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Abstract—It depends. If volatility fluctuates in a forecastable way,
volatility forecasts are useful for risk management (hence the interest in
volatility forecastability in the risk management literature). Volatility
forecastability, however, varies with horizon, and different horizons are
relevant in different applications. Moreover, existing assessments of
volatility forecastability are plagued by the fact that they are joint
assessments of volatility forecastability and an assumed model, and the
results can vary not only with the horizon but also with the assumed model.
To address this problem, we develop a model-free procedure for assessing
volatility forecastability across horizons. Perhaps surprisingly, we find that
volatility forecastability decays quickly with horizon. Volatility forecasta-
bility—although clearly of relevance for risk management at the short
horizons relevant for, say, trading desk management—may be much less
important at longer horizons.

I. Introduction

Many private-sector firms engage in risk management.
In the financial services industry in particular, both

interest and capability in risk management are expanding
rapidly. Particularly active areas include investment bank-
ing, commercial banking, and insurance.1 Interest has simi-
larly escalated on the regulatory side, as governments
around the world seek to impose risk-based capital adequacy
standards.2 It is not an exaggeration to say that risk
management has emerged as a major industry in the last ten
years, with outlets such as Risk Magazine bridging academe
and industry.
Portfolio risk depends on the holding period, or horizon.

But what is the relevant horizon for risk management? This
obvious question has no obvious answer. Perusal of the
industry literature reveals widespread discussion of the
importance of the horizon, disagreement as to the relevant
horizon, and, interestingly, an emerging recognition that
fairly long horizons are relevant in many applications.
Smithson and Minton (1996, p. 39), for example, note that
‘‘nearly all risk managers believe the one-day . . . approach
is valid for trading purposes. However, they disagree on the
appropriate holding period for the long-term solvency of the
institution.’’ Chew (1994, p. 65) elaborates, asking whether
any short holding period is relevant for risk controllers.
McNew (1996, p. 56) makes a precise recommendation,

arguing that ‘‘if corporate America were to apply [modern
financial risk management techniques] to its asset/liability
risk management problem, it is probable that the time
horizon would not be less than one quarter and could be
significantly longer.’’ Locke (1999) reports on the recent
development of corporate risk measurement and manage-
ment systems with a horizon between one and twelve
months. Finally, institutional investors in Falloon (1999)
argue that the appropriate horizon for investors, as opposed
to market makers, is approximately one year, and that the
appropriate horizon for pensions funds may be as long as ten
years.
The upshot, of course, is that there is no one ‘‘relevant’’

horizon, so that thought must be given to the relevant
horizon on an application-by-application basis. The relevant
horizon will, in particular, likely vary with orientation (such
as, public/regulatory versus private/for-profit), position in
the firm (such as trading desk versus CFO), asset class (such
as equity versus fixed income), and industry (such as
banking versus insurance). These considerations lead to an
important insight: Although very short horizons may be
appropriate for certain tasks (such as managing the risk of a
trading desk), much longer horizons may be relevant in other
contexts.
There is little doubt that volatility is forecastable on a very

high-frequency basis, such as hourly or daily.3 Interestingly,
however, much less is known about volatility forecastability
at longer horizons, and, more generally, the pattern and
speed of decay in volatility forecastability as we move from
short to long horizons. Thus, open and key questions remain
for risk management at all but the shortest horizons. How
forecastable is volatility at various horizons? With what
speed and pattern does forecastability decay as horizon
lengthens? Are the recent advances in volatility modeling
and forecasting—such as GARCH, stochastic volatility, and
related approaches—useful for risk management at longer
horizons, or is longer-horizon volatility approximately con-
stant?
One approach to answering these questions involves

estimating the path of short-horizon volatility and using it to
infer the properties of long-horizon volatility. The simplest
implementation of this temporal-aggregation idea is the
popular industry practice of ‘‘scaling up’’ high-frequency
volatility estimates to get a low-frequency volatility estimate
(for example, converting a one-day return standard deviation
to a thirty-day return standard deviation by multiplying by
!30). Unfortunately, except under restrictive and routinely
violated conditions, scaling is misleading and tends to
produce spurious magnification of volatility fluctuations
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with horizon, as shown by Diebold, Hickman, Inove, and
Schuermann (1998).
Amore appropriate temporal-aggregation strategy is to fit

a model to high-frequency data and, conditional upon the
truth of the fitted model, use it to infer the properties of
lower-frequency data. Drost and Nijman (1993), for ex-
ample, provide temporal-aggregation formulae for the weak
GARCH(1,1) process. That approach has at least two
drawbacks, however. First, the aggregation formulae assume
the truth of the fitted model (when in fact the fitted model is
simply an approximation), and the best approximation to
h-day volatility dynamics is not likely to be what one gets by
aggregating the best approximation (let alone a mediocre
approximation) to one-day volatility dynamics.4 Second,
temporal-aggregation formulae are presently available only
for restrictive classes of models; the literature has pro-
gressed little since Drost and Nijman.
An alternative strategy is simply to fit volatility models

