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a b s t r a c t

Recent work has analyzed the forecasting performance of standard dynamic stochastic general equilib-
rium (DSGE) models, but little attention has been given to DSGE models that incorporate nonlinearities
in exogenous driving processes. Against that background, we explore whether incorporating stochastic
volatility improves DSGE forecasts (point, interval, and density). We examine real-time forecast accuracy
for key macroeconomic variables including output growth, inflation, and the policy rate. We find that
incorporating stochastic volatility in DSGE models of macroeconomic fundamentals markedly improves
their density forecasts, just as incorporating stochastic volatility in models of financial asset returns
improves their density forecasts.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE)models are now
used widely for forecasting. Recently, several studies have shown
that standard linearized DSGE models compete successfully with
other forecasting models, including linear reduced-form time-
series models such as vector autoregressions (VARs).1 However,
little is known about the predictive importance of omitted non-
linearities.

Recent work by Sims and Zha (2006), Justiniano and Prim-
iceri (2008), Bloom (2009), and Fernández-Villaverde and Rubio-
Ramírez (2013) has highlighted that time-varying volatility is a
key nonlinearity not only in financial data but also in macroeco-
nomic time series. The empirical findings reported in Justiniano
and Primiceri (2008), Fernández-Villaverde and Rubio-Ramírez
(2013), and Curdia et al. (2014), who also consider fat-tailed
shock distributions, indicate that the fit of DSGE models can be
improved by allowing for stochastic volatility in the exogenous
shock processes. Against this background, we examine the real-
time forecast accuracy (point, interval and density) of linearized
DSGE models with and without stochastic volatility. We seek to
determine whether and why incorporation of stochastic volatility
is helpful for macroeconomic forecasting.

* Corresponding author.
E-mail addresses: fdiebold@sas.upenn.edu (F.X. Diebold),

schorf@ssc.upenn.edu (F. Schorfheide), mincshin@illinois.edu (M. Shin).
1 See, for example, the survey of Del Negro and Schorfheide (2013).

Several structural studies find that density forecasts from lin-
earized standard DSGE models are not well-calibrated, but they
leave open the issue of whether simple inclusion of stochastic
volatility would fix the problem.2 Simultaneously, reduced-form
studies such as Clark (2011) clearly indicate that inclusion of
stochastic volatility in linear models (vector autoregressions) im-
proves density forecast calibration. Our work in this paper, in
contrast, is structural and yet still incorporates stochastic volatility,
effectively asking questions in the tradition of Clark (2011), but in
a structural environment. Our empirical findings are very similar
to those of Clark (2011): the inclusion of stochastic volatility
improves predictions in terms of coverage probabilities of interval
forecasts, predictive likelihood values, and coverage probabilities
of density forecasts.

We proceed as follows. In Section 2 we introduce a benchmark
DSGEmodel, with andwithout stochastic volatility. In Section 3we
describe our methods for model solution and posterior analysis. In
Section 4 we introduce our approach for real-time DSGE forecast
analysis with vintage data, describing our dataset and procedure,
and providing initial stochastic volatility estimates. In Sections 5,
6 and 7 we evaluate DSGE point, interval and density forecasts,
respectively. We conclude in Section 8. An Online AppendixA con-
tains two robustness exercises that involve the evaluation of 90%
probability interval forecasts and the evaluation of forecasts based
on a pre-Great Recession sample that ends in 2007:Q4.

2 See Pichler (2008), Bache et al. (2011), Herbst and Schorfheide (2012), Del Ne-
gro and Schorfheide (2013) and Wolters (2015).
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2. A New Keynesian DSGE Model

Here we present the DSGEmodel that is used in the subsequent
empirical analysis. It is similar to the small-scale New Keynesian
model studied by Del Negro and Schorfheide (2013). The model
economy consists of households, firms, a central bank that con-
ducts monetary policy by setting the nominal interest rate, and a
fiscal authority that determines the amount of government con-
sumption and finances it using lump-sum taxes. In what follows,
we are summarizing the log-linearized equilibrium conditions of
this economy. Technology At evolves according to

log At = (log γ )t + z̃t . (1)

The first part is a deterministic trend component, whereas the
second component is an exogenous stochastic process which may
be stationary or exhibit a stochastic trend.We define the change in
the stochastic component as

zt = z̃t − z̃t−1.

To describe the equilibrium conditions, it is convenient to detrend
consumption Ct and output Yt by the level of technology. The
detrended variables are defined as Ct/At and Yt/At , respectively.
Even if z̃t follows a unit-root process, the model has a steady state
in terms of the detrended variables. Henceforth we express all
variables in log deviations from steady state values; for example,
ct = log(Ct/At ) − log c∗, where c∗ is the steady state value of
detrended consumption.

The households determine their supply of labor services to the
firms and choose consumption. They receive labor and dividend
income as well interest rate payments on nominal bonds. The
consumption Euler equation can be expressed as

ct = Et [ct+1 + zt+1] −
1
τ
(Rt − Et [πt+1]), (2)

where ct is consumption, Rt is the nominal interest rate, and πt
is inflation. The parameter τ captures the relative degree of risk
aversion. The discount factor β of the representative household
does not appear in the log-linearized Euler equation.

The production sector consists of monopolistically competitive
intermediate-goods producing firms and perfectly competitive fi-
nal goods producers. The former hire labor from the households,
produce their goods using a linear technology with productivity
At , and sell their output to the final goods producers. Nominal
price rigidities are introduced by assuming that only a fraction of
the intermediate-goods producers can re-optimize their prices in
each period (Calvo mechanism). The final goods producers simply
combine the intermediate goods. In equilibrium the inflation in the
price of the final good is determined by a New Keynesian Phillips
curve:

πt =
ι

1 + ιβ
πt−1 +

β

1 + ιβ
Et [πt+1]

+
(1 − ζβ)(1 − ζ )

(1 + ιβ)ζ
(ct + νlyt ), (3)

where ζ is the probability with which price setters are able to re-
optimize their prices, ι is the fraction of price setters that index
their price to lagged inflation in the event that they are unable
to re-optimize, and νl is the inverse labor supply elasticity of the
households.

