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Abstract 

The motivation for fractional integration in terms of low-frequency spectral behavior and long-lag auto- 
correlation behavior is well known. Using results on the rate of growth of variances of sums of integrated random 
variables, we provide additional and complementary time-domain motivation for fractional integration in terms of 
the long-horizon behavior of (1) the variance-time function, and (2) confidence intervals for predictions. The 
results are illustrated with an empirical application to real interest rate forecasting. 
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1. Introduction and statement of results 

The frequency-domain motivation for the generality afforded by fractional integration, in 
terms of spectral behavior near frequency zero, is well known. Similarly, the time-domain 
motivation, in terms of the slow decay of autocovariances, is also well known (see, for 
example, Granger and Joyeux (1980)). The simple and straightforward objective of this paper 
is. closely related to these. We provide complementary time-domain motivation for fractional 
integration in terms of: 

(1) the long-horizon behavior of the variance-time function, used to study long memory at 
least since Mandelbrot (1972) and popularized recently by Cochrane (1988), Lo (1991) and 
Faust (1992); and 

(2) the long-horizon behavior of prediction intervals, the importance of which is emphasized 
by Stock and Watson (1988), and which can be very important in practical applications. 
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Our original interest in this research program was in characterizing and illustrating the 
behavior of long-range prediction intervals in long-memory models. The var iance- t ime 
function (that is, the behavior of var(x t -x t_k )  as a function of k), however,  turns out to be 
closely related to the behavior of prediction intervals and is of substantial interest in its own 
right. ~ Understanding the variance-t ime function and the behavior of prediction intervals, in 
turn, requires an understanding of the behavior of variances of the partial sums of random 
variables; that is, the behavior of var(Zxt) as a function of the number  of terms summed.  

The results for the rates of growth of variances of M-fold partial sums are straightforward 
and for the most part well known. The rate of growth of the variance of M-fold partial sums of 
white noise (X, = e,) or I(0) ( S  t = ~ ( L ) e t )  processes is the same, var(SM) = O(M).  Similarly, 
the rate of growth of the variance of the sums of random walk (AX t = et) or I(1) (AX, = 
q,(L)et) processes is the same, var(SM) = O ( M 3 ) .  Finally, the rate of growth of the variance of 
the sums of fractional noise (X, = (1 - L)-de, ,  --1/2 < d < 1/2) or I(d) (At = if(L)(1 - L)-det ,  
--1/2 < d < 1/2) processes is the same, var(SM) = O(M2d+I). All the results in this paper stem 
from these simple facts on the rates of variance growth, which make clear the rigid nature of 
I(0) and I(1) processes. To obtain a continuously varying range of rates of variance growth, 
we need to allow for a continuously varying range of orders of integration. 

The results for the variance-t ime function are as follows. Let AkXt+ ~ = X,+k - X , .  Then,  in 
the white noise and I(0) cases we have var(AkXt+~) = O(1), and in the random walk and I(0) 
cases we have var(AkX~+~) = O(k). The covariance stationary fractional case parallels the I(0) 
case; more precisely, in the cases of covariance stationary pure fractional noise (X  t = ( 1 -  
L)-de, ,  --1/2 < d < 1/2) and covariance stationary I(d) (X  t = q,(L)(1 - L)-det,  --1/2 < d < 
1/2) we have var(A~X~÷ k)=O(1 ). The fractional cases for which 1 / 2 < d < 3 / 2  are more 
interesting; then in both the pure fractional noise and general I(d) cases we have AkXt+ k = 
O(kZa-1). This generality in long-lag behavior of the var iance-t ime function is a key 
t ime-domain analog of the well-known frequency-domain result on low-frequency spectral 
density behavior. 

Now let us consider prediction intervals. As is well known, the width of the k-step-ahead 
prediction interval for a Gaussian covariance stationary (and hence strictly stationary) process 
x t approaches co x (from below) as k---> ~, where o- x is the unconditional standard deviation of 
x, and c is again a constant determined by the desired confidence level (e.g. a 95% prediction 
interval requires c = 1.96). That is, it is bounded by ctr x, which it approaches in the limit. We 
can think of this as the prediction-interval width eventually increasing like k °, for large k. 