directly to returns at various horizons of interest, thereby
avoiding temporal-aggregation entirely. The idea of working
directly at the horizons of interest is a good one, but,
unfortunately, different families of parametric volatility
models may produce different conclusions about forecasta-
bility, as in Hsieh (1993). What we really want, then, is a
way to assess volatility forecastability directly from ob-
served returns at various horizons without conditioning on
an assumed model. In this paper, we propose a method for
doing so, and we use it to assess patterns of volatility
forecastability in equity, foreign exchange, and bond mar-
kets, with surprising results. We proceed as follows. In
section II, we describe in detail our framework for model-
free evaluation of volatility forecastability, and then, in
section III, we use our methods to assess the volatility
forecastability for returns on four major equity indexes, four
major dollar exchange rates, and the U.S. ten-year Treasury
bond, at horizons ranging from one through twenty trading
days. In section IV, we offer concluding remarks and
directions for future research.

II. Methods

In this section, we describe and assemble the tools
necessary for a workable strategy of model-free assessment
of volatility forecastability in risk management contexts.
First, we sketch the intuition and give a precise statement of
our methods. In particular, we show that recently developed
tests of conditional calibration of interval forecasts can be
used to provide model-free assessments of volatility foreca-
stability. Next, we develop a formal test of volatility
forecastability. Finally, we propose a natural and complemen-
tary measure of the strength of volatility forecastability, and
we sketch a strategy for its estimation and inference.

A. Model-Free Assessment of Volatility Forecastability

Our strategy for assessing volatility forecastability is
intimately connected to assessing the adequacy of interval
forecasts. Christoffersen (1998) develops a framework for
evaluating the adequacy interval forecasts, and our methods
build directly on his. Suppose that we observe a sample path
5 yt6t!1T of the time series yt and a corresponding sequence of
one-step-ahead interval forecasts, 5(Lt 0 t"1(p), Ut 0 t"1(p))6t!1T ,
where Lt 0 t"1(p) and Ut 0 t"1(p) denote the lower and upper
limits of the interval forecast for time t made at time t " 1
with desired coverage probability p. We define the hit
sequence It as

It ! 51, if yt ! [Lt 0 t"1(p), Ut 0 t"1(p)]

0, otherwise,

for t ! 1, 2, . . . , T. We say that a sequence of interval
forecasts has correct unconditional coverage if E[It]! p for
all t; that is the standard notion of ‘‘correct coverage.’’
Correct unconditional coverage is appropriately viewed

as a necessary condition for adequacy of an interval forecast.
It is not sufficient, however. In particular, in the presence of
conditional heteroskedasticity, it is important to check for
adequacy of conditional coverage, which is a stronger
concept. We say that a sequence of interval forecasts has
correct conditional coverage with respect to an information
set #t"1 if E[It 0#t"1] ! p for all t. Correct conditional
coverage trivially implies correct unconditional coverage;
correct unconditional coverage is simply correct conditional
coverage with respect to an empty information set. Christof-
fersen (1998) shows that, if #t"1 ! 5It"1, It"2, . . . , I16, then
correct conditional coverage is equivalent to 5It6 "

i.id. Bernoul-
li(p), which can readily be tested.
Having given some background on interval forecast

evaluation, now let us proceed to our ultimate goal: the
development of tools for model-free assessment of volatility
forecastability. Assume that the process y whose volatility
forecastability we want to assess is covariance stationary,
and, without loss of generality, assume a zero mean. Pick a
constant interval symmetric around zero, ["c, c].5,6 The key
insight is that—although the interval ["c, c] is uncondition-
ally correctly calibrated at some unknown confidence level,
p—it is not conditionally correctly calibrated if volatility is
forecastable. More precisely, if we measure volatility by the
conditional variance, then we know that, if the conditional
variance adapts to the evolving information set given by
5 yt"1, yt"2, . . . , y16, a fixed-width confidence interval could

4 See Findley (1983), Weiss (1991), and Tiao and Tsay (1994).

5 Any value of c could be chosen, but typical values would be in range of
one or two unconditional standard deviations of y. One could also use an
asymmetric interval, but we shall not pursue that idea here.
6 From a risk management perspective, it might seem curious to use a
two-sided interval and thus score a hit when either an extreme left or an
extreme right-tail event occurs. We do this deliberately, however, to
enhance our power to detect volatility clustering, which is an inherently
symmetric phenomenon. Using a test based on a one-sided interval would
reduce power substantially.
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not be correctly conditionally calibrated, because it fails to
widen when the conditional variance rises and to narrow
when the conditional variance falls.
The implied strategy for evaluating volatility forecastabil-

ity is obvious:We know that confidence intervals of the form
["c, c] are correctly unconditionally calibrated at some
level, but we don’t know whether they are correctly condi-
tionally calibrated, which is to say we don’t know whether
volatility is forecastable. If the ["c, c] intervals are not only
correctly unconditionally calibrated, but also correctly con-
ditionally calibrated, then volatility is not forecastable, and
the hit sequence is i.i.d.7

