is clearly

explained through a picture. The command git checkout Commit 2 -b -old intro created the

branch old intro and changed the files in the working directory so they align with that branch.

Figure 5.3: Git History with Branches

Branch: master

Commit 1 Commit 2 Commit 3 Commit 4

Branch: old intro

HEAD

5.2. GIT FILE STRUCTURE 33

Now we are on branch old intro, and can act as normal. To further see what is going

on, consider the output of the branch command. (The -a option, tells Git to list all of the

branches.

git branch -a

master

* <@ \textcolor{green}{old_intro} @>

As we can see, there are two branches master, which was the default branch we created,

and a new branch old intro. Now, if you make changes and commit them they will be added

to the new branch, as we can see in 5.4.

Figure 5.4: Git History with Branches

Branch: master

Commit 1 Commit 2 Commit 3 Commit 4

Branch: old intro

Commit 4’ HEAD

To merge the changes on old intro back into the master, we make sure we have commited

all of the changes we want in old intro. Then we can switch to the master branch and merge

the changes back into it.

git checkout master

git merge old_intro

If there are no conflicts, that is all there is to it. Git will take all of the changes and

compress them into one commit on the top of the master branch.

5.2.3 Dealing with Conflicts

Sadly, collaboration is like marriage. There will be conflicts. For example, both files might

have changed the same line in README. Then when we try to merge Git will give us some

output that looks the following.

Auto-merging README

CONFLICT (content): Merge conflict in README

Automatic merge failed; fix conflicts and then commit the result.

34 CHAPTER 5. VERSION CONTROL: GIT

Figure 5.5: Git Merge

Branch: master

Commit 2 Commit 3 Commit 4 Merge Commit

Branch: old intro

Commit 4’ Commit 5’

If we run git status, we get the following output, and to resolve the conflict we must do

what it says.

On branch master

You have unmerged paths.

(fix conflicts and run "git commit")

(use "git merge --abort" to abort the merge)

Unmerged paths:

(use "git add <file>..." to mark resolution)

<@ \textcolor{red}{both modified: README} @>

no changes added to commit (use "git add" and/or "git commit -a")

We need to open README with your favorite editor. If you do that you will see some

sections that are surrounded by ¿¿¿¿¿¿ and === characters. Git is telling you where the

conflicts are and showing the two versions next to each other.

<<<<<<< HEAD

Changes in the master (current) branch.

=======

Changes in the old_intro branch.

>>>>>>> old_intro

So we need to choose what we want, and delete all of the delimiters, and then add the file

back. We can then add the files to mark resolution and finish the git merge.

git add --all

git merge --continue

5.2. GIT FILE STRUCTURE 35

5.2.4 Rebase, Revert, & Remove

The other way to combine files is by using git rebase. This command moves all of your commits

in the old intro branch to the front of master. In other words, it takes 5.4 and converts it into

5.6. The advantage of this is it maintains a nice linear history. The disadvantage is that it

requires rewriting history. The changes that Git stores in Commit 3’ are not the same as the

changes it stored when it was on branch old intro because the commit immediately preceding

it is different. If there are conflicts, they can be resolved in a similar fashion to how the are

resolved with git merge.

Figure 5.6: Git Merge

Branch: master

Commit 3 Commit 4 Commit 3’ Commit 4’

If you want to go back to a previous commit, say go from Commit 4’ in 5.6 back to

Commit 4, you could check out Commit 4 as a new branch and then merge it. However,

since this is such a common thing to want to do, there is a special command for it—git

revert. Git revert creates a merge commit, that undoes the work of the previous commits.

Figure 5.7: Git Merge

Branch: master

Commit 3 Commit 4 Commit 5

Revert Commit
(HEAD equals

Commit 4)

The last command that is quite useful for normal Git use on your own computer is git

rm, which can be used to remove files. If you want to remove files from both the staging area

and the working directory, we can use it as follows.

git rm -- file_to_remove

If you just want to remove it from the staging area, but not form the working directory—

Perhaps, you accidentally added it—we can do the following.)

git rm --cached -- file_to_remove

36 CHAPTER 5. VERSION CONTROL: GIT

5.3 Hosting

Because all work that we care about should be backed up and to facilitate collaboration with

your coauthors, you probably want to host your repositories on the cloud. By far the largest

host of open-source repositories is GitHub, and it has worked very hard to make its interface

easy to use. Gitlab can also be a good option. It lets you host an unlimited number of free

repositories.

To upload our example project, you first want to create a blank repository on the host.