We assume that a fraction of output is used for government con-
sumption. The log-linearized resource constraint takes the form

yt = ct + gt , (4)

where gt is an exogenously evolving government spending shock.
The central bank sets nominal interest rates in response to inflation

and output growth deviations from their respective targets:

Rt = ρRRt−1 + (1 − ρR)
×

[
(1 − ψ1)π∗,t + ψ1πt + ψ2(yt − yt−1 + zt )

]
+ mt , (5)

wheremt is a monetary policy shock and π∗,t is a central bank’s in-
flation target rate in log-deviation from its long-run mean log(π∗).

The target inflation rate evolves as a stationary AR(1) process
with homoscedastic innovations:

π∗

t = ρπ∗π∗

t−1 + ϵπ∗,t , ϵπ∗,t ∼ N (0, σ 2
π∗ ). (6)

The parameter ρπ∗ is expected to be close to one so that π∗
t

captures low frequency changes in inflation that we attribute to
slowly evolving changes in monetary policy regimes. The time-
varying target rate is empirically supported by US data. It mainly
captures the fact that monetary policy was characterized by a shift
to a high-inflation period in the 1970s which ended with Volcker’s
stabilization policy. In the forecasting context, the time-varying
target rate captures low frequency shifts in the level of inflation.

We complete the model by specifying laws of motion for the
remaining exogenous shock processes:

mt = ϵR,t , ϵR,t ∼ N (0, σ 2
R,t ), (7)

z̃t = ρz(1 − ϕ)z̃t−1 + ϕz̃t−2 + ϵz,t , ϵz,t ∼ N (0, σ 2
z,t ),

gt = ρggt−1 + ϵg,t , ϵg,t ∼ N (0, σ 2
g,t ).

We assume that ϵR,t , ϵz,t , ϵg,t , and ϵπ∗,t are orthogonal at all leads
and lags. In a constant-volatility implementation, we simply take
σR,t = σR, σz,t = σz and σg,t = σg . Incorporating stochas-
tic volatility is similarly straightforward. Following Fernández-
Villaverde and Rubio-Ramírez (2007), Justiniano and Primiceri
(2008), and Fernández-Villaverde and Rubio-Ramírez (2013), we
take

σi,t = σieνi,t , νi,t = ρσiνi,t−1 + ηi,t , i ∈ {R, z, g} (8)

where ηi,t and ϵj,t are independent of each other at all leads and
lags for all i and j.

3. Model solution and posterior analysis

Ignoring for a moment the stochastic volatilities of the struc-
tural shock innovations ϵt = [ϵR,t , ϵz,t , ϵg,t , ϵπ∗,t ]

′, Eqs. (2)–(7)
form a linear rational expectations system that can be solved
with a standard algorithm, e.g., Sims (2002). In preliminary work,
we also solved the DSGE model with second-order perturbation
techniques. However, except in the vicinity of the zero lower
bound on the nominal interest rate, our New Keynesian model –
using a parameterization that fits U.S. data – does not generate
any strong nonlinearities. Thus, to simplify the computations, we
simply combine the log-linear approximation with the stochastic
volatility processes specified above. This leads to a conditionally
(given the three volatility processes) linear Gaussian state-space
model.

3.1. Transition

We present transition equations with constant and stochastic
volatility.

3.1.1. Constant volatility
A first-order perturbation solution results in a linear transition

equation for the state variables,

st = Φ1(θ )st−1 +Φϵ(θ )ϵt
ϵt ∼ iidN (0,Q (θ )), (9)
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where st = [yt , yt−1, ct , πt , Rt ,mct ,mt , gt , zt , π∗
t ]

′ is a (non-
minimal) vector of state variables, Φ1 is a ns × ns matrix, Φϵ is a
ns × ne matrix and Q is a ne × ne matrix, where ns is the number
of state variables and ne is the number of structural shocks. The
elements of the coefficient matrices (Φ1(θ ),Φϵ(θ ),Q (θ )) are non-
linear functions of θ .

3.1.2. Stochastic volatility
Linearization is inappropriate with stochastic volatility, as

stochastic volatility vanishes under linearization. Instead, at least
second-order approximation is required to preserve terms related
to stochastic volatility, as shown by Fernández-Villaverde and
Rubio-Ramírez (2007, 2013). Interestingly, however, Justiniano
and Primiceri (2008) suggest a method to approximate the model
solution using a partially non-linear function. The resulting law of
motion is the sameas that of the linearized solution, except that the
variance–covariance matrix of the structural shocks can be time-
varying,

st = Φ1(θ )st−1 +Φϵ(θ )ϵt
ϵt ∼ iidN (0,Qt (θ )).

(10)

More specifically, Qt (θ ) is a diagonal matrix. The first three diag-
onal elements are σ 2

i e
2νi,t for i ∈ {R, z, g}. The fourth diagonal

element is σ 2
π∗ . The νi,t ’s have their own transition,

νi,t = ρσiνi,t−1 + ηi,t
ηi,t ∼ iidN (0, σ 2

σi
). (11)

Together with a measurement equation, (10) and (11) form a
partially non-linear state-space representation. One of the nice
features of this formulation is that the system remains linear and
Gaussian, conditional on Qt .

3.2. Measurement

We complete the model with a set of measurement equations
that connect state variables to observable variables. We consider
quarter-on-quarter GDP growth rates (YGR) and inflation rates
(INF ), quarterly nominal interest (federal funds) rates (FFR), and
10-year inflation expectation (INF 10y) from the Survey of Profes-
sional Forecasters maintained by FRB Philadelphia.3 We measure
INF , FFR, and INF 10y as annualized percentages, and we measure
YGR as a quarterly percentage. We assume that there is no mea-
surement error. Then the measurement equation is⎡⎢⎣

YGRt
INFt
FFRt

INF 10y
t

⎤⎥⎦ =

⎡⎢⎣ 100 log γ
400 logπ∗

400 log(γπ∗/β)
400 logπ∗

⎤⎥⎦

+

⎡⎢⎢⎢⎢⎢⎣
100

(
yt − yt−1 + zt

)
400πt
400Rt

400Et

[
1
40

40∑
k=1

πt+k

]
⎤⎥⎥⎥⎥⎥⎦ . (12)

We link the observed 10-year inflation expectation to the model-
implied 10-year inflation expectation in the last line. Our 10-year
inflation expectations data start in 1979. Prior to this date, we

3 To obtain longer inflation expectation series, we take inflation expectations
from the Livingston Survey and the Blue Chip Economic Indicators for the pe-
riod 1979–1991 and from the Survey of Professional Forecasters (SPF) afterwards.
Inflation expectations in this survey are for the CPI, while inflation rates in our
estimation and prediction are for the GDP deflator. To correct for this difference, we
subtract the average difference between CPI and GDP inflation from the beginning
of the sample to the initial point for our forecasting exercise. See Del Negro and
Schorfheide (2013) for details.

treat the expectations data asmissing and adjust themeasurement
equation accordingly. As discussed in Del Negro and Schorfheide
(2013), the expectations data help to identify the time-varying
target rate π∗

t in real time and ensure that the post-1992 inflation
forecasts are not contaminated by reversion to amean that reflects
the high inflation rates in the 1970s.