As is also well known, the width of the k-step-ahead prediction interval for a Gaussian I(1) 
series x, grows like co'~k 1/z as k----> ~, where t r  is the standard deviation of the innovation to x, 
and c i s  a constant determined by the desired confidence level. That is, the width of the 
prediction interval grows without bound,  for large k, and at the particular rate k ~/2. 

The upshot is obvious. Why should forecast error uncertainty necessarily propagate with the 
forecast horizon like k ° or kl/2? What about the general case k d, d being a positive fraction? 
That  is where fractional integration comes in, enabling substantially more generality and 
flexibility in the construction of k-step-ahead prediction intervals than do standard I(0) or I(1) 
parameterizations. 

1 These issues were ment ioned,  but not  pursued, in Diebold and Ner love (1990). 
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The results are as follows. In the white noise and I(0) cases we have var(X~+ k - EtXt÷ k) = 
O(1), and in the random walk a n d / ( 1 )  cases we have var(X,÷  k - E,X~÷ k) = O(k).  As with the 
var iance- t ime function, the covariance stationary fractional case parallels the I(0) case; more 
precisely, in the cases of covariance stationary pure fractional noise and covariance stationary 
I (d)  processes, we have var(X,+ k -Ee~f t+k)= O(1). The non-stationary fractional cases for 
which 1/2 < d < 3/2 are again the most interesting; then in both the pure fractional noise and 

cases we have var(Xt+ k - ErXt+k) = O(k  ). general I(d)  2d+ 1 

2. Proofs 

Now we provide proofs of the above-made claims. Let B ( L )  be an infinite-ordered lag 
operator  polynomial,  let ~b(L) be a ratio of finite-ordered lag operator  polynomials, and let 
yz(r) denote  the autocovariance function of a time series z at displacement "r. 

2.1. Partial sums 

M-1 L e m m a .  For the fractional noise X t = (1 - L)-det ,  --1/2 < d < 1/2, E,= 0 3~,(~') = O ( M 2 d ) .  

Proof.  From Sowell (1990), we have 

• , -1 r ( 1  - 2d) M-1 r (d  + ~) 

Changing the summation index yields 

2 F ( 1 - 2 d )  ~ F(d-l+~') 
~ r ( - d  + r) ' 1"=i 

which may be rewritten as 

2 F(1 - 2d) [ r(M + d) 
t r  2 d F - ~ ) F ( ] - -  d)  L r ( M - d )  

r(d) ] 
r ( - d )  J = O(M2~) " 

(a) White noise ( X  t = et). In the white noise case, S M = EiMo I Xt+ i is just the sum of M 
innovations, EMo 1 et+i. Thus, 

M - 1 M - 1  M-1 M-1 
var(SM)= E E cov(et+,,et+j)= E E 7 ~ ( i - j ) .  

i=o j=o i=o j = o  

However ,  the white noise property implies that y , ( i - j ) = 0 ,  V i ~ j .  Thus, v a r ( S u ) =  
~iM=o 10"2e = Mtr  2 = O(M) .  
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(b) I(0) (Xt = ~ ( L ) e ,  = u,).  In parallel with the white noise case, S M = Ei=0M-1 S t+ i  = 
~iM=; 1 Ut+ i. T h u s ,  

M - 1  M - 1  M - 1  M - I  M - 1  

var(SM)= ~ ~- COV(Ut+i, Ut+j)+ Z Z y , ( i - j ) =  ~ O(1) ,  
i=0  j=O i=O ]=0 i=0  

because the autovariances of an I(0) process have a finite sum. Thus, var(SM) = O ( M ) .  
= E/= o Xt+ i - Ei= o Ei=oet+ j. Thus, (c) R a n d o m  walk  (ASt=e/). Immediately, S M M-1 __ M-l  i 

var(S M)=EM-1 M-I /=0 Z j=0 ( M - i ) ( M - j )  cov(e,+i, e,+/). Rearranging, 

M - 1  M - 1  M - 1  

( M - i )  ~ ( M - j ) y ~ ( i - j ) = 0 . ~  
i = 0  j = 0  i=O 

2 1 2 ( M - i )  2 = 0 . ~ [ ( M  + M ) ( 2 M + I ) ] = O ( M 3 ) .  

