Do business cycles exhibit duration dependence? That is, are expansions, contractions, or whole cycles more likely or less likely to end as they grow older? In recent work (Diebold and Rudebusch 1990; Sichel 1991), we argued that understanding business-cycle duration dependence is important for understanding macroeconomic fluctuations, we provided a framework for answering the questions posed above, and we provided some preliminary answers. More generally, we argued that the duration perspective may furnish fresh insight on important and long-standing questions in macroeconomics, such as the existence and the extent of a postwar stabilization of business cycles (Diebold and Rudebusch 1992).

Our earlier findings on the attributes of U.S. business cycles from a duration perspective can be compactly summarized:

1a. Prewar expansions exhibit positive duration dependence.
1b. Postwar expansions exhibit no duration dependence.
2a. Prewar contractions exhibit no duration dependence.

Francis X. Diebold is associate professor of economics at the University of Pennsylvania. Glenn D. Rudebusch and Daniel E. Sichel are economists at the Board of Governors of the Federal Reserve System.

Discussions with Christian Gourieroux, Jim Hamilton, Bo Honore, Nick Kiefer, Peter Schott, and James Stock were extremely valuable. Participants at the World Congress of the Econometric Society, the 1990 NBER Summer Institute, the 1991 NBER Conference on Common Elements of Growth and Fluctuations, and the 1991 NBER Conference on New Research on Business Cycles, Indicators, and Forecasting provided useful input, as did seminar participants at Yale, Columbia, Stockholm, Georgetown, Washington, Santa Barbara, Maryland, Virginia, Pittsburgh, Johns Hopkins, and Michigan State. Diebold thanks the National Science Foundation (grant SES 89-2715), the University of Pennsylvania Research Foundation (grant 3-71441), the Institute for Empirical Macroeconomics, and the Federal Reserve Bank of Philadelphia for financial support. Hisashi Tanizaki provided superlative research assistance. The views expressed here are those of the authors and are not necessarily shared by the Board of Governors of the Federal Reserve System or its staff.
2b. Postwar contractions exhibit positive duration dependence.
3a. Postwar expansions are longer than prewar expansions, regardless of any shift in duration dependence pattern.
3b. Postwar contractions are shorter than prewar contractions, regardless of any shift in duration dependence pattern.

In this paper, we extend our earlier work in two ways. First, we reassess and elaborate on our earlier findings for U.S. data. We use a parsimonious yet flexible exponential-quadratic hazard model, developed for this paper and potentially applicable in other contexts. This model provides a good compromise between nonparametric hazard estimation procedures, for which the available samples are too small, and commonly used parametric hazard estimation procedures, which may impose undesirable restrictions on admissible hazard shapes.

Second, we confront our earlier findings for prewar U.S. business-cycle duration dependence (points 1a and 2a) with prewar data for three additional countries. This is desirable because there have been only about thirty U.S. business cycles since 1854; therefore, only a limited number of duration observations are available. An obvious strategy for obtaining more information about business-cycle duration dependence is to expand the information set by using the NBER chronologies in other countries. Such chronologies are available for France, Germany, and Great Britain during the prewar period.

6.1 Methodology

The distribution function of a duration random variable, \(F(t) \), gives the probability of failure at or before time \(t \). The survivor function, defined as
\[
S(t) = 1 - F(t),
\]
gives the probability of failure at or after time \(t \). The hazard function is then defined as
\[
\lambda(t) = \frac{f(t)}{S(t)},
\]
so that an integral of the hazard over a small interval \(\Delta \) gives the probability of failure in \(\Delta \), conditional on failure not having occurred earlier. If the hazard function is increasing (decreasing) in an interval, then it is said to exhibit positive (negative) duration dependence in that interval.

The obvious reference hazard, to which we shall compare our estimated hazards, is flat. That is,
\[
\lambda(t) = \lambda, \quad \text{if } t > 0.
\]

This parsimonious hazard, which we call the exponential-quadratic hazard, is not necessarily monotone and is best viewed as a low-ordered series approximation to an arbitrary hazard. In particular, the constant-hazard case of no duration dependence occurs for \(\beta_1 = \beta_2 = 0 \). Nonmonotone hazards occur when \(\beta_1 \neq 0 \), \(\beta_2 \neq 0 \), and \(\text{sign} (\beta_1) \neq \text{sign} (\beta_2) \). The hazard is U shaped, for example, when \(\beta_1 > 0 \) and \(\beta_2 < 0 \) and inverted U shaped when \(\beta_2 < 0 \) and \(\beta_1 > 0 \).