B. Assessing Independence of the Hit Sequence: A Runs Test

We have seen that nonforecastability of volatility corre-
sponds to an i.i.d. hit sequence; we now describe a conve-
nient and powerful model-free runs test for testing indepen-
dence of the hit sequence. The runs test dates at least to
Wolfowitz (1943) and David (1947). It has been applied
extensively in quality control engineering (for example, Grant
and Leavenworth (1988)), and it can be viewed as an application
of categorical data analysis (for example, Andersen (1994)).
Define a run as a string of consecutive zeros or ones in the

hit sequence.8 Let r be the number of runs, and let n0 and n1
be the total number of zeros and ones in the sequence. Then
T ! n0 $ n1, and if R is the maximum number of runs
possible, then

R ! 52 min 5n0, n16, if n0 ! n1
2 min 5n0, n16 $ 1, otherwise.

Under the null hypothesis that 5It6t!1T is a random sequence,
the distribution of the number of runs, r, given n1 and n0, is
(for min 5n0, n16 % 0)

Pr (r 0n0, n1) !
fr

1Tn0 2
, for r ! 2, 3, . . . , R,

where

fr!2s ! 2 1n0 " 1
s " 1 2 1

n1 " 1
s " 1 2 and

fr!2s$1 ! 1n0 " 1
s 2 1

n1 " 1
s " 1 2 1

n0 " 1
s " 1 2 1

n1 " 1
s 2

!
f2s(T " 2s)

2s
.

This distributional result provides a handy test of indepen-
dence of the hit sequence; notice that it does not depend on
the nominal coverage of the intervals, p. Moreover, the runs
test is exact, and it is uniformly most powerful against a
first-order Markov alternative.9
We conduct a small Monte Carlo experiment to assess the

nominal size and power of the runs test in a realistic setting.
We generate 1,000 daily return samples of size 6,350, which
matches the returns series studied in our subsequent empiri-
cal work. We then aggregate the one-day returns to h-day
nonoverlapping returns, h ! 2, 3, . . . , 20, and we assess the
independence of each of the h-day returns series using the
runs test. We use four data-generating processes. The first is
simply i.i.d. Gaussian noise, which allows us to check
whether the test is correctly sized. The remaining three have
forecastable volatility: GARCH(1, 1) with Gaussian innova-
tions; GARCH(1, 1) with Student’s-t innovations; and the
IGARCH process from J. P. Morgan’s RiskMetrics. We use
highly persistent GARCH processes (& $ ' ! 0.99, in the
standard GARCH notation), as the volatility forecastability
will otherwise be trivially negligible at the longer horizons.
The results, shown in figure 1, show that the test is correctly

sized, with very high power at short horizons. The power does
of course drop with horizon, but, even at a twenty-day horizon,
corresponding to four weeks of trading, the power is reason-
able. In figure 1, the width of the unconditional interval, c, is
set to two (unconditional) standard deviations. In figure 2,
we show power functions for different values of c, using the
GARCH(1, 1)-t as the data-generating process throughout.
We let c vary from one to two standard deviations in increments
of a quarter. Power varies moderately with c, with highest
power when c is approximately one and one-half standard
deviations at each horizon. Nevertheless, we will set c to two
standard deviations for most of this paper, as it yields an
unconditional coverage of greater relevance to risk manag-
ers, with only a slight reduction in power.10

C. Measuring Volatility Forecastability: Markov Transition
Matrix Eigenvalues

We now define a forecastability measure based on a
first-order Markov alternative, which naturally complements
the runs test of independence. Let the hit sequence be
first-orderMarkov with arbitrary transition probability matrix

II ! 31 " (01 (01

1 " (11 (114 ,
where (ij ! Pr (It ! j 0It"1 ! i). The eigenvalues are solu-
tions to the equation

0)I " 31 " (01 (01

1 " (11 (1140 ! 0;
7 It is interesting to note that tests based on the i.i.d. property of the hit
sequence have power not only against volatility forecastability, but also
against more-general forms of forecastability in the tail thickness of the
conditional distribution, such as those modeled by Hansen (1994). This
type of forecastability is equally important for risk managers, whose
ultimate concern is not volatility per se, but rather the likelihood of tail
events.
8 For example, the sequence 5It6t!110 ! 50, 0, 1, 1, 1, 0, 1, 0, 0, 06 has five runs.

9 See Lehmann (1986) for details.
10 Furthermore, the choice of c does not change the qualitative results of
our subsequent empirical analysis, as we shall demonstrate.
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the first eigenvalue is necessarily unity and therefore con-
veys no information regarding the forecastability of the hit
sequence, and the second eigenvalue is simply S # (11 "
(01. S is a natural persistence measure; note that under
independence, (01 ! (11, so S ! 0, and, conversely, under

strong positive persistence (11 will be much larger than (01,
so S will be large.11
S has an alternative and intuitive motivation: It is the

first-order serial correlation coefficient of the hit sequence.
To see this, we note that12

E[It] ! p ! p(11 $ (1 " p)(01 !
(01

1 $ (01 " (11

Var [It] ! p(1 " p) !
(01(1 " (11)

1 $ (01 " (11

Cov (It, It"1) ! E[It It"1] " E2[It] ! p(11 " p2

! p((11 " p).

