Central Bank Digital Currency: When Price and Bank Stability Collide

¹Olin Business School, Washington University in St Louis

²University of Pennsylvania

³University of Chicago

March 29, 2023

What is a CBDC?

Definition (According to Gandalf)

A wizard is never late! Nor is he early; he arrives precisely when he means to.

- Term 'CBDC' is underdetermined:
 - **1** A digital payment system.
 - **2** A new digital currency: unit of account, store of value, medium of exchange.
 - **In this paper:** Electronic, 24x7, national-currency-denominated and interest-bearing access to the central bank balance sheet via accounts held directly at the central bank or dedicated depositories (Barrdear and Kumhof, 2016; Bordo and Levin, 2017).

Motivation

- Traditional central bank objectives: Price stability.
- Central bank objectives accompanying the introduction of a CBDC:
 - ► Financial intermediation (Optimal risk-sharing).
 - Maturity transformation (No proneness to runs).
- \Rightarrow Conflict of interest among three competing objectives.

Key result

Impossibility (CBDC Trilemma)

- Impossible to attain all three goals simultaneously.
- Implementing optimal risk-sharing + stability against runs requires a commitment to high inflation (off-equilibrium threat).

Key Mechanism

- Central bank can always deliver on its nominal obligations ('print money').
- But central bank runs can happen in form of **run on the price level**.

Other contributions

- Central bank strategically plays against depositors.
- Nominal Jacklin extension: Trilemma can be resolved under trade in equity shares.

Literature

- Financial intermediation and bank runs:
 - ▶ Diamond and Dybvig (1983): real banking theory, deposit insurance, and bank regulation.
 - ▶ Allen and Gale (1998): system-wide run may alter price level.
 - ▶ Brunnermeier and Niepelt (2019): Equivalence of private and public money.
 - ▶ Diamond and Rajan (2006): nominal deposits serve as a hedge for real liquidity shocks and disregard panic equilibrium.
 - ▶ Skeie (2008): nominal deposits, unique no-run equilibrium by price flexibility, allows self-fulfilling runs.
 - ► Allen-Carletti-Gale (2014): nominal deposits, the social optimum can be implemented as competitive equilibrium, disregards strategic early withdrawal (runs are exogenous).
- Policy:
 - ▶ Barrdear and Kumhof (2016): The macroeconomics of CBDCs.
 - ▶ Bordo and Levin (2017): CBDC and the future of monetary policy.
 - ▶ Adrian and Mancini-Griffoli (2019): The rise of digital money.

The model: The Diamond and Dybvig block

- Time t = 0, 1, 2.
- Continuum [0, 1] of agents:
 - In t = 0: symmetric, endowed with one unit of a real good.
 - ▶ In t = 1: types reveal: "impatient" λ , "patient" 1λ .
 - $u(\cdot)$ strictly increasing, concave, and RRA greater than one, $-x \cdot u''(x)/u'(x) > 1$.
- Real technology, available to all:
 - Long term: $1 \to 1 \to R$.
 - ► Storage.
- Optimal solution: $u'(x_1^*) = Ru'(x_2^*)$.
- Classical result: $x_1^* > 1$.

The model: Nominal banking via CBDC

CBDC Contract $(M, i(\cdot))$:

- t = 0: Agent opens CBDC account, promising M units of 'CBDC balance' in t = 1 for each unit of good delivered now.
- t = 1: Learns type. Share n of agents spends M.
- t = 2: If "not spent" in t = 1: spends M(1 + i(n)).

Given policy $(M, y(\cdot), i(\cdot))$, the central bank:

t = 0: Invests all collected real goods in long-term technology.

- t = 1: Observes aggregate spending n in t = 1.
 - Liquidates fraction $y = y(n) \in [0, 1]$ of investment.
 - Sells goods y to spending agents at price P_1 .
- t = 2: Return R(1 y) on long term investment.
 - Sells these goods to agents at market price P_2 .

Meaning of a central bank run

Definition (Monetary Distrust)

A run on the central bank occurs if $n > \lambda$ (i.e., patient agents also spend).