In slight abuse of notation (changing the definition of Y ) we
write the measurement equation as

Yt = Dt (θ ) + Zt (θ )st . (13)

Here Yt is now the nt ×1 vector of observed variables (composed of
YGRt , INFt , FFRt , and INF 10y

t ), Dt (θ ) is an nt × 1 vector that contains
theDSGEmodel-impliedmean of the observables, Zt (θ ) is an nt×ns
matrix that relates the observables to themodel states, and st is the
ns × 1 state vector. The dimension of the measurement equation
deterministically changes over time depending on the availability
of the 10-year expectation data.

3.3. Estimation

We perform inference and prediction using the Random Walk
Metropolis (RWM) algorithm with the Kalman filter, as facilitated
by the linear-Gaussian structure of our state-space system, condi-
tional on Qt . In particular, we use the Metropolis-within-Gibbs al-
gorithm developed by Kim et al. (1998) and adapted by Justiniano
and Primiceri (2008) to the estimation of linearized DSGE models
with stochastic volatility.4

Implementing Bayesian techniques requires the specification of
a prior distribution.We use priors consistent with those of Del Ne-
gro and Schorfheide (2013) for parameters that we have in com-
mon and summarize them in Table 1. We fix ρz = 1, imposing a
unit root in technology. For themodelwith stochastic volatility, we
consider two specifications. The first specification follows Justini-
ano and Primiceri (2008) and assumes that log volatility evolves as
random walk

SV-RW : νi,t = νi,t−1 + ηi,t , ηi,t ∼ N (0, σ 2
σi
), (14)

where we set the autoregressive parameter to one, ρσi = 1. For
this specification, we impose the inverse gamma prior on σ 2

σi
:

σ 2
σi

∼ IG(2, 0.0001). (15)

This prior specification implies that with 90% probability the stan-
dard deviation of a structural shock can be 18% smaller or 22%
larger at the end of the sample in 2011:Q1 compared to its initial
level in 1964:Q2.

The second volatility specification relaxes the random walk
assumption and assumes the following AR(1) log volatility process:

SV-AR : νi,t = cσi + ρσiνi,t−1 + ηi,t , ηi,t ∼ N (0, σ 2
σi
). (16)

Here we reparameterized the volatility process in terms of cσi =

(1 − ρσi ) log σi. For this specification, we use the following prior
distributions:

cσi ∼ N (0, 10), ρσi ∼ N (0.9, 0.07), σ 2
σi

∼ IG(2, 0.05).

We constrain the priors for the AR(1) stochastic-volatility coeffi-
cients to be in the stationary region, ρσi ∈ (−1, 1). This specifi-
cation is less restrictive than the first one in terms of the a priori
likely volatility range. The prior implies that standard deviations
of structural shocks can be 50% smaller or 100% larger with 90%
chance at any given point in time.

4 Detailed descriptions of the posterior simulator can be found in Justiniano and
Primiceri (2008), Del Negro and Schorfheide (2011), and Del Negro and Primiceri
(2015).
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Table 1
Priors for DSGE model parameters.

Parameter Distribution Para (1) Para (2) Parameter Distribution Para (1) Para (2)

τ Normal 1.50 0.37 ρR Beta 0.50 0.20
νl Gamma 2.00 0.75 ρg Beta 0.50 0.20
ι Beta 0.50 0.15 ϕz Uniform −1.00 1.00
ζ Beta 0.50 0.10 100σR InvGamma 0.10 2.00
ψ1 Normal 1.50 0.25 100σg InvGamma 0.10 2.00
ψ2 Normal 0.12 0.05 100σz InvGamma 0.10 2.00
400 log(1/β) Gamma 1.00 0.40 ρπ∗ Beta 0.50 0.20
400 log(π∗) Gamma 2.48 0.40 100σπ∗ InvGamma 0.10 2.00
100 log(γ ) Normal 0.40 0.10

Notes: Para (1) and Para(2) contain means and standard deviations for Beta, Gamma, and Normal distributions; the
upper and lower bound of the support for the Uniform distribution; and s and ν for the Inverse Gamma distribution,
where pIG(σ |ν, s) ∝ σ−ν−1e−νs2/2σ2

. Priors for stochastic volatility are presented in the main text. We fix ρz = 1.

Finally, we also consider a specification with a deterministic
break in the standard deviation of the structural shocks.We simply
assume that structural break happened during the Great Modera-
tion at the end of 1984:

DV-SB : σi,t =

{
σi,0 if t ≤ 1984 : Q4
σi,1 if t > 1984 : Q4, (17)

where we estimate σi,0 and σi,1 separately. We impose the same
inverse Gamma prior distribution for σi,0 and σi,1 with the same
parameter values as in the model with constant volatility.

3.4. Prediction

We focus on the DSGEmodel with stochastic volatility. Let νt =

[νR,t , νg,t , νz,t ]
′. We generate draws from the posterior predictive

density using the decomposition,

p(YT+1:T+H |Y1:T )

=

∫
(θ,sT ,νT )

[∫
sT+1:T+H ,νT+1:T+H

p(YT+1:T+H |sT+1:T+H )

× p(sT+1:T+H , νT+1:T+H |θ, sT , νT , Y1:T )d(sT+1:T+H , νT+1:T+H )
]

× p(θ, sT , νT |Y1:T )d(θ, sT , νT ). (18)

We use the subscript t1 : t2 to indicate sequences from t1 to t2,
e.g., Y1:T is shorthand for Y1, . . . , YT . The decomposition showshow
the predictive density reflects uncertainty about parameters and
states at the forecast origin, p(θ, sT , νT |Y1:T ), and uncertainty about
future states. Motivated by this decomposition, we generate draws
from the predictive density, adapting the algorithm of Del Ne-
gro and Schorfheide (2013) to account for the hidden volatility
process νt .