(d) I(1) (AX,  = d/(L)e,  = ut). In parallel with the random walk case, S M = E ~ o  1 Xt+ i = 
M - 1  i M - 1  Ei= o Ej= o Ut+y : Ei= 0 ( M  - i)ut+ i. Evaluating the variance gives 

var(SM) = ~ ~ ( M  - i ) ( M  - j )  cov(ut+~, ut+:) = ~ ( M  - i) ( M  - j ) % , ( i  - j )  
i = 0  1=0 i=O L i = 0  

M - 1  

= ~ ( M  - i ) [ O ( M ) ]  = O(M3). 
i = 0  

(e) Fractional noise (X t = (1 - L ) - d e t  = ut, - 1 / 2 < d < 1 / 2 .  S M = Zi=oM-1 Xt+i = Ei=oM-1 ut+r 
T h U S ,  M - 1  M - 1  var(SM) = Ei-o E._ o COV(Ut+i ,Ut+j) :  ~iM=o 1 ~4=01 ~ lu ( i - - j ) .  However, by the lemma, 
this is just ~ o  I O-(MEa) j= O(M:d+I). 

E =o X,+/= (f) I ( d )  ( X t = ~ b ( L ) ( 1 - L ) -  et'm---Ut, - 1 / 2 < d < 1 / 2 ) .  As usual, S M =  M-1 
M-1 El= o u,+ i. Thus, 

M - 1  M - 1  M - 1  M - 1  M - 1  

var(SM)= ~ ~ cov(u,+i,u,+j)= ~ ~ Y u ( i - j )  = ~ ,  O ( M  2d) 
i=O j=O i=0 j=O i=0 

(because the long-memory component dominates)= O(M2d+l) .  

2.2. The  var iance - t ime  func t ion  

(a) White  noise ( X  t = e,). Xt+ k = et+k, SO that the kth difference is AkXt+k- -X t+  k - - A t  = 
e,+ k -- e,. Thus, var(AkX~+k) = var(et+ k - et) = 20 .2 = O(1). 

(b) I(0) (X, = ~b(L )e~ = u,).  Xt+ k = ~b(L)e,+ k = U,+k, has kth difference AkXt+ k = ut+ k - u,. 
Thus, var(AkXt+k) = var(ut+k) + var(u,) -- 2COV(U,+k, Ut) = O(1). In particular, we have 
limk__.= var(dkX~+~)= 20 .2 (by the square summability of O(L)). 

(c) R a n d o m  walk  ( A X  t = e,). The process is Xt+ k = Xt+k_ 1 + et+ k = X t + Eik=l e,+ r Thus, 
var(AkXt+~) = var(E~= 1 e,+;) = k0.~ = O ( k ) .  
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(d) I(1) ( a X , = O ( L ) e , = u , ) .  The process is kkXt+k = ~k= 1 AXt+j = ~;=1 Ut+ j. Thus, 

('--~1 ) k k k 
var(&X,+D = var u,+j = ~'~ var(u,+j) + ~'. ~ cov(u,+ i, u,+j) = O ( k ) ,  

j = l  i = l j = l  

by square summability of g,(L). 
(e) Fractional noise (X, = (1 - L)-de ,  = B(L)e ,  = ut, - 1 / 2  < d < 1/2). The proof parallels 

exactly that for the I(0) case, with B(L)  replacing 0(L) ,  resulting in a var iance- t ime function 
that  is O(1). 

(f) I(d) ( X  t = 0(L)(1  - L)-de ,  = B(L)e ,  = ut, - 1 / 2  < d < 1/2). The proof parallels exactly 
that  for the I(0) case, with B ( L )  replacing 0(L) ,  resulting in a var iance- t ime function that is 
O(1).  