CBDC forfeits its purpose as 'store of value':

- Patient agents purchase goods instantaneously even though they do not need to consume them.
- Enable future consumption by storing apples in a barrel rather than storing value in the form of CBDC.
- Cause: An anticipated scarcity of goods/anticipated lack of CBDC purchasing power (expected future inflation).
 - $\Rightarrow~$ Expected future inflation causes inflation today.

Toilet paper panic (t=2)

Figure: SkyNews, March 2020

Toilet paper panic (t=1). Actually: A run on cash

Figure: TheStreet, March 2020

Market clearing, I

$$nM = P_1 y(n) (1-n)(1+i(n))M = P_2 R(1-y(n)),$$

 \Rightarrow (n,y(n),i(n)) pin down the price level $(P_1,P_2):$

$$P_{1}(n) = \frac{nM}{y(n)}$$

$$P_{2}(n) = \frac{(1-n)(1+i(n))M}{R(1-y(n))}$$

Market clearing, II

Via market clearing: (n, y(n)) determine the real goods allocation [real CBDC backing].

• For an agent, spending in t = 1:

$$x_1 = \frac{M}{P_1} = \frac{y(n)}{n}$$

• In
$$t = 2$$
:
$$x_2 = \frac{(1+i(n))M}{P_2} = \frac{1-y(n)}{1-n}R$$

Equilibrium and runs

Definition

A commitment equilibrium consists of spending behavior $n \in [0, 1]$, an initial money supply M, a liquidity policy $y : [0, 1] \rightarrow [0, 1]$, a nominal interest rate policy $i : [0, 1] \rightarrow [-1, \infty)$, and price levels (P_1, P_2) :

- The individual spending decisions are optimal, given aggregate spending n, the central bank's policy $(M, y(\cdot), i(\cdot))$, the price level sequence (P_1, P_2) .
- ² Given the aggregate spending realization n, the central bank liquidates y(n) and sets the nominal interest rate i(n).
- Given the realization (n, y(n), i(n)) and M, the price levels (P_1, P_2) clear the goods market in each period.

Important

- (i) The central bank fully commits to its policy (M, y, i) in t = 0.
- (ii) The price levels **flexibly adjusts** to (n, M, y, i) (vs. rationing or stockouts).

Rationing at Edeka

Badische Zeitung, 03/2020

Sueddeutsche Zeitung, 03/2020

Equilibria given central bank policy

Lemma

Given the central bank policy $(M, y(\cdot), i(\cdot))$,

- $n = \lambda$ is an equilibrium only if $x_1(\lambda) \leq x_2(\lambda)$.
- **2** A central bank run n = 1 is an equilibrium if and only if $x_1(1) \ge x_2(1)$.

$$x_1(n) = \frac{y(n)}{n}$$
$$x_2(n) = \frac{1-y(n)}{1-n}R$$

Implementing the social optimum, I

Proposition

The central bank policy $(M, y(\cdot), i(\cdot))$ implements the social optimum (x_1^*, x_2^*) in dominant strategies if:

- i) for any $n = \lambda$, it sets $y(\lambda) = y^*$, where $x_1^*(\lambda) = y^*/\lambda$.
- ii) for all $n > \lambda$: it sets a liquidation policy that implies $x_1(n) < x_2(n)$.

Definition

We call a liquidation policy $y(\cdot)$ "run-deterring" if it satisfies:

$$y^d(n) < \frac{nR}{1+n(R-1)},$$
 for all $n \in (\lambda, 1]$

Such a liquidation policy implies that "roll over" is *ex-post* optimal $x_1(n) < x_2(n)$, even though patient agents are withdrawing $n \in (\lambda, 1]$.

Implementing the social optimum, II

Corollary (Trilemma I)

Every policy choice $(M, y(\cdot), i(\cdot)), n \in [0, 1]$ with $y(\lambda) = y^*$ and:

$$y^d(n) < \frac{nR}{1+n(R-1)}, \quad \text{for all } n \in (\lambda, 1],$$

deters central bank runs and implements the social optimum in dominant strategies. Flipside: Such a deterring policy choice requires the interim price level $P_1(n)$ to exceed the withdrawal dependent bound:

$$P_1(n) > \frac{M}{R}(1 + n(R-1)), \text{ for all } n \in (\lambda, 1].$$

Remark. This looks like a version of "suspension of convertibility," but not quite. The central bank does not stop customers from spending their CBDCs. Instead, the supply of goods traded against these CBDCs is restricted.