The precise shape of the hazard is easily deduced. Immediately, \(\lambda(0) = \exp(\beta_0) \), and rewriting the hazard as
\[
\lambda(t) = \exp(\beta_0 + \beta_1 t + \beta_2 t^2), \quad \text{if } t > 0.
\]

where \(\lambda \) is an unknown constant that will of course be different for expansions, contractions, and whole cycles. The associated duration density \(f(t) \) for the constant hazard is exponential.

Various hazard models that nest the constant hazard are in common use and could be used to study business-cycle dynamics. Consider, for example, the hazard
\[
\lambda(t) = \lambda \alpha t^{\alpha-1}, \quad \text{if } t > 0.
\]

This hazard function nests the constant hazard (when \(\alpha = 1 \), \(\lambda(t) = \lambda \)). The associated duration density is Weibull; thus, the log likelihood (without censoring) is
\[
\ln L(x; \alpha; \tau_1, \ldots, \tau_x) = T \ln(\alpha \lambda) + (\alpha - 1) \sum_{i=1}^{T} \ln(\tau_i) - \lambda \sum_{i=1}^{T} (\tau_i)^\alpha,
\]
on which estimation and inference may be based for a given sample of observed durations, \(\tau_1, \tau_2, \ldots, \tau_x \).

However, this hazard model, like other commonly used parameterizations, imposes strong restrictions on admissible hazard shapes. In particular, if \(\alpha > 1 \), the hazard is monotone increasing, and conversely for \(\alpha < 1 \). Nonmonotone hazard shapes (e.g., U or inverted U) are excluded. Although such restrictions may be natural in certain contexts, they appear unjustified in the business-cycle context.

Here we discuss a class of hazard models, developed for this paper but potentially more widely applicable, that we feel strikes a good balance between parsimony and flexibility of approximation, and on which we rely heavily in our subsequent empirical work. Consider the hazard
\[
\lambda(t) = \exp(\beta_0 + \beta_1 t + \beta_2 t^2), \quad \text{if } t > 0.
\]

This parsimonious hazard, which we call the exponential-quadratic hazard, is not necessarily monotone and is best viewed as a low-ordered series approximation to an arbitrary hazard. In particular, the constant-hazard case of no duration dependence occurs for \(\beta_1 = \beta_2 = 0 \). Nonmonotone hazards occur when \(\beta_1 \neq 0 \), \(\beta_2 \neq 0 \), and \(\text{sign} (\beta_1) \neq \text{sign} (\beta_2) \). The hazard is U shaped, for example, when \(\beta_1 > 0 \) and \(\beta_2 < 0 \) and inverted U shaped when \(\beta_2 < 0 \) and \(\beta_1 > 0 \).

The precise shape of the hazard is easily deduced. Immediately, \(\lambda(0) = \exp(\beta_0) \), and rewriting the hazard as
\[
\lambda(t) = \exp(\beta_0 + \beta_1 t + \beta_2 t^2), \quad \text{if } t > 0.
\]

2. For further details, see Sichel (1991).
3. Kiefer (1988) suggests that future research on hazard models of the form \(\exp(\beta_0 + \beta_1 t + \beta_2 t^2) \) would be useful. The exponential-quadratic hazard is, of course, a leading case of interest (\(\beta_2 = 0 \)). This hazard also is a special case of the Heckman-Walker (1990) hazard model and is similar to the logistic-quadratic hazard of Nickell (1979).
\[
\lambda(\tau) = \exp\left[\beta_0 + \frac{\beta_1}{2\beta_2} \cdot (\beta_1 - 4\beta_2 \beta_3)\right]. \quad \beta_3 \neq 0.
\]

makes obvious the fact that, when an interior maximum or minimum is achieved (i.e., when \(\beta_1 \neq 0, \beta_2 \neq 0\), and \(\text{sign} \{\beta_1\} \neq \text{sign} \{\beta_2\}\)), its location is at

\[
\tau^* = -\left(\beta_1 / 2\beta_2\right).
\]

with associated hazard value

\[
\lambda(\tau^*) = \exp\left[-\left(\beta_1 / 2\beta_2\right)\right].
\]