Then we form the correlation coefficient and use some
algebra to obtain

Corr (It, It"1) !
(11 " p

1 " p
!

(11(1 $ (01 " (11) " (01

1 " (11

! (11 " (01 ! S.

Thus, just as in the familiar AR(1) case for which the root of
the autoregressive lag-operator polynomial is the first-order
serial correlation coefficient, so too in the first-order Markov
case is the (nontrivial) eigenroot.13

D. Estimating the Markov Model

The discussion of forecastability measurement has thus
far been in population; in practice, of course, one must
estimate the relevant Markov models. Maximum-likelihood
estimation is particularly simple. For a hit sequence
5I1, . . . , IT6, the likelihood function is immediately14

L((01, (11; I1, I2, . . . , IT)

! (1 " (01)n00(01
n01(1 " (11)n10(11

n11,

where nij is the number of observations with value I followed
by j. The maximum-likelihood estimators of (01 and (11 are
therefore (̂01 ! n01/(n00 $ n01) and (̂11 ! n11/(n10 $ n11). By
Slutsky’s theorem, the maximum likelihood estimate of the
non-unit eigenvalue is then Ŝ ! (̂11 " (̂01.
Unlike the exact finite-sample theory available for the

runs test of independence, the theory associated with
maximum-likelihood estimation of the transition matrix
eigenvalue is only asymptotic. Thus, in an attempt to tailor

11 Analogous use of eigenvalues as mobility measures has been sug-
gested by Shorrocks (1978) and Sommers and Conlisk (1979).
12 To evaluate the covariance, use the fact that E[ItIt"1] !
Pr (It ! 1 " It"1 ! 1)! p(11.
13 See also Hamilton (1994, p. 687).
14 As is standard, we form the likelihood conditional on the first
observation, I1.

FIGURE 1.—SIZE AND POWER OF 5% RUN TESTS OF INDEPENDENCE FOR *2
STANDARD DEVIATION INTERVALS UNDER VARIOUS DGPS

The graph shows Monte Carlo estimates of the probability of rejecting the null hypothesis of
independence in a runs test with significance level set to 5%. The width of the interval definining the hit
sequence is *2+̂. The data-generating processes for the daily data are the RiskMetrics or IGARCH
process with ' ! 0.94; the GARCH(1, 1)-t(d) process with & ! 0.06, ' ! 0.93, and d ! 5; the Gaussian
GARCH(1, 1) with & ! 0.06 and ' ! 0.93; and independent Gaussian innovations. All processes have
6,350 daily observations. The number of Monte Carlo replications is 1,000. See text for details.

FIGURE 2.—POWER OF 5% RUN TESTS OF INDEPENDENCE FOR VARIOUS INTERVAL
FORECASTS USING GARCH(1, 1)-t(d) DATA

The graph shows Monte Carlo estimates of the probability of rejecting the null hypothesis of
independence in a runs test with significance level set to 5%. The width of the interval forecast definining
the hit sequence is*m+̂, wherem ! 1 (—),m ! 1.25 (ooo),m ! 1.5 (xxx),m ! 1.75 ($$$), andm ! 2
(***). The data-generating process for the daily data is the GARCH(1, 1)-t(d) process with & ! 0.06, ' !
0.93, and d ! 5, with 6,350 daily observations. The number of Monte Carlo replications is 1,000. See text
for details.
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our inference to precise sample sizes relevant for the
application at hand, we use simulation methods to assess the
significance of our eigenvalue estimates. In particular, for
any returns series, we

1. De-mean the returns series.
2. Compute the hit sequence relative to the constant *c
interval, and then compute the estimate of p, p̂, and the
estimate of S, Ŝ.

3. Use p̂ and the relevant sample size T to
a. Generatem! 1, . . . ,M samples of i.i.d. Bernoulli

( p̂) pseudodata.
b. Compute Ŝm.
c. Compute the 95%-confidence interval for Ŝm and

plot it together with Ŝ computed in step 2.

E. Expanding the Information Set

Our analysis thus far focuses on assessing univariate
first-order dependence in the hit sequence. We now broaden
our methods to allow for multivariate and higher-order
dependence, potentially using the highest-frequency data
available (for example, daily), regardless of the return
horizon.
Consider nonoverlapping h-day returns yt, t! 1, 2, 3, . . . .

Let the conditional c.d.f. of demeaned h-day returns be

Pr ( yt , c 0#t"1) ! F(c 0#t"1),

and define

pt ! Pr ( 0 yt 0 , c 0#t"1) ! F(c 0#t"1) " F("c 0#t"1).

Assuming that the p.d.f. of yt is symmetric, we can write

pt ! 2F(c 0#t"1) " 1.