A brief pause

So far

- Nominal banking model for a central bank and its CBDC.
 ⇒ Central bank can always deliver on its nominal obligations.
- To deter runs, the central bank threatens with a high price level (or "inflation") for t = 1, making running *ex-post* suboptimal.

2 Issues to discuss

- Central banks usually wish to keep prices stable (for reasons outside this model)!
 ⇒ Time inconsistency?
- If the central bank is constrained by price stability objective: \Rightarrow Can runs reoccur?

Time consistency, I

Consider the subgame $n > \lambda$: Central bank realizes that a run is occurring.

• Depositor utility in the subgame is:

$$W(y,n) = n u\left(\frac{y}{n}\right) + (1-n)u\left(\frac{R(1-y)}{1-n}\right)$$

- Additional asset liquidation y (beyond intended level) has a price-stabilizing effect: Price level $P_1(n) = \frac{nM}{y}$.
- Impose concern for price stability at level $(1 \alpha) \in (0, 1)$.
- Allocative welfare: Central bank reoptimizes via liquidation policy y:

$$V(y, n, \overline{P}) = \alpha W(y, n) - (1 - \alpha) \left(\overline{P} - P_1(n)\right)^2$$

Time consistency, II

A numerical example:

- Set $R = 2, \lambda = 0.25, u(c) = c^{1-\eta}/(1-\eta), \eta = 3.25.$
- Then $x_1^* = 1.4$ (the DD optimum for $\alpha = 1$ and $n = \lambda$).
- For M = 1.4, one obtains $P_1^* = M/x_1^* = 1$. Set price target $\overline{P} = P_1^*$.
- For $\alpha = \{0.1, 0.6, 1\}$: Calculate the subgame-optimal liquidation policy $y_{\alpha}(n)$ that maximizes V and the implied sub-game optimal price level $P_{1,\alpha}(n)$.

Time consistency, III

Time consistency, IV

- At $n = \lambda$: All levels α reach y^* (because $P_1(\alpha) = \overline{P}$).
- For $\alpha = 1$ (no price stability concern): At every run $n > \lambda$ the subgame-perfect liquidation policy is run-deterring (time-consistent).
- Issue for α small: subgame-perfect liquidation policies give rise to runs. Thus, the depositors' anticipation of a central bank deviation **rationalizes** runs *ex-ante*.

To prevent runs for sure: Raise price stability target.

- Given α : Compute the smallest $\overline{P}(\alpha) \ge P_1^*$ so that the subgame-perfect liquidation policy is run-deterring following every subgame $n > \lambda$.
- Problem: the resulting sub-game perfect run-deterring liquidation policies no longer attain the optimum x_1^* at $n = \lambda$.

Time consistency, V

Taking stock

When incorporating a concern for price stability $\alpha < 1$:

- The *ex-ante* optimum x_1^* can be attained for all $\alpha \in (0, 1)$ when setting $\overline{P} = P_1^*$, but the central bank's reoptimization following some sub-games give rise to runs.
- When raising the price level target to fit α , runs can be deterred for sure (in all possible subgames), but the *ex-ante* optimum x_1^* is never attained.

From numerical analysis \Rightarrow theory:

What happens under the predominant price stability objective?

Central bank constraint: full price stability

Definition

- i) A central bank policy is P_1 -stable at level \overline{P} if it achieves $P_1(n) \equiv \overline{P}$ for the price level target \overline{P} at all spending fractions $n \in [\lambda, 1]$.
- ii) A central bank policy is **price-stable at level** \overline{P} if it achieves $P_1(n) = P_2(n) \equiv \overline{P}$ for the **price level target** \overline{P} for all spending fractions $n \in [\lambda, 1]$.