Before constructing the likelihood, we record a few familiar definitions that will be used repeatedly. First, by definition of the survivor function, we have

\[
d \ln S(\tau) / d\tau = -f(\tau) / [1 - F(\tau)],
\]

so that

\[
\lambda(\tau) = -d \ln S(\tau) / d\tau.
\]

We also define the integrated hazard as

\[
\Lambda(\tau) = \int_0^{\tau} \lambda(\tau) d\tau,
\]

which is related to the survivor function by

\[
S(\tau) = \exp[-\Lambda(\tau)].
\]

It is interesting to note that, for a hazard \(\lambda(\tau)\) to be proper, it cannot be negative on a set of positive measure (otherwise, the positivity of probabilities would be violated) and it must satisfy \(\lim_{\tau \to \infty} \Lambda(\tau) = \infty\) (otherwise, the distribution function would not approach unity). Thus, certain parameterizations of the exponential-quadratic hazard do not, strictly speaking, qualify as proper hazard functions. This is of little consequence for the results presented below, however, in which the exponential-quadratic hazard is used only as a local approximation.\(^4\)

Construction of the log likelihood allowing for right censoring (as, e.g., with the last postwar trough-to-trough duration) is straightforward. Let \(\beta = (\beta_0, \beta_1, \beta_2)^T\). Then

\[
\ln L(\beta; \tau_1, \ldots, \tau_n) = \sum_{i=1}^n \left[d_i \ln \left[f(\tau_i; \beta) \right] + (1 - d_i)[1 - F(\tau_i; \beta)]\right].
\]

where \(d_i\) equals one if the \(i\)th duration is uncensored, and zero otherwise. The form of the log likelihood is a manifestation of the simple fact that the contri
Insertion of the exponential-quadratic hazard derivatives into the general score and Hessian expressions yields the exponential-quadratic score and hazard

\[
\Delta \ln L/\partial \beta = \sum_{i=1}^{T} \left[t_i \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2) - \int_{t_i}^{\infty} x \exp(\beta_0 + \beta_1 x + \beta_2 x^2) \, dx \right]
\]

and

\[
\Delta^2 \ln L/\partial \beta \partial \beta' = -\sum_{i=1}^{T} \left[\frac{1}{x_i^2} \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2) \right] \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2) \, dx.
\]

Although construction of the likelihood, score, and Hessian is straightforward, it is not clear that maximization of the likelihood will be numerically tractable, owing to the lack of a closed-form likelihood expression and the resulting necessity of numerically evaluating thousands of integrals en route to finding a likelihood maximum. It happens, however, that (1) the evaluation of the required integrals presents only a very modest computational burden, (2) the expressions derived earlier for the score and Hessian facilitate likelihood maximization, and (3) the likelihood is globally concave, which promotes speed and stability of numerical likelihood maximization and guarantees that any local maximum achieved is global.

First, consider the requisite integral evaluation. This is done in standard fashion by approximating the integrand by a step function with steps at each integer duration value and adding the areas in the resulting rectangles. Thus, for example, the integral

\[
\int_{t_i}^{\infty} x \exp(\beta_0 + \beta_1 x + \beta_2 x^2) \, dx
\]

is evaluated as

\[
\sum_{j=1}^{T} \frac{1}{x_j} \exp(\beta_0 + \beta_1 x_j + \beta_2 x_j^2) + \sum_{j=1}^{T} \exp(\beta_0 + \beta_1 x_j + \beta_2 x_j^2) \left(x_j - 1, 1 \right),
\]

where \(x_j = j \).

Second, consider numerical likelihood maximization. Given our ability to compute the likelihood value for any parameter configuration \(\beta \), we climb the likelihood via the Newton-Raphson algorithm,

\[
\beta^{n+1} = \beta^{n} - \left(\frac{1}{\partial^2 \ln L/\partial \beta \partial \beta'} \right)^{-1} \left\{ \frac{\partial \ln L}{\partial \beta} \right\}.
\]

Convergence is deemed to have occurred if the change in the log likelihood from one iteration to the next is less than 0.01 percent.