Notice that It can be conveniently defined as

It ! 1( 0 yt 0 , c),

where 1(") is the indicator function. We therefore have that

E[It 0#t"1] ! pt ! 2F(c 0#t"1) " 1.

Thus, It can be viewed as the outcome of a limited
dependent-variables regression,

It ! '0 $ '1F(c 0#t"1) $ et,

in an unobserved variable, F(c 0#t"1).
The regression representation is useful for a number of

purposes. First, testing the null hypothesis of correct condi-
tional coverage, E[It 0#t"1] ! p, for some p, corresponds to
testing '1 ! 0 in the regression above, and thus involves

only a simple F-test that all slopes are zero.15 Second, the
regression setup facilitates the inclusion of predictor vari-
ables measured at a frequency higher than h, such as lagged
squared daily returns. Third, the regression facilitates allow-
ance for higher-order dependence in the indicator sequence
via simple inclusion of additional lags of the predictor
variables.

III. Volatility Forecastability in Financial Asset Markets

Armed with the tools introduced above, we now proceed
to measure volatility forecastability in global foreign ex-
change, stock, and bond markets. We examine asset return
volatility forecastability as a function of the horizon over
which the returns are computed, beginning with daily
returns and proceeding through nonoverlapping h-day re-
turns, h ! 1, 2, 3, . . . , 20.16
Because the unconditional volatility of all asset returns

rises with the aggregation level, it is natural and appropriate
to let the width of our fixed ["c, c] intervals change with the
aggregation level. We do so throughout; in fact, we use ch !
2+̂h intervals to compute our hit sequences. This yields
unconditional coverage in the range of 90% to 95%, which
makes for a nice parallel to the value-at-risk (VaR) literature,
which typically focuses on VaR in the range of 1% to 10%.

A. Equity and Foreign Exchange Markets

We begin by examining equity and foreign exchange rate
returns. We examine returns on four broad-based stock
indexes: the U.S. S&P 500, the German DAX, the U.K.
FTSE, and the Japanese TPX. We examine returns on four
dollar exchange rates: the German Mark, British Pound,
Japanese Yen, and French Franc. The sample starts on
January 1, 1973, and ends onMay 1, 1997, resulting in 6,350
daily observations for each return series.17
Let us first discuss the runs tests. Figure 3 shows the

finite-sample p-values of the runs tests of independence of
the hit sequence for equities, as a function of the horizon. It
is clear that, for each equity index, the p-values tend to
increase with the horizon, although the specifics differ
somewhat depending on the particular index examined. As a
rough rule of thumb, we summarize the results as saying that
for horizons of less than ten trading days we tend to reject
independence, which is to say that equity return volatility is

15 To implement the testing procedure, we could attempt to find a
functional form for F(c 0#t"1), but we prefer a less-parametric approach in
which we directly include elements of the information set, such as It"1 or
yt"12 , on the right-hand side. Hence, '1 should be interpreted as a vector.
16 Use of nonoverlapping returns eliminates the need to account for the
dependence induced by overlapping observations.
17 The equity and foreign exchange data are from Datastream Interna-
tional. Equity prices are official local closing prices provided by the local
exchanges, and we compute equity returns as logarithmic differences of
those prices. Foreign exchange rates are averages of closing London bid
and ask quotes; we compute foreign exchange returns as logarithmic
differences of those exchange rates. The bond yields are from Bloomberg
Financial Services and are averages of closing New York bid and ask
quotes.
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significantly forecastable, and conversely for horizons greater
than ten days. Figure 4 reveals identical patterns for
exchange rates.
In our earlier Monte Carlo study, we found that the power

of the runs test was slightly higher when the interval width
was lowered to one and one-half standard deviations. We
therefore now calculate the p-values of the runs test using
the narrower intervals and plot the results in figure 5 and 6.
Notice that virtually the same qualitative results are ob-

tained, although the stock return volatility in some countries
might be forecastable as far as three weeks ahead when
looking at the narrower intervals. To save space, we will
focus on the wider two-standard-deviation intervals, which
are the most relevant for risk management.
One difficulty with the runs test framework is its exclusive

emphasis on testing for volatility forecastability, as opposed
to measuring the strength of volatility forecastability. Presum-
ably some volatility forecastability exists even at the longer

FIGURE 3.—p-VALUES OF RUNS TESTS FOUR EQUITY INDEXES *2 STANDARD
DEVIATION INTERVAL FORECASTS

For each series and horizon, we plot the finite-sample p-value associated with the runs test on the hit
sequence corresponding to a constant *2+̂ interval forecast. The horizontal line is at 5%. See text for
details.

FIGURE 4.—p-VALUES OF RUNS TESTS FOUR DOLLAR EXCHANGE RATES *2
STANDARD DEVIATION INTERVAL FORECASTS

For each series and horizon, we plot the finite-sample p-value associated with the runs test on the hit
sequence corresponding to a constant *2+̂ interval forecast. The horizontal line is at 5%. See text for
details.