Once you have done that, you can return to your terminal and tell your local machine about

your host.

git remote add origin <remote repository URL>

git push -u origin/master

In the future, you will treem the remote branch origin/master as a branch that you want

to keep master roughly up to date with. To retrieve changes from the remote to the local,

you need to first fetch them (download them) and then merge them into the current branch.

git fetch origin

git merge origin master

To save keystrokes, Git provides the shortcut git pull which runs these two commands.

To push changes from the local to the remote, you can use git push, but you must pull first.

So to get the two branches back in sync, we can run these commands.

git pull

git push

5.4 Publishing & Licensing

To the extent that version control is about making your work publicly available, you need to

include copyright and licensing files. Hence, all repositories should contain a license file. If

you do not, you are implicitly reserving all use to yourself, and cannot people cannot legally

extend it. You should, however, explicitly claim copyright by including a line such as the

following to protect yourself.

Copyright [yyyy] [name of copyright owner]

For most projects, you probably want an Open-Source software license of some kind so

that people can use your software in their projects. There are several good licenses, that

5.5. CONCLUSION 37

you can use. A good place to look is https://choosealicense.com. I personally use the

Apache-2.0 license, which is a reasonable mix between ease of derivation while still protecting

the author from malicious use.

You might also want to request that those who use your software cite you. This request

is often included in the README file or its own CITATION file though because you do not

want to modify the LICENSE files without an attorney’s help.

5.4.1 Collaboration

Once you understand how to do handle interactions between Git branches, collaboration

is quite simple. Both people setup local master branches and connect them to same remote

branch. The git clone branch url command can be used to download a repository that already

is hosted somewhere on a new computer.

A basic collaborative workflow goes as follows.

1. git pull your coauthor’s changes from the remote repository.

2. Make you own changes.

3. Use git -am ”message” to add your changes.

4. git push your changes to the remote.

5. Iterate.

Since it is easy to handle conflicts using this workflow, the authors do not need to be in

sync when they make changes, reducing the difficulty of coordinating between the two people.

In addition, since everything is stored on a remote server, you automatically get backups of

all of you work. This sort of workflow can even be useful if you are working alone but have

a version on a server somewhere.

5.5 Conclusion

In conclusion, Git provides a way of keeping track of past versions of software and papers,

making collaboration between various authors easy, and provides backup for your software.

It has proven very useful to the open-source community and in academia as well. Git also has

several other commands that can be useful to perform less standard actions such as remove

sensitive data, clean up past history to save space, and so on, but you should know enough to

https://choosealicense.com

38 CHAPTER 5. VERSION CONTROL: GIT

get started with Git. An extension to Git, known as Git LFS (Git large file system) can be

useful if you want to store large files in your repository such as datasets or generated results.

Additional useful resources include Software Carpentry and Stack Overflow, which both

contain a vast store of knowledge on how to use the software. Git’s documentation is rather

exhaustive, but uses a lot of jargon. Once you have a rough idea of what the various commands

do, it can be quite useful especially to better understand the various options.

https://swcarpentry.github.io/git-novice/
https://stackoverflow.com/questions/tagged/git
https://git-scm.com/documentation

	Why High-Performance Computing in Economics?
	Computation and Economic Theory

	Why Software Engineering?
	The Goal
	Correctness
	Efficiency
	Maintainability
	Reproducibility
	Documentation
	Scalability
	Portability

	The Means
	Textbooks and classic monographs
	The manual: your best friend
	Additional resources

	Tools and Techniques
	Warnings

	OS and Basic Utilities
	Unix Tutorial
	Version Control: Git
	Getting Started
	Configuring Git
	Creating a Repository
	Ignoring Things
	Tracking Changes

	Git File Structure
	Staging Area
	Git Branches and Merging
	Dealing with Conflicts
	Rebase, Revert, & Remove

	Hosting
	Publishing & Licensing
	Collaboration

	Conclusion

	Make Tutorial
	Setup
	Makefile
	Run Make
	Conclusion

	Dynamic Notebooks: Jupyter, Markdown, and Pandoc
	Jupyter
	Markdown
	Pandoc

	Julia Tutorial
	Why Julia?
	Installing Julia
	Packages
	Types
	Fundamental commands
	Variables
	Arithmetic operators
	Logical operators
	Boolean operators and ascertain functions
	Standard mathematical functions

	Arrays
	Vectors
	Matrices
	Sparse matrices
	Characters
	Strings
	I/O

	Programming Structures
	Functions
	Recursion, closures, and currying
	MapReduce
	Loops
	Conditionals

	Other Data Structures
	Tuples
	Dictionaries
	Sets
	Composite types
	Mutable Composite Types
	Parametric Composite Types
	Type Union

	Metaprogramming
	Plots
	Random Numbers
	Multiple Files
	Timing
	Parallel
	Some Advanced Topics
	A Worked-out Example