(g) Fractional noise ( A X , = ( 1 - L ) - d ' e , = u , ,  d ' = d - 1 ,  1 / 2 < d < 3 / 2 ) .  AkX,+k = 
Ek=l AXt+ j = EjL I Ut+j, SO that 

v a r ( A k X , + k ) = ~  ~COV(U,+i ,u ,+ j )=71  % ( i - - j  = ~  O(k  ) ( b y t h e l e m m a )  
i = l j = l  ' =  j = l  i = l  

= O(k2d'+l)  = O ( k 2 d - 1 ) .  

(h) I(d) ( A X , = ( 1 - L ) - a ' ~ b ( L ) e , = B ( L ) e , = u t ,  d ' = d - 1 ,  1 / 2 < d < 3 / 2 ) .  AkX,+ k 
= gjk~ AX,+j = gk=l u,+j, so that 

var(AkXt+k) = ~ ~'. COV(U,+i, Ut+j) = / ~  %(i -- j )  
i=l j=l '= j=l 

= O(k2d'+l)  ~--- O ( k 2 d - 1 ) .  

k 
= ~ [O(k2d')] (by the lemma) 

i=1 

2.3. Prediction error variance 

(a) White noise ( X  t = et). The future value of the process is St+ k ~-" et+k, SO that EtX,+ k = 0 
and (X,+k - E t X t + k )  = Et+k" ThUS, var(Xt+ k - EtXt+k) = var(et+k) = 0.2 = O(1). In particular, 
limk_.~ var(X,+k -- E,X~+k) = 0 .2. 

(b) I(0) (X t=  O(L)e ,=u t ) .  The future value is X,+ k = ~O(L)et+k, SO that  E t S t +  t = ~bte t + 
. . . . .  E i =  0 ~Jie t+k_i  . T h U S ,  g,k+le~ 1+ and (X,+ k E,X~+k) k 1 

k-1 k-1 k-I  
var(X,+k- E~d,+D = ~ ~ 0:0jcov(e,+k_. st+k_) = 0.2 2 0 ~ = O ( 1 ) .  

i=O j=O i=O 
oo In particular,  limk_.oo var(X,+ k - E,X,+k) = o'2, E,=0 g,~ = 0.2x. 

(c) Random walk (AX, = e,). The future value of the process is X,+ k = X,  + E~f_2 e,+k-i, SO 
that  E,X,+ k = X,  and (X,+ k - E~X~+k) = Ekif_ 1 e,+k_r Thus, var(X,+ k - E,X,+k) = O(k) ,  by our 
earlier theorem on the partial sums of white noise series. In particular, var(X,+k - EtX,+k) = 
E~_--o ~ E~_--o ~ COV(e,+k_i, et+k_j)= k0.2, so that limk_.oo va r (X,+k-  E~f ,+k)= oo. 
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" ~t÷N 
"l" ~ N - 1  

+ £t*1 + 0 1 1 : t . I  . . . .  + + IIlN.I~ t+ I 
Fig. 1. Prediction error for the I(1) process. 

k-1 (d)  I (1 )  ( / iX  t = qJ(L)e t = l. t t) .  The  future  value  of  the  process  is St+ k = S t + 2i= o ~b(L)et+k_i, 
so that  E,X,+ k = X  t + (E~= 1 ~0~)e, + (Z/= 2 ~ ) e t _  1 + . . .  and  (X,+ k - Ee~f,+k) = E /=0(E ,=o  
e,+k_ j. Writ ing this as a t r iangular  array as in Fig. 1, and examining  the var ious  d iagonals ,  it is 

k-1 a p p a r e n t  that  the  k - s t ep -ahead  predic t ion  e r ror  converges  to S k =  Z~=0 qJ(L)e r Thus ,  
var(Xt+ k - ErXt+k) = O(k ) ,  by our  t h e o r e m  on  part ial  sums of  I (0)  series.  In par t icular ,  