Finally, global concavity of the likelihood (i.e., \(\partial^2 \ln L / \partial \beta \partial \beta' < 0 \) for all \(\beta \) in \(R^3 \)) is easily established. To prove global concavity, let \(H \) denote the Hessian of the exponential-quadratic model. We must show that \(y' \Sigma y < 0 \), with equality if and only if \(y = 0 \). Now,

where \(\alpha = (1, x, x^2) > 0 \), and \(y = (y_1, y_2, y_3) \). Note that the integrand is nonnegative and zero if and only if \(y = 0 \). But the integral of a nonnegative function is nonnegative, as is the sum of such integrals. Thus, the entire expression is nonpositive and zero if and only if \(y = 0 \).

Finally, we note that we have obtained various generalizations and specializations of our results, which are not of particular interest in the present application but may be of interest in others. All are treated in the appendix. First, confidence intervals for the true but unknown hazard function may be computed. Second, models with covariates, \(Z \), may be entertained, such as

\[
\alpha(x; Z; \beta, \gamma) = \exp(\beta_0 + \beta_1 x + \beta_2 x^2 + Z'y).
\]

Third, if it can be maintained that (locally) \(\beta_2 < 0 \), then the log likelihood can be written as a function of integrals of standard normal random variables, and numerical integration is not required.

6.2 Empirical Results

We take as given the NBER chronologies of business-cycle peaks and troughs for the prewar and postwar United States as well as for prewar France, Germany, and Great Britain, which are shown in tables 6.1 and 6.2. The tables show durations of expansions, contractions, and whole cycles measured both peak to peak and trough to trough. The U.S. chronology in table 6.1 includes a ninety-month duration for the last expansion, a 106-month duration for the last peak-to-peak cycle, and a ninety-eight-month duration for the last trough-to-trough cycle. In the empirical work that follows, we treat them as right censored; that is, they are taken as lower bounds for the true durations, the values of which are as yet unknown.

We are limited to prewar samples with the French, German, and British data because of the scarcity of true recessions, involving actual declines in output, in Europe during the 1950s and 1960s. After the devastation of Europe during World War II, there was a reconstruction of extraordinary pace; thus, it is often impossible to identify the classic business cycle in the early postwar period in the European countries. In the postwar period, growth cycles, which refer to periods of rising and falling activity relative to trend growth, have

5. These dates are taken from Moore and Zarnowitz (1986), which are the same as those in Bern and Mihelčič (1946, 78-79), with minor revisions for some of the U.S. dates.

6. Thus, we assume that the great expansion of the 1980s ended no sooner than May 1990 and that the subsequent contraction ended no earlier than January 1991.
Table 6.1 | Business-Cycle Chronology and Durations: United States

<table>
<thead>
<tr>
<th>Trough</th>
<th>Peak</th>
<th>Contractions</th>
<th>Expansions</th>
<th>Trough to Peak</th>
<th>Peak to Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1854</td>
<td>June 1857</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 1858</td>
<td>October 1860</td>
<td>18</td>
<td>22</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>June 1861</td>
<td>April 1865</td>
<td>8</td>
<td>46</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>December 1867</td>
<td>June 1869</td>
<td>32</td>
<td>18</td>
<td>78</td>
<td>50</td>
</tr>
<tr>
<td>December 1870</td>
<td>October 1873</td>
<td>18</td>
<td>34</td>
<td>36</td>
<td>52</td>
</tr>
<tr>
<td>March 1879</td>
<td>March 1882</td>
<td>65</td>
<td>36</td>
<td>90</td>
<td>101</td>
</tr>
<tr>
<td>May 1885</td>
<td>March 1887</td>
<td>18</td>
<td>22</td>
<td>74</td>
<td>60</td>
</tr>
<tr>
<td>April 1888</td>
<td>July 1890</td>
<td>13</td>
<td>27</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>May 1891</td>
<td>January 1893</td>
<td>10</td>
<td>20</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>June 1894</td>
<td>December 1895</td>
<td>17</td>
<td>18</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>June 1897</td>
<td>June 1899</td>
<td>18</td>
<td>24</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>December 1900</td>
<td>September 1902</td>
<td>18</td>
<td>21</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>August 1904</td>
<td>May 1907</td>
<td>23</td>
<td>33</td>
<td>44</td>
<td>36</td>
</tr>
<tr>
<td>June 1908</td>
<td>January 1910</td>
<td>13</td>
<td>19</td>
<td>46</td>
<td>32</td>
</tr>
<tr>
<td>January 1912</td>
<td>January 1913</td>
<td>24</td>
<td>12</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>December 1914</td>
<td>August 1918</td>
<td>23</td>
<td>41</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td>March 1919</td>
<td>January 1920</td>
<td>7</td>
<td>10</td>
<td>51</td>
<td>17</td>
</tr>
<tr>
<td>July 1921</td>
<td>May 1923</td>
<td>18</td>
<td>22</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>July 1924</td>
<td>October 1926</td>
<td>14</td>
<td>27</td>
<td>36</td>
<td>41</td>
</tr>
<tr>
<td>November 1927</td>
<td>August 1929</td>
<td>13</td>
<td>21</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>March 1931</td>
<td>May 1937</td>
<td>43</td>
<td>50</td>
<td>64</td>
<td>34</td>
</tr>
<tr>
<td>June 1838</td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