Algorithm 1 (Predictive Density Draws).
For j = 1 to nsim,

1. Draw (θ (j), s(j)T , ν
(j)
T ) from the posterior distribution p(θ, sT ,

νT |Y1:T ).
2. Draw from p(sT+1:T+H , νT+1:T+H |θ (j), s(j)T , ν

(j)
T ) as follows:

(a) Draw the sequence of volatility innovationsη(j)i,T+1:T+H ∼

N
(
0, (ω2

i )
(j)

)
for i = R, z, g .

(b) Starting from ν
(j)
T , iterate the volatility law of motion

(11) forward to obtain the sequence ν(j)T+1:T+H :

ν
(j)
i,t = ρ(j)

σi
ν
(j)
i,t−1 + η

(j)
i,t ,

t = T + 1, . . . , T + H, i = R, z, g.

(c) Draw the structural shock innovations ϵ(j)i,T+1:T+H ∼

N
(
0, σ 2(j)

i e2ν
(j)
i,t

)
for i = R, z, g and ϵ

(j)
π∗,T+1:T+H ∼

N
(
0, σ 2(j)

π∗

)
.

(d) Starting from s(j)T , iterate the state transition equation
(10) forward:

s(j)t = Φ1(θ (j))s
(j)
t−1 +Φϵ(θ (j))ϵ

(j)
t ,

t = T + 1, . . . , T + H.

3. Compute the sequence Y (j)
T+1:T+H using the measurement

equation (13):

Y (j)
t = Dt (θ (j)) + Zt (θ (j))s

(j)
t , t = T + 1, . . . , T + H.

Algorithm 1 produces nsim trajectories Y (j)
T+1:T+H from the pre-

dictive distribution of YT+1:T+H given Y1:T . In our subsequent em-
pirical work we take 30,000 draws from the posterior distribution
p(θ, sT , νT |Y1:T ). We discard the first 10,000 draws and select every
10th draw to get 1000 draws of parameters and initial states. For
each of these draws, we execute Steps 2 and 3 of the algorithm
10 times, which produces a total of nsim = 20000 draws from the
predictive distribution.

4. Real-time DSGE forecast analysis with vintage data

4.1. Empirical procedure

We evaluate DSGE forecasts using the real-time dataset con-
structed by Del Negro and Schorfheide (2013), who built data
vintages alignedwith the publication dates of the Blue Chip survey
and the Federal Reserve Board’s Greenbook, extending the dataset
compiled by Edge and Gürkaynak (2010). In this paper we use the
Del Negro–Schorfheide dataset matched to the Blue Chip survey
publication dates. The survey is conducted over two days, typically
beginning on the first or second business day of each month, and
then published a few days later. We consider the April, July, Octo-
ber, and January publication dates. The timing of the survey implies
that, say, the April 2005 forecast utilizes the ‘‘third’’ estimate of
GDP for the fourth quarter of 2004, but not the advance estimate
for the first quarter of 2005.

Our first forecast origin is January 1992, and our last forecast
origin for one-step-ahead forecasts is April 2011. We recursively
estimate the DSGE models for the resulting 78 vintages. The es-
timation sample starts in 1964:Q2 for all vintages. For example,
for the January 1992 vintage we estimate DSGE models based on
the sample 1964:Q2–1991:Q3 and generate forecasts for 1991:Q4
(one step ahead) through 1993:Q2 (eight steps ahead).5 We then
expand the sample gradually, eventually incorporating all vin-
tages from January 1992 through April 2011, implying that the
last observation in the estimation sample is dated 2010:Q4. We
compute forecast errors based on actuals from the most recent

5 At the end of December 1991 the 1991:Q4 NIPA data were not yet available.
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vintage, which best estimates the ‘‘truth.’’6 The last observation
that we forecast is 2011:Q1. As a robustness check we present
forecast evaluation statistics based on samples ending in 2007:Q4,
excluding data from the Great Recession. The key findings are very
similar to those presented subsequently for the longer sample.

4.2. On the use of vintage data

From a model-selection perspective, one might ask whether
a full-sample analysis with final-revised data, as opposed to an
expanding-sample analysis with real-time vintage data, would be
more informative. For our purposes in this paper the answer is
clearly no, because our interest is intrinsically centered on real-
time performance, which is an expanding-sample phenomenon
involving vintage data. That is, each period we get not only a new
observation, but also an improved estimate of the entire history of
all observations. Analysis based on final-revised data, even pseudo-
real-time analysis based on an expanding sample, is simply not
relevant.7

Let us consider real-time vintage data issues fromamore formal
Bayesian viewpoint centered on predictive likelihood in its relation
tomarginal likelihood. By Bayes’ theorem the predictive likelihood
is a ratio of marginal likelihoods,

p(Yt+1|Y1:t ,Mi) =
p(Y1:t+1|Mi)
p(Y1:t |Mi)

,

so that
T−1∏
t=1

p(Yt+1|Y1:t ,Mi) =
p(Y1:T |Mi)
p(Y1|Mi)

.

Hence one can say that Bayesian model selection based on the
full-sample predictive performance record and based on the full-
sample marginal likelihood are the same.

The crucial insight is that in our context ‘‘full-sample’’ should
not just refer to the full sample of final-revised data, but rather the
union of all samples of vintage data, so we now introduce notation
that distinguishes between the two. Let Y (T )

1:t be the data up to time
t viewed from the time-T vantage point (vintage T ), and let Y (t)

1:t
be the data up to time t viewed from the time-t vantage point
(vintage t). In our more refined notation, the predictive-likelihood
Bayesian model selection prescription is not

∏T−1
t=1 p(Yt+1|Y

(T )
1:t ,Mi),

but rather
∏T−1

t=1 p(Yt+1|Y
(t)
1:t ,Mi). That is precisely what we imple-

ment.

4.3. The estimated volatility paths

Our hope, explored subsequently, is that stochastic-volatility
DSGE models will produce better forecasts – particularly better
interval and density forecasts – than their fixed-volatility counter-
parts. A necessary condition is that volatility actually be stochastic
and indeed highly-variable. Hence we begin by examining and
comparing estimated structural shock variances from constant-
volatility and stochastic-volatility DSGE models.

