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We offer retrospective and prospective assessments of the Diebold–Yilmaz connected-
ness research program, combined with personal recollections of its development. Its
centerpiece in many respects is Diebold and Yilmaz (2014), around which our discussion
is organized.
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It is a pleasure to help celebrate the fiftieth birthday of the Journal of Econometrics, and a great honor to have (Diebold
and Yilmaz, 2014) selected as one of the five papers included in this 50th Jubilee Issue. In this note we offer retro-
spective and prospective assessments of the Diebold–Yilmaz connectedness research program, combined with personal
recollections of its development.

1. Origins in the Asian contagion

It all began more than thirty years ago, when FD was an Economist at the Federal Reserve Board in Washington, DC,
and KY was a Ph.D. student at the University of Maryland. In the late 1980s John Haltiwanger had kindly invited FD to
teach an advanced Ph.D. macro-econometrics course at Maryland, and KY was a student in the course. We had many
stimulating discussions, some of which eventually produced, for example, Diebold et al. (1994). But our paths diverged
when FD went to the University of Pennsylvania as an assistant professor in 1989, and KY went to Koç University as an
assistant professor in 1994 after working for two years as an Economist at the World Bank. The story might naturally
have ended there, but no.

✩ We are grateful to the editors for selecting our paper, and to our many colleagues and students – in particular our wonderfully-connected
network of ‘‘connectedness coauthors" – for their myriad contributions to the research program described here and their friendship over the years.
We are also grateful to Tim Bollerslev, who provided helpful comments on an earlier draft. Yilmaz gratefully acknowledges the support of The
Scientific and Technological Research Council of Turkey (TUBITAK), United States under grant number 121C271. All remaining errors of omission or
commission are our alone.
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There was indeed a long gap, but then KY took a sabbatical at Penn during the 2003–2004 academic year. There was
o real goal other than general intellectual stimulation for each of us. In particular, we had no joint work in progress, and
ndeed no real plans for joint work, when KY and his family arrived in Philadelphia in the summer of 2003. But of course
e subsequently had many discussions on various issues and ideas.
One thing that intrigued us both was financial market contagion. In particular, the infamous 1997 sequential collapse

f several far-eastern currencies – the ‘‘Asian Contagion’’ – was still fresh in the professional consciousness, and hence
n ours. How to define ‘‘contagion’’? How to measure it? Did it really exist? We had many conversations, typically on
he ninth floor of the Wharton School’s Huntsman Hall, after visiting the adjacent coffee room, looking out over the
hiladelphia skyline.

. Variance decompositions and network connectedness

The Diebold–Yilmaz dynamic connectedness measurement framework grew from those Huntsman Hall conversations.
t seemed natural to define h-step connectedness in terms of variance decompositions. We liked the fact that variance
ecompositions naturally promote uniform measurement across variables via their ‘‘fraction of h-step-ahead forecast error
ariance’’ perspective, whereas other possible approaches based for example on impulse–response functions did not, so
e simply proposed the variance decomposition approach, directly.
That is, we proposed measuring what we would later call ‘‘h-step pairwise directional connectedness from j to i’’ as

he fraction of h-step forecast error variance of variable i arising from shocks to variable j. Allowing for time-varying
arameters in the model from which the variance decompositions were calculated, moreover, allowed for the important
ossibility of time-varying connectedness.
Our goal was always the empirical description of connectedness and its evolution, ‘‘getting the facts straight’’ with

inimal assumptions. In particular, we did not want to have to take a stand on deep underlying structural mechanics,
nd indeed our intentionally reduced-form measurements are consistent with a wide variety of possible underlying
tructures. This is important in economic and financial environments, where connectedness and its evolution are typically
ncompletely understood at best.