Postwar

October 1945	November 1948	8	37	45	
October 1949	July 1953	11	45	48	56
May 1954	August 1957	10	31	55	41
April 1958	April 1960	8	24	47	17
February 1961	December 1969	10	106	34	116
November 1970	November 1973	11	36	117	47
March 1975	January 1980	16	58	72	71
July 1980	July 1981	6	12	64	15
November 1982		16	90	28	106

been identified for the European countries (see Moore and Zarnowitz 1986). However, the timing, and hence duration dependence, of these cycles is not comparable with the prewar business cycles.

Summary statistics, including the sample size, minimum observed duration, mean duration, and standard error, for each of the four samples from each country, are displayed in table 6.3. Also included in table 6.3 are summary statistics from pooled samples of all expansions, contractions, and

Table 6.2 | Prewar Business-Cycle Chronology and Durations: Germany, France, and Great Britain

<table>
<thead>
<tr>
<th>Trough</th>
<th>Peak</th>
<th>Contractions</th>
<th>Expansions</th>
<th>Trough to Peak</th>
<th>Peak to Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1865</td>
<td>November 1867</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October 1868</td>
<td>August 1870</td>
<td>11</td>
<td>22</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td>February 1872</td>
<td>September 1873</td>
<td>18</td>
<td>19</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>August 1876</td>
<td>April 1878</td>
<td>35</td>
<td>20</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td>September 1879</td>
<td>December 1881</td>
<td>17</td>
<td>27</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>August 1887</td>
<td>January 1891</td>
<td>68</td>
<td>41</td>
<td>95</td>
<td>109</td>
</tr>
<tr>
<td>January 1895</td>
<td>March 1900</td>
<td>46</td>
<td>62</td>
<td>89</td>
<td>110</td>
</tr>
<tr>
<td>September 1902</td>
<td>May 1903</td>
<td>30</td>
<td>8</td>
<td>92</td>
<td>38</td>
</tr>
<tr>
<td>October 1903</td>
<td>July 1907</td>
<td>17</td>
<td>33</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>February 1910</td>
<td>June 1913</td>
<td>19</td>
<td>52</td>
<td>52</td>
<td>71</td>
</tr>
<tr>
<td>August 1914</td>
<td>June 1918</td>
<td>14</td>
<td>46</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>April 1919</td>
<td>September 1920</td>
<td>10</td>
<td>17</td>
<td>56</td>
<td>27</td>
</tr>
<tr>
<td>July 1921</td>
<td>October 1924</td>
<td>10</td>
<td>39</td>
<td>27</td>
<td>49</td>
</tr>
<tr>
<td>June 1925</td>
<td>October 1926</td>
<td>8</td>
<td>16</td>
<td>47</td>
<td>24</td>
</tr>
<tr>
<td>June 1927</td>
<td>March 1930</td>
<td>8</td>
<td>31</td>
<td>24</td>
<td>41</td>
</tr>
<tr>
<td>July 1932</td>
<td>July 1934</td>
<td>28</td>
<td>12</td>
<td>61</td>
<td>10</td>
</tr>
<tr>
<td>April 1935</td>
<td>June 1937</td>
<td>21</td>
<td>26</td>
<td>33</td>
<td>47</td>
</tr>
<tr>
<td>August 1938</td>
<td></td>
<td>14</td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Germany, 1879-1932