In Fig. 1 we report posterior-mean stochastic-volatility esti-
mates for the SV-AR specification (solid lines), constant-volatility
estimates (dashed black lines), and estimates based on the
structural-break specification DV-SV (solid gray lines) obtained
from three different real-time data vintages. The vintages are those

6 Alternatively, we could have used actuals from the first ‘‘final’’ data release,
which for output corresponds to the ‘‘Final’’ NIPA estimate (available roughly
three months after the quarter is over). Del Negro and Schorfheide (2013) found
that conclusions regarding DSGE model forecasting performance are generally not
affected by the choice of actuals, as did Rubaszek and Skrzypczyński (2008).
7 See Diebold (2015).

of January 1992, October 2002, andApril 2011, and the correspond-
ing samples end in 1991:Q3, 2002:Q2, and 2010:Q4. The general
shapes of volatility are very similar across vintages.

Overall, the estimates confirm significant time variation in
volatility. In particular, all volatilities fall sharply with the mid-
1980s ‘‘Great Moderation’’. Technology shock volatility, more-
over, rises sharply in recent years. It is interesting to contrast
the stochastic-volatility estimates to those obtained from the
structural-break specification. The latter generally captures the
reduction in volatility after 1984, but not the recent increase dur-
ing the Great Recession. Moreover, while the stochastic-volatility
specification implies that volatility was gradually rising through-
out the 1970s, the structural-break version is unable to capture this
trend. Finally, the constant-volatility DSGE model systematically
overstates volatility once the Great Moderation begins, because in
significant part the model attempts to fit the high volatility before
the Great Moderation.

5. Point forecast construction and evaluation

We construct point forecasts as posterior means, which we
compute by Monte Carlo averaging,

ŶT+h|T =

∫
YT+h

YT+h p(YT+h|Y1:T )dYT+h ≈
1

nsim

nsim∑
j=1

Y (j)
T+h,

where the draws Y (j)
T+h are generated with Algorithm 1. The poste-

rior mean is of course the optimal predictor under quadratic loss.
To compare the performance of point forecasts we use root mean
squared errors (RMSEs),

RMSE(i|h) =

√ 1
P − h

E+P−h∑
T=E

(Yi,T+h − Ŷi,T+h|T )2,

where E is the starting point of the forecast evaluation sample
(meaning it is the first forecast origin) and P is the number of
forecast origins.

In Table 2 we present real-time forecast RMSEs for 1991:Q4 to
2011:Q1. We show RMSEs for the benchmark constant-volatility
DSGE model in the first line of each panel, and RMSE ratios in
the subsequent lines. Ratios less than one indicate that the fore-
casts from the corresponding time-varying volatility model are
more accurate than the benchmark model forecasts. We use the
following abbreviations: ‘‘Const.’’ is constant volatility; ‘‘DV-SB’’ is
deterministic volatilitywith structural break (17); ‘‘SV-AR’’ is AR(1)
stochastic-volatility process (16); and ‘‘SV-RW’’ is random walk
stochastic-volatility process (14). In parentheseswe show p-values
of Diebold and Mariano (1995) tests of equal MSE against the
one-sided alternative that the model with time-varying volatility
is more accurate.

Forecasts from the specifications with time-varying volatility
are significantly more accurate for the federal funds rate at all
horizons, and for inflation at longer horizons. In contrast, out-
put growth forecast accuracy is very similar across models and
horizons. There is no clear ranking across the three time-varying
volatility specifications. The simple deterministic breakmodel per-
forms slightly better in some instances and slightly worse than
the stochastic-volatility versions in other instances. This basic
scenario – allowing for time-varying volatility appears somewhat
helpful for point forecasting (presumably due to enhanced param-
eter estimation efficiency), but not massively helpful – is precisely
what one would expect. That is, if time-varying volatility is im-
portant, one expects much greater contributions to interval and
density forecasting performance, to which we now turn.
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Fig. 1. Estimated time-varying standard deviations. Notes: We show estimation results for three different data vintages. We show posterior means (solid line) and 80%
credible bands (shaded area) of standard deviations of the structural shocks based on the DSGE model with SV-AR. The solid gray line is the posterior mean based on the
model with a structural break in volatility (DV-SB). The dashed black line is the posterior mean based on the model with constant volatility.

6. Interval forecast construction and evaluation

Posterior interval forecast (credible region) construction is im-
mediate, given the posterior predictive density, as the interval
forecast follows directly from the predictive density. We focus
on single-variable credible intervals as opposed to multi-variable
credible regions. We compute the highest-density 100(1 − α)
percent interval forecast for a particular element Yi,T+h of YT+h
by numerically searching for the shortest connected interval that
contains 100(1 − α) percent of the draws {Y (j)

i,T+h}
nsim
j=1 .

6.1. Relative evaluation standards: coverage and length

In the interval forecast evaluation that follows, we consider
both relative standards (coverage, length) and absolute standards
(conditional calibration).

6.1.1. Coverage rates
In Table 3 (first row of each cell) we report the frequency with

which real-time outcomes for output growth, inflation rate, and
the federal funds rate fall inside real-time 70-% highest posterior

density intervals.8 Correct coverage corresponds to frequencies
of about 70%, whereas a frequency of greater than (less than)
70% means that on average over a given sample, the posterior
density is too wide (narrow). In parentheses we show p-values
of t-statistics of the hypothesis of correct coverage (empirical =
nominal coverage of 70%), calculated using Newey–West standard
errors.

Table 3 makes clear that the constant-volatility DSGE model
forecasts for output growth and inflation at all horizons and for
the federal funds rate at the one-quarter horizon tend to be too
wide, so that actual outcomes fall inside the intervals much more
frequently than the nominal 70% rate. For example, for the one-
step-ahead forecast horizon, the constant-volatility DSGE model
coverage rates are around 87%. Based on the reported t-statistic
p-values, all empirical departures from 70% nominal coverage are
statistically significant.

The coverage of the intervals from the models with time-
varying volatility, in contrast, is strikingly good. For all variables

8 Results for 90% credible intervals are similar; see the Online Appendix A for
details.
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Table 2
Point forecast RMSEs.