Recall market clearing:

$$P_{1}(n) = \frac{nM}{y(n)}$$

$$P_{2}(n) = \frac{(1-n)(1+i(n))M}{R(1-y(n))}$$

Thus, the liquidation and interest rate (y, i) adjust to (n, \overline{P}) .

Characterizing P_1 -stable central bank policies Feasibility constraint: $y(1) \leq 1$ requires $\frac{M}{P} \leq 1$.

Proposition (Characterization of (y, i) to attain P_1 -stability)

A central bank policy is:

i) P_1 -stable at level \overline{P} if and only if its liquidation policy satisfies:

$$y(n) = \frac{M}{\overline{P}}n$$
, for all $n \in [0, 1]$, and, thus, $x_1(n) \equiv \overline{x}_1 = \frac{M}{\overline{P}} \le 1.$ (1)

ii) A central bank policy is price-stable if and only if its liquidation policy satisfies equation (1) and its interest policy satisfies:

$$n = \frac{\overline{P}}{\overline{M}} - n}{1 - n}R - 1 \text{ and } \overline{P} \ge M.$$

P_1 -stable central bank policies are inefficient

Corollary (Trilemma II)

If the central bank commits to a P_1 -stable policy, then:

- i) The socially optimal allocation is not implemented.
- ii) There is a unique equilibrium where only impatient agents spend, $n^* = \lambda$, i.e., no central bank run equilibria.
- iii) If the central bank commits to a price-stable central bank policy, then the nominal interest rate is non-negative $i(n) \ge 0$ for all $n \in [\lambda, 1]$. The interest rate i(n) is increasing in n.

Central bank constraint: partial price stability

Definition

- A central bank policy is **partially** P_1 -stable at level \overline{P} if either it achieves $P_1(n) = \overline{P}$ for some **price level target** \overline{P} , or the central bank fully liquidates real investment y(n) = 1.
- A central bank policy is **partially price-stable at level** \overline{P} , if either it achieves $P_1(n) = P_2(n) = \overline{P}$ for some **price level target** \overline{P} , or the central bank fully liquidates real investment y(n) = 1.

Proposition

Suppose that $M > \overline{P} \ge \lambda M$. A central bank policy is partially P_1 -stable at level \overline{P} if and only if its liquidation policy satisfies:

$$y(n) = \min\left\{\frac{M}{\overline{P}}n, 1\right\}$$

Full vs. partially price-stable liquidation policies y(n) 1 y(n) for partial price stability Eff. alloc. λx_1^* λ y(n) for full $\lambda \overline{\mathbf{x}}_1$ price stability n_c n

Characterizing partially P_1 -stable central bank policies

Proposition

Suppose that $\overline{P} \in [\lambda M, M]$. Consider a partially P_1 -stable central bank policy at level \overline{P} . Define the critical aggregate spending level:

$$n_c \equiv \frac{P}{M}$$

For all $n \leq n_c$,

• the price level is stable at $P_1(n) = \overline{P}$.

For all $n > n_c$ (full liquidation),

- price level **not stable**: $P_1(n)$ proportionally increasing with n: $P_1(n) = Mn$,
- real goods per agent: $x_1(n) = 1/n$, $x_2 = 0 \Rightarrow$ runs occur in equilibrium + negative real interest rate.

The CBDC trilemma

Characterizing partially P_1 -stable central bank policies

Corollary (Trilemma III)

Suppose that CB policy is partially price-stable at $\overline{P} \in [\lambda M, M]$

- then runs on the central bank can occur (multiple equilibria) $n^* \in \{\lambda, 1\}$.
- 2 Given no run: the social optimum and the price goal are attained.
- **③** Given a run: the social optimum and the price goal are not attained.

Price targeting via state-contingent money supply in t = 1?

- Assume state-contingent individual money balances M(n) in t = 1.
- Suppose $y(n) \equiv y^*$. To maintain price stability at some \overline{P} :

$$n \, \underline{M}(n) = \overline{P} y^* = \lambda M(\lambda)$$

- Implementations:
 - **①** Taxation of individual money holdings (helicopter grab).
 - **2** Suspension of spending (supermarket stockout).
 - 3 Rationing (only some of the money can be used).
- Stable prices! Problem solved? Issues:
 - Trust: Individual CBDC accounts decrease with n (\$1 today not \$1 tomorrow).
 - Money supply is not effective in preventing runs. Individual real allocation y(n)/n is independent of money supply [neutrality] \Rightarrow The important policy variable is y(n).