var(X,+k - Er'Yt+~) = ~] 6i ~O i COV(et+k_j, et+k_k) = ~r~ ~O i , 
j=0 k=0 i=0 i=0 j=0 i=0 

so that  limk__,= var(Xt+ k - E t X t ÷ k ) =  ~. 
(e) Fractional noise ( X  t = (1 - L) -de t  = B ( L ) e  t, - 1 / 2  < d < 1/2) .  The  fu ture  va lue  of  the  

p rocess  is Xt+ k = B(L)et+ k, so that  EtXt+ k = bke t + bk+~et_ 1 + ' ' "  and (Xt+ k + EtXt+k) = k-1 2 k-1 2 Ei= 0 bier+k_ i. Thus ,  v a r ( X t + k - E ,  X t+k)=o '~  Ei= 0 b i = O ( 1 ) ,  and  limk__,= var(X~+ k -  
e x,+k) = . 

(f)  I (d )  ( X  t = (1 - L) -dq j (L )e ,  = B ( L ) e , ,  - 1 / 2  < d < 1 /2) .  The  p r o o f  paral lels  prec ise ly  the  
covar iance  s ta t ionary  fract ional  noise case above .  

(g)  Fractional noise ( / iX,  = (1 - L)-d 'e t  = B ( L ) e  t, d '  = d - 1, 1 /2  < d < 3 /2 ) .  T he  fu ture  
va lue  is Xt+ k = X t + ~]ki=l B ( L  )et+i, so that  E~t't+ k = X t + (Y]i=I bi)et + (E~=2 bi)et-1 + " "  and  
(St+k - EeT(t+k) = E ;  -d  ( Eji=o bi)et+k_ j. Using the  same  a rgumen t  as in the  I (1 )  case,  we  see  

k-1 tha t  this k - s t ep -ahead  pred ic t ion  e r ror  converges  to S k = Ei= 0 B ( L ) e  r Thus ,  var(X,+ k - 
Etgt+k) = O(k2d'+l) = O(k  2d-l) and limk_,= var(X,+ k - E t X t + k ) = o o .  Specifically,  no t e  that  
(1 - L ) ( 1  - L)d-ax~ = et, so that  

k-1 k-1 ( ~  ) (i~=O ) ~ i  ( i ~ 0 ) 2  var(X,+k - EtSt+k) = Z Z bi bi CON(el+k_ j, Et+k_k) = O" e b i • 
j=0 k=0 i=0 1=0 

(h) I (d )  (AX, = (1 - L)-d'~O(L)e, = B ( L ) e , ,  d '  = d - 1, 1 / 2 < d  < 3 / 2 ) .  The  p r o o f  paral le ls  
prec ise ly  the non-s ta t ionary  pure  fract ional  noise case ( G )  above .  
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3. An empirical example: Real interest rate forecasting 

We illustrate our results with a substantive application to real interest rate forecasting. 2 
Using Mishkin's (1992) data, generously supplied by Ric Mishkin, we estimate a long-memory  
forecasting model  for the one-month  real interest rate, and we compare  its out-of-sample 
interval forecasts to those from a random walk. 3 

The nominal  interest rate, the real interest rate, and the expected inflation rate are assumed 
to satisfy the Fisher equation,  i t = rr t + ~-~, where  i t is the nominal  rate, rr  t is the real rate,  and 
7r~ is the expected inflation rate. We construct an ex ante real rate series by estimating an 
integrated moving average model  of order  one for the inflation rate (de te rmined  by 
experimentat ion) ,  generating the expected inflation rate as the prediction from that  model ,  
and subtracting the expected inflation rate from the nominal  interest rate. 4 Finally, using 
parameters  est imated through December  1986, we generate  the 'actual '  48-month path of the 
ex ante real rate from 1987.01-1990.12. 

We compare  the results of  forecasting the ex ante real rate with two models: a r andom walk 
and a pure fractional noise. We consider extrapolation forecasts of the four-year  future path of 
the real interest rate, 1987.01-1990.12. The random walk forecast of  the future path is simply 
the D e c e m b e r  1986 value, 3.19%. The 95% Gaussian prediction interval for the random walk 
forecast  is 3.19-+ 1 . 9 6 . 0 . 8 8 . k  °5, where  k is the number  of steps ahead.  