Initially we did not use the term ‘‘connectedness’’. Instead we used more traditional and perhaps more exciting, if
evertheless only vaguely-defined, terms like ‘‘contagion’’ or ‘‘spillovers’’. It soon became clear, however, that different
esearch tribes had different, strongly-held, and sometimes conflicting views about the meanings of such terms. We
anted an uncontroversial term that simultaneously conveyed the essence of our measure, and we eventually settled
n ‘‘connectedness’’.
Diebold and Yilmaz (2009) contains the embryonic idea. We obtain the variance decomposition using a VAR approxi-

ating model, featuring Cholesky factor identification, small data, and no awareness of network theory or graphics.1 The
mpirical work focuses on volatility connectedness in equity markets, although the term ‘‘connectedness’’ is not used.
Diebold and Yilmaz (2012) takes a significant step forward, moving to the generalized identification of Pesaran and

hin (1998), which builds on Koop et al. (1996). In the generalized identification environment, unlike with Cholesky factor
dentification, there is no issue of variable ordering. Equally importantly, (Diebold and Yilmaz, 2012) also considers not
nly ‘‘total connectedness’’ but also ‘‘directional’’ aspects, so that i→j connectedness need not match j→i connectedness.
he term ‘‘connectedness’’ is still never used, however, and network perspectives are absent. The empirical work again
nvolves only small data, focusing on four daily U.S. asset classes (stocks, bonds, commodities, and foreign exchange).

Diebold and Yilmaz (2014), included in this 50th Jubilee Issue of Journal of Econometrics, is the real breakthrough. We
f course maintain generalized identification and directional perspective, but crucially, we also couch the analysis in a
etwork framework for the first time, and we introduce some crude network graphics. We also use the ‘‘connectedness’’
anguage throughout.

Let us provide some background on Diebold and Yilmaz (2014). Around the time when the paper was written, it
as hard to go through a week in a department of economics, statistics, computer science, etc., without encountering
umerous seminars and conversations about networks — network formation, network structure, etc. The excitement was
alpable. Surely, we thought, our work on connectedness (as we had by then begun to call it) must be somehow related
o the characterization of network structure. Unfortunately, however, we knew very little about the characterization of
etwork structure!
So we took the plunge, starting with Newman (2010) and then working forward and backward, and our eyes were

pened. What a playground: weighted, directed networks and their node degrees; in-degrees and out-degrees; degree
istributions; numerous so-called ‘‘centrality’’ measures; and on and on. The key insight – the real ah-ha! moment – came
hen we realized that the variance decomposition matrix, or ‘‘connectedness table’’, at the center of the Diebold–Yilmaz
esearch program could be viewed as the adjacency matrix of a weighted, directed network, as illustrated in Table 1. Hence
he powerful toolkit of methods for network measurement and characterization immediately applies to connectedness.
ndeed several of the connectedness measures that we had independently proposed (total directional connectedness to
nd from) are prominent network statistics (out-degrees and in-degrees).

1 For some colorful background on ‘‘small data’’ vs. ‘‘Big Data’’ definitions and history, see Diebold (2021).
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Table 1
Connectedness table/ Network adjacency matrix, D.

x1 x2 ... xN From Others to i
(In-Degrees)

x1 dH11 dH12 · · · dH1N ΣN
j=2d

H
1j

x2 dH21 dH22 · · · dH2N ΣN
j=1,j̸=2d

H
2j

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

xN dHN1 dHN2 · · · dHNN ΣN−1
j=1 dHNj

To Others From j ΣN
i=2d

H
i1 ΣN

i=1,i̸=2d
H
i2 · · · ΣN−1

i=1 dHiN ΣN
i,j=1;i̸=jd

H
ij

(Out-Degrees)

Notes: We show an illustrative connectedness table (weighted, directed network adjacency matrix) based on an N-
variable H-step variance decomposition, D. The fraction of variable i’s H-step-ahead forecast error variance due to shocks
in variable j is dHij . Equivalently, H-step pairwise directional connectedness from j to i, CH

i←j , is dHij . Total directional
connectedness from others to i (the in-degree, or from-degree of network node i) is given by CH

i←• =
∑

j̸=i d
H
ij , and

total directional connectedness to others from j (the out-degree, or to-degree of network node j) is CH
•←j =

∑
i̸=j d

H
ij .

Total system-wide connectedness is the grand sum of all off-diagonal elements, CH
=

∑
i,j;i̸=j d

H
ij .

Now let us move ahead a few more years to Demirer et al. (2018), who take the connectedness framework closer to
completion, moving to Big Data environments with regularized estimation and sophisticated network graphics that scale
effortlessly with network dimension. First consider regularized estimation. In contrast to a typical small-data VAR circa
1985 (perhaps a 5-variable VAR(3), which can be estimated by OLS), regularization is essential in Big Data environments
circa 2023 (perhaps a 500-variable VAR(3), to be used for connectedness measurement).2 Demirer et al. (2018) use the
LASSO (Tibshirani, 1996), which selects and shrinks.