Nominal Jacklin (1987): Equity shares in the central bank, I

- Agents invest in equity shares of the central bank.
- In t = 0: Central bank promises nominal dividends (D_1, D_2) to be paid in t = 1, t = 2.
- In t = 1: types reveal, agents can go shopping for goods, but before doing so, they trade in a market claims on nominal dividends.
- Assumption: nominal dividends expire and cannot be stored.
- Central bank run: $n > \lambda$ (patient types shop early and trade in equity shares collapses).

Nominal Jacklin (1987): Equity shares in the central bank, II

• Market clearing

 $D_1 = P_1(n)y(n)$ $D_2 = P_2(n)R(1 - y(n))$

- Main difference to demand-deposit model: dividends are predetermined, pinning down the money supply in t = 1, 2.
- Still: liquidation is at the discretion of the central bank

Lemma (Price stability)

Consider the central bank policy $(D_1, D_2, y(\cdot))$ with $D_1, D_2 > 0$. Every constant (demand-insensitive) liquidation policy $y(n) \equiv y \in (0, 1)$ for all $n \in [0, 1]$ implies constant price levels in t = 1 and t = 2, $P_1(n) = \overline{P}_1$, $P_2(n) = \overline{P}_2$ for all $n \in [0, 1]$.

Nominal Jacklin (1987): Equity shares in the central bank, III

$$x_1 = \frac{D_1}{P_1 n} = \frac{y(n)}{n}$$
$$x_2 = \frac{D_2}{P_2(n)(1-n)} = \frac{R(1-y)}{1-n}$$

Remark (Run-deterring price-dividend pairs)

A price-dividend pair $(D_1, P_1(\cdot))$ deters runs on equity shares if

$$\frac{D_1}{P_1(n)} < \frac{nR}{1+n(R-1)}, \quad \text{for all } n \in (\lambda, 1].$$

Define the constant liquidation policy

$$\hat{y} := \frac{\lambda R}{1 + \lambda (R - 1)} \in (0, 1)$$

as the minimum of the right-hand side of (2).

39/41

(2)

Nominal Jacklin (1987): Equity shares in the central bank, IV

Proposition (No trilemma with nominal dividends)

Consider the central bank policy $(D_1, D_2, y(\cdot))$ with $D_1, D_2 > 0$: (i) [run-deterrence and price-stability]: If the central bank sets a constant liquidation policy $y(n) = \tilde{y} \in (0, \hat{y}]$ for all $n \in [0, 1]$, it implements the stable price level $P_1(n) \equiv \frac{D_1}{\tilde{y}} =: \overline{P}$ in t = 1 for all $n \in [0, 1]$ and simultaneously deters runs. (ii) [run-deterrence, price-stability, and social optimality]: If the central bank sets the constant liquidation policy $y(n) = y^*$ for all $n \in [0, 1]$, not only runs are deterred, but the social optimum is implemented in dominant strategies. In addition, the price target $P_1 = \overline{P}$ is attained in t = 1. The trilemma vanishes. (iii) If the late dividend payment D_2 additionally satisfies

$$D_2 = \overline{P}R\left(1 - \hat{y}\right)$$

then the price target is also implemented in t = 2.

Conclusions

In a nominal banking model for a central bank and its CBDC.

- The central bank can always deliver on its nominal obligations.
- But: runs can still occur.
- We show the following CBDC TRILEMMA
 - Implementation of the social optimum $x_1^* > 1$ requires the threat of inflation to deter runs. (price stability lost).
 - ▶ Full price stability. requires giving up the social optimum, $x_1 \leq 1$. But runs do not occur.
 - ▶ Under partial price stability, runs can occur (multiple equilibria). But absent a run, the social optimum can be implemented.
- Ways around the trilemma? Predetermined nominal equity shares with expiring dividends or spending-contingent money supply.