FIGURE 5.—p-VALUES OF RUNS TESTS FOUR EQUITY INDEXES *1.5 STANDARD
DEVIATION INTERVAL FORECASTS

For each series and horizon, we plot the finite-sample p-value associated with the runs test on the hit
sequence corresponding to a constant *1.5+̂ interval forecast. The horizontal line is at 5%. See text for
details.

FIGURE 6.—p-VALUES OF RUNS TESTS FOUR DOLLAR-EXCHANGE RATES *1.5
STANDARD DEVIATION INTERVAL FORECASTS

For each series and horizon, we plot the finite-sample p-value associated with the runs test on the hit
sequence corresponding to a constant *1.5+̂ interval forecast. The horizontal line is at 5%. See text for
details.
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horizons, and the runs test would detect it if the sample size
were larger. But again, our ultimate interest focuses not on
the existence of volatility forecastability, but rather on its
strength. Hence, we now turn to the estimated transition
matrix eigenvalues, which measure the strength of volatility
forecastability and are therefore more directly aligned with
our ultimate concerns.
We show the estimated transition matrix eigenvalues

along with their simulated finite-sample and asymptotic
Bartlett 95%-confidence intervals, again as a function of
horizon, in figure 7 and 8.18 A consistent pattern emerges
across all equities and exchange rates: At very short
horizons, typically from one to ten trading days, the
eigenvalues are significantly positive, but they decrease
quickly, and approximately monotonically, with the horizon.
By the time we reach one-day returns—and often substan-
tially before—the estimated eigenvalues are small and
statistically insignificant, indicating that volatility forecasta-
bility has vanished. Notice also the deterioration of the
validity of the asymptotic confidence intervals as the horizon
lengthens and the sample size shrinks.
Recognizing the potential limitations of testing the hit

sequence for first-order dependence only, we now turn to a
high-frequency, multiple-lag analysis. We first regress the
hit sequence at each horizon on each of the following three
high-frequency information sets: one to five lags of the hit
sequence from one-day returns, one to five lags of the
squared daily returns, and one to five lags of the daily

RiskMetrics filtered volatility. Figure 9 and 10 plot the
p-values from F-tests of the null hypothesis that the high-
frequency information is irrelevant (that is, all slopes are
zero in the limited dependent variable regression). For the
dollar exchange rates, we see that the previous results hold
without qualification: The indicator sequences from the
returns are not forecastable beyond a ten-day horizon. For

18 The use of asymptotic Bartlett intervals is justified by the fact that the
eigenvalue of interest is actually the first autocorrelation of the hit
sequence.

FIGURE 7.—MARKOV TRANSITION MATRIX EIGENVALUES FOUR EQUITY INDICES

For each series and each horizon, we plot the estimated eigenvalue of the transition matrix estimated
from the hit sequence corresponding to a constant *2+̂ interval forecast, along with the finite-sample
95%-confidence interval when the eigenvalue is zero. We construct the finite-sample confidence interval
from empirical percentiles based on 4,000 simulations (solid lines) and asymptotic confidence intervals
(dashed lines). See text for details.

FIGURE 8.—MARKOV TRANSITION MATRIX EIGENVALUES
FOUR DOLLAR-EXCHANGE RATES

For each series and each horizon we plot the estimated eigenvalue of the transition matrix estimated
from the hit sequence corresponding to a constant *2+̂ interval forecast, along with the finite-sample
95%-confidence interval when the eigenvalue is zero. We construct the finite-sample confidence interval
from empirical percentiles based on 4,000 simulations (solid lines) and asymptotic confidence intervals
(dashed lines). See text for details.

FIGURE 9.—p-VALUES FROM F-TEST OF HIGH-FREQUENCY INFORMATION
FOUR EQUITY INDEXES

For each series and each horizon, we plot the p-values of F-tests associated with regressions on the hit
sequences corresponding to *2+̂ interval forecasts. The high-frequency information sets are one to five
lags of daily hits (xxx), one to five lags of daily squared returns (ooo), and one to five lags of daily
RiskMetrics volatility ($$$). The horizontal line denotes the 5% critical value. See text for details.
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the equity index returns, however, some forecastability is
detectable at longer horizons in the cases of Germany and
the U.K. when the high-frequency information is used.
Finally, we test against longer-term dependence in the hit

sequence at each horizon by conducting F-tests against the
alternative that up to fifteen lags of the hit sequence at the
horizon in question have explanatory power. The results are
shown in figure 11 and 12. We plot the p-values of the F-test

corresponding to the null hypothesis that one to five, one to
ten, and one to fifteen lags of the hit sequence respectively
are irrelevant for predicting the current hit sequence. Again,
we see that the dollar exchange rates display the familiar
pattern of volatility forecastability decaying quickly, while
the stock returns in some cases—again notably Germany
and the U.K.—display longer-run forecastability, as evi-
denced by stronger persistence in hit sequences.