Second, consider network graphics. If regularization is the key to producing credible network VAR estimates in high
dimensions, then graphics are the key to understanding those estimates. To see why, consider first the small-data 5-
variable VAR(3) case. We cannot stare productively at nearly 100 estimated coefficients and hope to learn much, but
we can certainly stare productively at a 5 × 5 connectedness table, as per Table 1. That is, variance decompositions save
the day, rendering dozens of uninterpretable estimated coefficients economically interpretable by viewing them through a
particular lens, which is a key part of the message of Sims (1980). And crucially, tabular presentation is adequate. In contrast,
a Big Data 500-variable VAR(3) environment causes inescapable trouble. Of course we cannot stare productively at VAR
coefficients – now in the hundreds of thousands – but we also cannot stare productively at a 500 × 500 connectedness
table! Tabular presentations of variance decompositions, which save the day in small-data environments, are themselves
unworkable in high dimensions.

But network tools again come to the rescue, this time by providing highly-revealing and readily-scalable visualizations
of variance decompositions, as in the illustrative ‘‘spring graph’’ shown in Fig. 1, which is immediately interpretable,
whether for a network of dimension 5 or 500 or 5000. In particular, network graphics are far from pretty afterthoughts;
rather, they are central to the connectedness framework, facilitating the understanding of estimated high-dimensional
approximating models by visualizing their variance decompositions. Even without knowing the details of how Fig. 1 is
constructed, for example, a viewer can immediately see two small and very tightly-connected clusters in the upper-left
and lower-left, and two large and somewhat less-tightly connected clusters in the upper- and lower-right.3 ,4

Finally, as mentioned earlier, an important part of the Diebold–Yilmaz framework is allowing for time-varying coeffi-
cients in approximating models (whether by rolling the estimation or by explicitly modeling time-varying coefficients),
and hence allowing for time-varying variance decompositions that translate into time-varying network graphs. There will
then be a different Table 1 and Fig. 1 in each period as the approximating model coefficients evolve, and one could watch
an animation of Fig. 1 over time.5 As a practical matter, however, we are often content to examine simple time-series
plots of various elements of a time-varying connectedness table obtained from a rolling estimation window.

3. Parallels in the measurement of international trade and systemic financial risk

We have already discussed the deep connections between our connectedness measures and traditional tools for
characterizing network structure. Here we briefly discuss some other deep connections, first to the measurement of
international trade and then to the measurement of systemic financial risk.

2 Interestingly, even in small-data VAR environments some regularization in the form of Bayesian shrinkage toward random walk dynamics has
long been recognized as helpful; see Doan et al. (1984).
3 For details of spring graph construction, see the notes to Fig. 1.
4 For readers curious as to the actual network represented by Fig. 1, see Demirer et al. (2018).
5 Some details remain to be worked out, such as how to ‘‘anchor’’ the set of graphs, and we look forward to someone doing so.
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Fig. 1. Illustrative Network ‘‘Spring Graph’’.
Notes: The underlying algorithm (Jacomy et al., 2014) finds a steady state in which repelling and attracting forces exactly balance, where nodes
repel each other, and links, like springs, attract their nodes with force proportional to average pairwise directional connectedness ‘‘to’’ and ‘‘from’’.

3.1. International trade

An ‘‘import/export’’ perspective provides immediate insight on our connectedness measures, at different levels of
ggregation from the most granular to the most aggregative. In an obvious notation, pairwise directional connectedness
H
i←j = dHij is ‘‘i’s imports from j’’. On net, CH

ij = CH
j←i − CH

i←j is the ‘‘ij bilateral trade balance’’. Total directional
onnectedness from others to i, CH

i←• =
∑

j̸=i d
H
ij is ‘‘i’s total imports’’, and total directional connectedness to others

rom j, CH
•←j =

∑
i̸=j d

H
ij is ‘‘j’s total exports’’. On net, CH

i = CH
•←i − CH

i←• is ‘‘i’s multilateral trade balance’’. System-wide
onnectedness, CH

=
∑

i̸=j d
H
ij is ‘‘total world exports’’ (or imports, since they must agree at the world level).