Construct ion of the forecast f rom the fractional noise model  is slightly more  complicated.  
First we estimate the fractional-integration parameter  (d) for the ex-ante real interest  rate 
using the Geweke ,  Por ter  and Hudak  (1983) (GPH)  procedure ,  1953.01-1986,12. The 
evidence against a unit root  and in favor of mean-revert ing long m e m o r y  appears strong 
(d = 0.61, s.e. = 0.17). Then  we forecast the real rate by casting the fitted fractional model  in 
(infinite) autoregressive form, truncating the infinite autoregression as necessary at the 
beginning of the sample, and applying Wold's chain rule. To compute  the associated 
predict ion interval, we use the usual estimate of the k-step-ahead prediction error  variance 

^ 2  (call it irk) based on the MA(k  - 1) representat ion of the k-step-ahead prediction error.  The 
95% Gaussian confidence interval is centered at the point forecast,  with width 1 .96 .  ~k" 

We show the point and interval forecasts from the fractional noise and random walk models  
in Fig. 2. The random walk prediction interval spans values from approximately - 9 %  to 
+15%,  whereas  the fractional noise prediction interval is much tighter. Moreover ,  it seems 
that  the random walk prediction interval is poorly ca l ib ra t ed -  it appears much too wide. The 
tradit ional time-series f ramework,  which allows only for integer differencing, does not  
acknowledge the potential for the mean  reversion of series that are not  covariance stationary 
(e.g. fractional noise with 1/2 < d < 1), and the resulting prediction intervals may  substantially 
overstate  real interest rate forecast uncertainty.  

2 Throughout, 'real interest rate' refers to the ex ante real interest rate. The ex post real interest rate will be 
explicitly referenced as such. 

3 We use the monthly one-month US treasury bill rate and inflation rate data (annualized), derived from those of 
the Center for Research in Security Prices at the University of Chicago; for details see Huizinga and Mishkin 
(1986). We use 1953.01-1986.12 for estimation, and we use 1987.01-1990.12 for forecast comparison. 

4 This is obviously not the only way to approximate ex ante real rates. Fama and Gibbons (1982), for example, 
estimate the real rate using signal-extraction procedures, under the assumption that the real rate has a unit root. 
Here we impose no such assumption. 
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Fig. 2. Real rate forecasts; fractionally integrated vs. random walk model. 

4. Concluding remarks 

We have characterized the behavior of fractionally integrated processes in terms of long- 
horizon variance ratios and long-horizon prediction intervals, and we have shown that the 
behavior of long-horizon variance ratios and prediction intervals can be very different in long- 
vs. short-memory models. 

We also provided an illustrative application to real interest rate forecasting. The application, 
of course, involved many debatable choices and assumptions, ranging from the model selected 
for forecasting inflation, to the choice of estimator for the long-memory parameter, to the 
absence of short-memory components in the forecasting models. However, our main po int -  
that the behavior of long-horizon interval forecasts is very different in long- vs. short-memory 
models, and that differences in such behavior may have important implications for applied 
work-  emerged clearly. 

A variety of research avenues remain open. For example, prediction of long-memory 
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processes via the Kalman filter appears impossible,  as state-space representat ions evidently do 
not  exist for long-memory models,  because the spectral density function is not rational. 
W e i n e r - K o l m o g o r o v  prediction is straightforward conceptually,  but  the truncation that must  
be  adopted  in practice may be serious in smaller sample sizes, due to the long memory .  A 
number  of  alternatives more  sophisticated than simple truncation may be enter ta ined,  
including the Durb in -Lev inson  innovations,  and Wilson algorithms, as well as 'backcasting' .  
In addition, it will certainly be  of interest to account for coefficient uncertainty (e.g. Sampson,  
1991) in addition to innovation uncertainty when constructing point  and interval forecasts in 
long-memory environments.  
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