B. Bond Markets

We report results for bonds separately for three reasons,
with the first two linked to a priori concerns and the third due
to the different nature of the results. First, historical bond
market data typically contain only the annual yield and not
the price, and it is not possible to calculate exact returns on a
bond from yield alone. Thus, to compute bond returns, we
are forced to make a potentially inaccurate approximation,
which is not required to compute equity and exchange
returns. Second, the available historical samples of bond
yield data are much more limited. In fact, we analyze the
returns of only one bond, the U.S. ten-year Treasury. Third,
as we shall show, patterns of bond-market volatility foreca-
stability are, at first sight, different from those in equity and
foreign exchange markets and are therefore usefully dis-
cussed separately.
Let us begin with a yield-based approximation to a bond’s

return. Recall that the price of a bond that pays a coupon rate
of C every period and $1 at maturity after n periods is

Pcnt ! C$
i!1

n 1

(1 $ Ycnt)i
$

1

(1 $ Ycnt)n
,

FIGURE 10.—p-VALUES FROM F-TESTS OF HIGH-FREQUENCY INFORMATION
FOUR DOLLAR-EXCHANGE RATES

For each series and each horizon, we plot the p-values of F-tests associated with regressions on the hit
sequences corresponding to *2+̂ interval forecasts. The high-frequency information sets are one to five
lags of daily hits (xxx), one to five lags of daily squared returns (ooo), and one to five lags of daily
RiskMetrics volatility ($$$). The horizontal line denotes the 5% critical value. See text for details.

FIGURE 11.—p-VALUES FROM F-TESTS OF HIGHER-ORDER DEPENDENCE
FOUR EQUITY INDEXES

For each series and each horizon, we plot the p-values of F-tests associated with the hit sequences
corresponding to*2+̂ interval forecasts. The higher-order dependencies in the hit sequence tested are one
to five lags (xxx), one to ten lags (ooo), and one to fifteen lags ($$$). The horizontal line is drawn at 5%.
See text for details.

FIGURE 12.—p-VALUES FROM F-TESTS OF HIGHER-ORDER DEPENDENCE
FOUR DOLLAR-EXCHANGE RATES

For each series and each horizon, we plot the p-values of F-tests associated with the hit sequences
corresponding to*2+̂ interval forecasts. The higher-order dependencies in the hit sequence tested are one
to five lags (xxx), one to ten lags (ooo), and one to fifteen lags ($$$). The horizontal line is drawn at 5%.
See text for details.
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where Ycnt is the yield per period.Also recall that Macaulay’s
duration is defined by

Dcnt !

$
i!1

n iC

(1 $ Ycnt)i
$

n

(1 $ Ycnt)n

Pcnt
,

which can also be written as19

Dcnt ! "
-Pcnt

-(1 $ Ycnt)
1 $ Ycnt
Pcnt

.

Assume that the coupon rate is close to the yield, C% Ycnt, in
which case the bond will be priced near par, Pcnt % 1,
resulting in the approximate duration20

Dcnt %
1 " (1 $ Ycnt)"n

1 " (1 $ Ycnt)"1
.

Finally, use the fact that -(1 $ Ycnt) ! -Ycnt to rewrite the
exact duration formula as

-Pcnt
Pcnt

! "
Dcnt-Ycnt
1 $ Ycnt

,

which, when combined with the approximate-duration for-
mula, yields an approximation for returns as a function of
only yield and time to maturity,

-Pcnt
Pcnt

% "
-Ycnt
1 $ Ycnt 1

1 " (1 $ Ycnt)"n

1 " (1 $ Ycnt)"1 2 .
Having arrived at a workable approximation to bond

returns, we now examine the forecastability of bond-return
volatility. Limited availability of historical daily interna-
tional bond yield data forces us to focus exclusively on the
ten-year U.S. Treasury bond. As before, the daily sample
starts on January 1, 1973, and ends on May 1, 1997. The
estimated Markov transition matrix eigenvalues, which
appear in the top-left panel of figure 13, indicate substan-
tially more volatility forecastability than in the equity or
foreign exchange markets, with some forecastability as far
ahead, say, as fifteen to twenty trading days.21
It is hard to determine whether the apparently greater

bond-market volatility predictability is real. It could be an
artifact of the approximation necessary to calculate bond
returns. It could also be an artifact of the structural break in

Federal Reserve policy around 1980, which could produce a
spurious appearance of high volatility forecastability if not
properly accounted for, as suggested by Diebold (1986) and
verified by Lamoureux and Lastrapes (1990) and Hamilton
and Susmel (1994). At any rate, our finding that volatility is
more forecastable in bond markets than elsewhere is consis-
tent with existing evidence, including Engle et al. (1987) and
Andersen and Lund (1997).22
One intriguing possibility is that bond-return volatility

dynamics are linked to those of the short-term interest rate,
as in several well-known models of the yield curve, includ-
ing Brennan and Schwartz (1979) and Cox (1985). Those
models imply that a simple rescaling of bond returns by a
function of the short-term yield will produce constant-
volatility returns. In the spirit of this argument, we rescale
the approximate bond returns above by a power of the bond
yields,

-Pcnt
PcntY cnt.

% "
-Ycnt
1 $ Ycnt 1

1 " (1 $ Ycnt)"n

1 " (1 $ Ycnt)"1 29Y cnt. .