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output growth
Const. 0.65 0.64 0.64 0.70
DV-SB 1.00 (0.45) 1.00 (0.57) 1.01 (0.85) 1.01 (0.90)
SV-AR 1.00 (0.64) 1.02 (1.00) 1.02 (0.99) 1.01 (0.95)
SV-RW 1.01 (0.88) 1.01 (1.00) 1.01 (1.00) 1.01 (1.00)
(b) Inflation rate
Const. 0.24 0.27 0.30 0.37
DV-SB 0.99 (0.16) 1.00 (0.53) 0.99 (0.24) 0.93 (0.01)
SV-AR 1.06 (0.94) 1.01 (0.57) 0.94 (0.12) 0.85 (0.00)
SV-RW 1.00 (0.56) 0.99 (0.29) 0.94 (0.07) 0.86 (0.00)
(c) Fed funds rate
Const. 0.19 0.32 0.53 0.74
DV-SB 0.92 (0.00) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)
SV-AR 0.94 (0.00) 0.93 (0.00) 0.92 (0.00) 0.90 (0.00)
SV-RW 0.91 (0.00) 0.91 (0.00) 0.91 (0.00) 0.89 (0.00)

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We calculate forecast
errors using actuals obtained from the most recent vintage. We show RMSEs for
the benchmark constant-volatility DSGE model in the first line of each panel, and
RMSE ratios in the subsequent lines. ‘‘Const.’’ is constant volatility; ‘‘DV-SB’’ is
deterministic volatility with structural break (17); ‘‘SV-AR’’ is AR(1) stochastic-
volatility process (16); and ‘‘SV-RW’’ is random-walk stochastic-volatility process
(14). In parentheses we show p-values of Diebold–Mariano tests of equal MSE
against the one-sided alternative that the model with time-varying volatility is
more accurate, obtained using standard normal critical values. We compute the
standard errors entering the Diebold–Mariano statistics using Newey–West with
bandwidth 0 at the 1-quarter horizon and (P −h)1/3 in the other cases, where P −h
is the number of forecasting origins.

and horizons, estimated coverage is much closer to 70%, and the
p-values indicate that in the vast majority of cases any deviation
is statistically insignificant. On balance, the SV-RW version yields
more accurate coverage rates than the SV-AR specification. The
structural break specification also does quite well. Thus, account-
ing for the volatility reduction in 1984 due to the GreatModeration
appears to be of first-order importance for interval forecasts.

6.1.2. Interval length
Table 3 (second row of each cell) also shows average predic-

tion interval lengths. Average lengths based on the time-varying
volatility models are roughly 30% shorter than those from the
constant-volatility model. Hence the time-varying volatility inter-
vals dominate on both the coverage and length dimensions. The
intervals from the stochastic-volatility specifications are generally
wider than those from the structural break specification. This
seems by and large consistent with Fig. 1, which indicates the
estimated volatility from the SV-AR version often exceeds the post-
break estimate from the DV-SB specification.

6.2. Absolute evaluation standards: conditional calibration

We also consider an absolute standard for interval forecasts:
conditional calibration. As detailed in Christoffersen (1998),
if interval forecasts are correctly conditionally calibrated, then
the ‘‘hit sequence’’ should have mean (1 − α) and be at
most h − 1-dependent, where the hit sequence is I (1−α)t =

1{realized yt falls inside the interval}. Notewell the two-part char-
acterization. The hit series must have the correct mean, (1 − α),
which corresponds to correct unconditional calibration, and it
must also be at most h − 1-dependent. When both hold, we have
correct conditional calibration.

In Table 4we present results of Christoffersen’s likelihood-ratio
tests for 70-percent 1-step-ahead interval forecasts, 1991:Q4 to
2011:Q1. We show separate and joint tests for correct coverage
and independence. The coverage tests consistently find no flaws in
the time-varying volatility DSGE intervals, while simultaneously

Table 3
70% interval forecast evaluation (coverage & length).

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output Growth
Const. 0.89 (0.00) 0.90 (0.00) 0.91 (0.00) 0.89 (0.00)

1.96 1.99 2.00 2.00
DV-SB 0.76 (0.25) 0.73 (0.61) 0.71 (0.91) 0.69 (0.85)

1.17 1.19 1.18 1.18
SV-AR 0.78 (0.08) 0.79 (0.08) 0.77 (0.21) 0.83 (0.04)

1.40 1.44 1.48 1.54
SV-RW 0.76 (0.25) 0.75 (0.34) 0.76 (0.28) 0.69 (0.86)

1.35 1.38 1.38 1.37
(b) Inflation rate
Const. 0.87 (0.00) 0.87 (0.00) 0.85 (0.00) 0.86 (0.08)

2.93 3.30 3.54 3.80
DV-SB 0.74 (0.38) 0.70 (0.99) 0.65 (0.54) 0.57 (0.24)

1.96 2.24 2.39 2.57
SV-AR 0.76 (0.25) 0.75 (0.41) 0.79 (0.12) 0.77 (0.42)

2.42 2.62 2.83 3.13
SV-RW 0.76 (0.25) 0.77 (0.25) 0.76 (0.39) 0.66 (0.71)

2.30 2.55 2.70 2.89
(c) Fed funds rate
Const. 0.86 (0.00) 0.68 (0.81) 0.63 (0.51) 0.54 (0.26)

2.20 3.05 3.93 4.55
DV-SB 0.62 (0.13) 0.52 (0.11) 0.49 (0.07) 0.51 (0.18)

1.20 1.70 2.23 2.62
SV-AR 0.80 (0.04) 0.66 (0.66) 0.52 (0.11) 0.49 (0.13)

1.46 1.99 2.55 3.02
SV-RW 0.73 (0.54) 0.61 (0.30) 0.51 (0.05) 0.49 (0.13)

1.32 1.82 2.36 2.74

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We obtain ‘‘actuals’’
from the most recent vintage. ‘‘Const.’’ is constant volatility; ‘‘DV-SB’’ is deter-
ministic volatility with structural break (17); ‘‘SV-AR’’ is AR(1) stochastic-volatility
process (16); and ‘‘SV-RW’’ is random-walk stochastic-volatility process (14). Top
row of each cell: we report the frequencies with which outcomes fall in 70% bands
computed from the posterior predictive density. In parentheses we show p-values
of t-statistics of the hypothesis of correct coverage (empirical = nominal coverage
of 70 percent), calculated using Newey–West standard errors with bandwidth 0 at
the 1-quarter horizon and (P − h)1/3 in the other cases, where P − h is the number
of forecasting origins. Bottom row of each cell: we report the average lengths of
prediction intervals.

Table 4
Christoffersen likelihood-ratio tests.