.2. Systemic financial risk

Marginal expected shortfall, MES, is an important measure of systemic financial risk; see Acharya et al. (2012) and
he references therein. It is essentially a measure of the sensitivity of an individual firm’s return to extreme market-wide
eturns. In particular,

MES j|mkt
= E(rj |C(rmkt )),

here rj denotes firm j’s return and C(rmkt ) an extreme market return event. MES is effectively a market-based ‘‘stress
test’’ of firm j’s fragility during systemic events. It is also clearly and intimately related to Diebold–Yilmaz ‘‘total directional
connectedness from others to j’’’.

Another important systemic financial risk measure is CoVaR, the value at risk (VaR) of an institution j, or of the entire
the financial system, conditional on an individual institution i being in distress; see Adrian and Brunnermeier (2016). The
p-percent CoVaR from firm i to firm j is defined by

CoVaRp,j|i
: p = P

(
rj < −CoVaRp,j|i

| C (ri)
)
,

and the p-percent CoVaR from firm i to the market is defined by

CoVaRp,mkt|i
: p = P

(
rmkt < −CoVaRp,mkt|i

| C (ri)
)
.

he leading choice of C (ri) is a VaR breach, in which case CoVaR measures VaR linkages (hence its name). The CoVaR
irectionality, however, is the opposite of MES. It is clearly and intimately related to Diebold–Yilmaz ‘‘total directional
onnectedness to others from i’’.
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. Applications

Many applications followed from the methodology developed in the above-referenced papers.6 Some were imple-
ented by us. For example, in Diebold and Yilmaz (2009) we obtained time-varying ‘‘total spillover index’’ (total
ystem-wide connectedness in our current jargon) and showed how global stock return and volatility spillovers behave
uring major financial crises, such as the East Asian crisis of 1997. In Diebold and Yilmaz (2012) we extended our
pproach to study directional spillovers and applied the new framework to four financial markets, namely, the U.S. stock,
ond, and foreign exchange markets, and the global commodity market. Going from low-dimensional to high-dimensional
nvironments, Diebold and Yilmaz (2014, 2016), and Demirer et al. (2018) studied connectedness of financial institutions
ithin a country (the U.S.), across the Atlantic, and across the globe, respectively. These papers put our framework at the
enter of the literature studying systemic risk in the banking industry, and indeed it has been widely used in policy and
ndustry to assess systemic risk in financial markets.7

. Concluding remarks

With hindsight it is easy to understand the popularity of Diebold–Yilmaz connectedness measurement. The methodol-
gy is simple and appealing, bridging traditional ‘‘econometric modeling thinking’’ on the one hand, and modern ‘‘network
nd Big Data thinking’’ on the other, assembling the pieces to go to very new places. It is based on variance decompositions,
hich are familiar and comfortable, and it rests on a novel connection between the seemingly-distinct VAR variance-
ecomposition literature and the network literature, namely the insight that ‘‘a variance decomposition is a network’’.
t follows that network tools, which scale effortlessly to high dimensions, provide powerful help in summarizing and
isualizing connectedness as defined by variance decompositions.
Interesting recently-published work pushing the frontier outward includes Baruník and Křehlík (2018), Barigozzi and

rownlees (2019), and Bykhovskaya (2023). Some new unpublished work, moreover, is particularly novel. In one new
evelopment, Barigozzi et al. (2022) develop methods for connectedness in dynamic ‘‘multilayer’’ networks, reflecting the
nsight that rich networks may have many kinds of connections, each governed by its own adjacency matrix. Parsimonious
odeling then becomes absolutely crucial, effectively motivating (Barigozzi et al., 2022) to propose a modeling framework
ith a ‘‘factor structure’’ for the set of adjacency matrices.
In a second new development, Mlikota (2023) explores the flip-side of Diebold–Yilmaz thinking. In particular, while

iebold and Yilmaz ‘‘turn VARs into networks’’, Mlikota ‘‘turns networks into VARs’’. More precisely, Diebold and Yilmaz
ap approximating model variance decompositions into weighted, directed, time-varying networks, which they use to
nderstand dynamic connectedness, whereas Mlikota goes in the opposite direction, modeling approximating model
onditional mean functions but exploiting the restrictions implied by network structure to achieve regularization. Those
estrictions take the form of chains, which generate rich patterns of multi-step causality (Dufour and Renault, 1998).
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