Following Campbell et al. (1997, p. 450), we set . to 0.5,
1.0, and 1.5, respectively, and then reestimate the eigenval-
ues of the hit sequences corresponding to each of the
rescaled bond returns. The results are shown in figure 13; in
particular, when the returns are rescaled by yields to the power
of 1 and 1.5, the eigenvalues plotted across horizons exhibit
much less persistence than before, and remarkably resemble
those found earlier for stock and foreign exchange returns.

19 See, for example, Campbell et al. (1997, p. 403).
20 This approximate-duration formula can also be derived as an exact
duration in Campbell’s approximate log-linear model. See Campbell et al.
(1997, p. 408).
21 The runs test p-values, which we omit to save space, tell the same
story. 22 See also the survey by Bollerslev et al. (1992).

FIGURE 13.—MARKOV TRANSITION MATRIX EIGENVALUES U.S. TEN-YEAR GOV-
ERNMENT BOND RETURNS RESCALED BY VARIOUS POWERS OF THE BOND YIELD

For each horizon, we plot the estimated eigenvalue of the transition matrix estimated from the hit
sequence corresponding to a constant*2+̂ interval forecast, along with the finite-sample 95%-confidence
interval when the eigenvalue is zero. We construct the finite-sample confidence interval from empirical
percentiles based on 4,000 simulations. The bond returns are rescaled by dividing by the bond yield levels
taken to the power of 0, 0.5, 1, and 1.5, respectively. See text for details.
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IV. Concluding Remarks and Directions for Future
Research

A. Interpretation of Our Results

If volatility is forecastable at the horizons of interest, then
volatility forecasts are relevant for risk management. But
our results indicate that, if the horizon of interest is more
than ten or twenty days (depending on the asset class)
volatility forecasts may not be of much importance. Our
results clash with the assumptions embedded in popular risk
management paradigms, which effectively assume highly
forecastable volatility. J. P. Morgan’s RiskMetrics, for
example, is based on forecasts produced by exponentially
smoothing squared returns, which are optimal only in the
case of integrated volatility dynamics. Our results are,
however, consistent with academic studies such as West and
Cho (1995), who find that volatility forecasts are not of
much importance in foreign exchange markets beyond a
five-day horizon.23 Our results are also in agreement with
those of Jacquier et al. (1994, 1999), who use Bayesian
methods to estimate stochastic volatility models and find
that the posterior distributions have no appreciable mass
near the unit root. This result contrasts with many classi-
cal studies that use maximum-likelihood estimation tech-
niques and obtain estimates on the boundary of nonsta-
tionarity.
We would argue, moreover, that our results are consistent

with those of a number of seemingly conflicting recent
academic studies which fall into two groups. The first group
documents slow decay in long-lag autocorrelations of squared
or absolute returns, which indicates long-memory volatility
dynamics and would seem to indicate forecastability of
volatility at very long horizons (for example, Andersen and
Bollerslev (1997)). But that literature tends to work with
very high-frequency data—typically five-minute returns—
and, although long memory in five-minute returns may well
indicate that volatility is highly forecastable many steps into
the future, perhaps 100 steps or even 1,000 steps—it does
not necessarily indicate forecastability beyond ten or twenty
days. For example, 1,000 five-minute steps are just more
than three days; even 5,000 five-minute steps are just more
than seventeen days.
The second group refutes evidence of the sort provided by

Jorion (1995)—which seems to indicate that ARCH models
provide poor volatility forecasts—by showing that volatility
is much more forecastable when an appropriate measure of
realized volatility is used (for example, Andersen and
Bollerslev (1998)). That literature, however, focuses on
one-day-ahead volatility forecasts, and certainly we agree
that short-horizon volatility is highly forecastable. Our
analysis, in contrast, focuses on longer-horizon volatility.

B. What Next?

We see two particularly interesting directions for future
research. The first involves the use of economic, as opposed
to statistical, metrics of volatility forecastability. Within the
risk management perspective, for example, one might try to
assess whether use of volatility forecasts improves the
accuracy of calculated VaR measures at various horizons.
One could also examine the usefulness of long-horizon
volatility forecasts from other perspectives, including asset
allocation, as inWest et al. (1993) and derivatives pricing, as
in Engle et al. (1993) and Christoffersen and Hahn (1999). In
doing so, it will be important to use truly ex ante, out-of-
sample, forecasts.
The second direction for future research involves address-

ing the obvious question that emerges from our work: If
volatility dynamics are not important for long-horizon risk
management, then what is important? It seems to us that all
models miss the really big movements such as the U.S. crash
of 1987, and ultimately the really big movements are the
most important for risk management. This suggests the
desirability of directly modeling the extreme tails of return
densities, a task facilitated by recent advances in extreme-
value theory surveyed by Embrechts et al. (1997) and
applied to financial risk management by Danielsson and de
Vries (1997). Preliminary ruminations along those lines
appear in Diebold, Schuermann, and Stroughair (1998).
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