Volatility Coverage Independence Joint

(a) Output growth
Const. 15.1 (0.00) 3.50 (0.06) 18.9 (0.00)
DV-SB 1.23 (0.27) 0.62 (0.43) 2.42 (0.30)
SV-AR 2.66 (0.10) 0.26 (0.61) 3.41 (0.18)
SV-RW 1.23 (0.27) 0.04 (0.85) 1.83 (0.40)
(b) Inflation rate
Const. 12.9 (0.00) 0.10 (0.76) 13.2 (0.00)
DV-SB 0.73 (0.40) 1.10 (0.29) 2.42 (0.30)
SV-AR 1.23 (0.27) 6.43 (0.01) 8.23 (0.02)
SV-RW 1.23 (0.27) 1.90 (0.17) 3.69 (0.16)
(c) Fed funds rate
Const. 10.8 (0.00) 4.10 (0.04) 15.22 (0.00)
DV-SB 2.54 (0.11) 33.5 (0.00) 37.98 (0.00)
SV-AR 3.60 (0.06) 9.11 (0.00) 13.17 (0.00)
SV-RW 0.36 (0.55) 13.6 (0.00) 16.61 (0.00)

Notes: We show results for 70-percent 1-step-ahead interval forecasts. The real-
time forecast sample is 1991:Q4 to 2011:Q1. We obtain ‘‘actuals’’ from themost re-
cent vintage. ‘‘Const.’’ is constant volatility; ‘‘DV-SB’’ is deterministic volatility with
structural break (17); ‘‘SV-AR’’ is AR(1) stochastic-volatility process (16); and ‘‘SV-
RW’’ is random-walk stochastic-volatility process (14). We show Christoffersen’s
individual asymptotic χ2(1) tests for coverage and for independence, as well as his
joint asymptotic χ2(2) test, with p-values in parentheses.

consistently finding severe flaws in the constant-volatility DSGE
intervals. In general, the random-walk stochastic-volatility spec-
ification SV-RW leads to higher p-values than the SV-AR spec-
ification. The structural break specification fares slightly better
than SV-RW for the inflation rate and worse for the federal funds
rate.
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Neither the time-varying volatility nor the constant-volatility
DSGE interval forecasts perform consistently well in terms of the
independence test. In particular, the p-values for the federal funds
rate tests are all less than 5%. This is not unexpected, however,
because small-scale DSGE models are well-known to have weak
propagation mechanisms that fail to fully capture the conditional-
mean dependence (serial correlation) in macroeconomic time
series. Incorporating stochastic volatility can naturally fix mis-
calibration problems, but there is no way for it to fix inadequate
conditional-mean dynamics.

Finally, the joint test considers both correct coverage and in-
dependence. The highest p-values are obtained for output growth
and inflation forecasts by the random-walk stochastic-volatility
and the structural-break specifications. All of the federal funds rate
forecasts fail the joint test.

7. Density forecast construction and evaluation

Density forecast construction is immediate, given the posterior
predictive density. The predictive density is the density forecast.

7.1. Relative evaluation standards: log predictive likelihood

Weuse the log predictive likelihood for relative density forecast
accuracy comparison, as in Warne et al. (2017).9 The predictive
likelihood is

SM (h) =
1

P − h

E+P−h∑
T=E

log p(ỸT+h|Y1:T ), h = 1, 2, . . .,H, (19)

where E is the starting point of the forecast evaluation sample,
P is the number of forecast origins, and h is the forecast horizon.
We distinguish Ỹ from Y because we exclude the 10-year-ahead
inflation expectations INF 10y

t from the predictive likelihood. M
denotes marginal, as opposed to joint, predictive likelihood, which
can be defined as

SJ (h) =
1

P − h

E+P−h∑
T=E

log p(ỸT+1:T+h|Y1:T ), h = 1, 2, . . .,H.

Obviously the joint and marginal predictive likelihood concepts
lead to the same quantity when h = 1. To compute the marginal
predictive density SM (h), after Step 3 of Algorithm 1 we evaluate
the density p(YT+h|ν

(j)
T+1:T+h, θ

(j), s(j)T , ν
(j)
T ). This density is Gaussian

and can be obtained from the Kalman filter, treating the observa-
tions YT+1:T+h−1 as missing. Averaging across draws j leads to the
Monte Carlo approximation

p(YT+h|Y1:T ) ≈
1

nsim

nsim∑
j=1

p(YT+h|ν
(j)
T+1:T+h, θ

(j), s(j)T , ν
(j)
T ). (20)

In Fig. 2 we show a time-series plot of 1-step-ahead predic-
tive density values for GDP growth, inflation, and interest rates.
The bottom panel shows period-by-period predictive likelihoods,
whereas the top panel depicts the evolution of the recursive aver-
age SM (1) as the number of prediction periods P increases. Judging
from the recursive average, after 1994 the two stochastic-volatility
specifications dominate the constant volatility model. The struc-
tural break specification performs fairly well between 1994 and
2002, but then its performance starts to deteriorate.

The plot of the period-by-period predictive densities indicates
that the relative ranking of the specifications changes over time.

9 Wewill often refer simply to the ‘‘predictive likelihood’’, with the understand-
ing that logs have been taken.

Fig. 2. 1-step-ahead predictive densities. Notes: The real-time forecast sample is
1991:Q4 to 2011:Q1. We obtain ‘‘actuals’’ from the most recent vintage. ‘‘Const.’’
is constant volatility; ‘‘DV-SB’’ is deterministic volatility with structural break (17);
‘‘SV-AR’’ is AR(1) stochastic-volatility process (16); and ‘‘SV-RW’’ is random-walk
stochastic-volatility process (14).

From 1994 to 2002 and 2005 to 2007, the time-varying volatil-
ity models perform better than the constant-volatility model. In
the midst of the Great Recession 2008:Q4 output growth drops
substantially and unexpectedly from the perspective of a wide
variety of aggregate time seriesmodels. In this period the constant-
volatility model fares better than its competitors because due to
the pre-1984 observations, its estimated shock innovations are
relatively large, in particular for the government spending and the
technology shock (see Fig. 1). Thus, the large drop in real activity
appears less unexpected than for the time-varying volatility spec-
ifications. The stochastic-volatility models are able to adapt to the
increase in macroeconomic volatility during the Great Recession
(with a lag), whereas the structural break model is not.

In Table 5 we present marginal predictive likelihoods for den-
sity forecasts at horizons h = 1, 2, 4, 8. From a univariate predic-
tion perspective, the time-varying volatility specifications domi-
nate the constant-volatility specification at horizons h = 1, 2, 4.
The structural break specification fares slightly better for output
growth, whereas the stochastic-volatility specifications work bet-
ter for the inflation and federal funds rates. For h = 1, 2 the
randomwalk stochastic-volatility process is preferred whereas for
longer horizons the mean-reverting autoregressive process gener-
ates more accurate density forecasts. From amultivariate perspec-
tive, the random-walk stochastic volatility model is preferred at
the one-step horizon (see also Fig. 2). At h = 2 it is essentially a
tie between the SV-RWand the constant-volatility specifications,10
whereas at horizons h = 4, 8 the constant-volatility version comes
out ahead.

7.2. Absolute evaluation standards: conditional calibration

The predictive log likelihood density forecast comparison ap-
proach described above invokes a relative standard; using the
log predictive density, it ranks density forecasts according to as-
sessed likelihoods of the observed realization sequence. It is also of

10 See also the results for the evaluation sample that ends in 2007:Q4 reported in
the Online Appendix A.
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Fig. 3. PIT histograms. Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We calculate forecast errors using actuals obtained from the most recent vintage. We
group PITs into five equally-sized bins. Under uniformity, each bin should contain 20% of the PITs, as indicated by the horizontal red lines.

Table 5
Marginal predictive likelihoods SM (h).

Volatility h = 1Q h = 2Q h = 4Q h = 8Q

(a) Output growth
Const. −1.11 −1.11 −1.11 −1.16
DV-SB −0.99 −1.01 −1.03 −1.17
SV-AR −1.04 −1.12 −1.20 −1.62
SV-RW −1.02 −1.08 −1.16 −1.49
(b) Inflation rate
Const. −1.88 −1.91 −1.93 −2.05
DV-SB −1.71 −1.74 −1.77 −1.92
SV-AR −1.63 −1.66 −1.70 −1.83
SV-RW −1.62 −1.64 −1.71 −1.88
(c) Fed funds rate
Const. −2.74 −2.85 −2.98 −3.12
DV-SB −3.37 −3.61 −3.95 −4.46
SV-AR −2.45 −2.57 −2.93 −3.92
SV-RW −2.37 −2.52 −2.96 −4.26
(d) Multivariate
Const. −6.41 −6.59 −6.81 −7.06
DV-SB −7.22 −7.63 −8.27 −9.26
SV-AR −6.36 −6.70 −7.70 −11.46
SV-RW −6.22 −6.61 −7.87 −12.87

Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We evaluate the
predictive densities at the actuals obtained from the most recent vintage. ‘‘Const.’’
is constant volatility; ‘‘DV-SB’’ is deterministic volatility with structural break (17);
‘‘SV-AR’’ is AR(1) stochastic-volatility process (16); and ‘‘SV-RW’’ is random-walk
stochastic-volatility process (14). We present predictive likelihoods for density
forecasts at horizons h = 1, 2, 4, 8, for output growth, the inflation rate, and the
fed funds rate. We show in bold the ‘‘winners’’, for each horizon and each variable.

general interest to assess density forecasts relative to a different,
absolute standard, correct conditional calibration.

Following Diebold et al. (1998), we rely on the probability
integral transform (PIT). The PIT of Yi,T+h based on the time-T
predictive distribution is defined as the cumulative density of the
random variable Yi,T+h evaluated at the true realization of Yi,T+h,

zi,h,T =

∫ Yi,T+h

−∞

p(Ỹi,T+h|Y1:T )dỸi,T+h.

We compute PITs by the Monte Carlo average of the indicator
function,

zi,h,T ≈
1

nsim

nsim∑
j=1

I{Y (j)
i,T+h ≤ Yi,T+h}.

If the predictive distribution is correctly conditionally calibrated,
then zi,h,T should be distributed U(0, 1) and be at most h − 1-
dependent.

In Fig. 3we report PIT histograms for forecast horizons h = 1, 4,
for DSGE models with constant and time-varying volatility. We
group PITs into five equally sized bins. Under uniformity, each bin
should contain 20% of the PITs, as indicated by the horizontal red
lines in the figure. Checking histograms alone essentially effec-
tively amounts to checking unconditional calibration.

Histograms for the constant-volatility model appear highly
non-uniform. For output growth, too few PITs are in the extreme
bins, indicating that the predictive distribution tends to be too
diffuse. Similarly, for the inflation rate, too few PITs are in the
extreme left-tail bin (0–0.2), and for the fed funds rate too few PITs
are in the extreme right-tail bin (0.8–1). In contrast, histograms
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Fig. 4. PIT autocorrelations for random walk stochastic volatility. Notes: The real-time forecast sample is 1991:Q4 to 2011:Q1. We calculate forecast errors using actuals
obtained from the most recent vintage.

for the structural break and the stochastic-volatility (randomwalk)
specifications appear much more uniform.11

We present PIT sample autocorrelations in Fig. 4. They es-
sentially look the same for all four specifications considered in
this paper. For brevity we only plot them for the random-walk
stochastic-volatility model. Clear deviations from independence
are apparent. Hence, although the time-varying-volatility DSGE
models appear unconditionally well calibrated (in contrast to the
constant-volatilitymodel), they are nevertheless not correctly con-
ditionally calibrated, because they fail the independence condition.
This pattern, and its underlying reasons, matches precisely our
earlier results for interval forecasts.

8. Conclusion

We have examined the real-time accuracy of point, interval
and density forecasts of output growth, inflation, and the fed-
eral funds rate, generated from DSGE models with and without
stochastic volatility. The stochastic-volatility versions are supe-
rior to the constant-volatility versions. We traced the superi-
ority of stochastic-volatility forecasts to superior coverage rates
(for interval forecasts) and superior PIT uniformity (for density
forecasts) – essentially superior unconditional calibration of the
stochastic-volatility forecasts. We also compared the performance
of the stochastic-volatility specifications to a model with a one-
time break in shock standard deviations at the end of 1984.
The structural-break version performs generally better than the
constant-volatility model, but is unable to adapt to the change
in macroeconomic volatility during the Great Recession. Neither
model, however, appears correctly conditionally calibrated, as cor-
rect conditional calibration requires both correct unconditional
calibration and a type of ‘‘error independence’’ condition, which
fails to hold.
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