February 1879 | January 1882 | 35 | | 11 | 40 |
August 1886 | January 1900 | 55 | 41 | 90 | 96 |
March 1902 | August 1903 | 24 | 17 | 85 | 41 |
February 1905 | July 1907 | 18 | 29 | 35 | 47 |
December 1918 | April 1913 | 17 | 52 | 46 | 69 |
August 1914 | January 1918 | 16 | 46 | 68 | 62 |
June 1919 | May 1922 | 12 | 35 | 58 | 47 |
November 1923 | March 1925 | 18 | 16 | 53 | 34 |
March 1926 | April 1929 | 12 | 37 | 28 | 49 |
August 1932 | | 40 | | | 77 |

Great Britain, 1854-1938

December 1851 | September 1857 | 6 | 30 | 39 | 46 |
March 1858 | September 1860 | 27 | 39 | 57 | 66 |
December 1862 | March 1866 | 24 | 54 | 64 | 78 |
March 1868 | September 1872 | 81 | 42 | 135 | 123 |
June 1870 | December 1882 | 42 | 51 | 84 | 93 |
June 1886 | September 1890 | 53 | 64 | 103 | 117 |
February 1895 | June 1890 | 15 | 21 | 79 | 36 |
September 1901 | June 1903 | 17 | 31 | 38 | 48 |
November 1901 | June 1907 | 17 | 49 | 48 | 66 |
November 1908 | December 1912 | (continued) | | | |
whole cycles. We shall not conduct our empirical investigation, however, on pooled samples. Although it might be appealing to pool durations across countries to expand the sample, the conformity of business-cycle timing across countries suggests that the observations across countries are not independent.7 Hence, simple pooling would be inappropriate. Estimation and testing procedures that control for the degree of interdependence are likely to be very complicated, particularly because so little is known about the transmission of business cycles from one country to another.

There is one area, however, in which we do pool information from the four countries, namely, in the specification of a lower bound on admissible durations. This lower-bound criterion, which is denoted \(t_n \), is necessary because, by definition, the NBER does not recognize an expansion or a contraction unless it has achieved a certain maturity. The exact required maturity is not spelled out by the NBER, but, in describing the guidelines enforced since Burns and Mitchell (1946), Moore and Zarnowitz (1986) indicate that full cycles of less than one year in duration and contractions of less than six months in duration would be very unlikely to qualify for selection.8 Because this is a criterion of the NBER definition of business cycles, the choice of \(t_n \) should be, not country specific, but uniform across countries. In particular, we set \(t_n \) for expansions, contractions, or whole cycles equal to one less than the minimum duration actually observed in any of the four countries. We also require \(t_n \) to be identical for peak-to-peak and trough-to-trough cycles, giving evidence that the NBER makes no distinction between these two types of whole cycles (see Diebold and Rudebusch 1990). Operationally, the minimum duration criterion is incorporated into estimation of the hazard functions by subtracting \(t_n \) from each of the observed durations before implementing the methodology described in section 6.1.

Let us first consider the United States, for which we can contrast the prewar and postwar experiences. We start with prewar half-cycle hazards, estimates of which are graphed in figure 6.1. Each graph in this figure—and those in all subsequent figures—consists of three superimposed estimated hazards: the exponential constant (\(\exp(\beta_j) \)), exponential linear (\(\exp(\beta_j + \beta_1 t) \)), and exponential quadratic (\(\exp(\beta_j + \beta_1 t + \beta_2 t^2) \)). These may be viewed as progressively more flexible approximations to the true hazard and are useful, in particular, for visually gauging the conformity of business-cycle durations to the constant-hazard model. The numerical values underlying the figures are given in tables 6.4–6.6, along with maximum-likelihood estimates of the underlying...
(b) Prewar contractions

Fig. 6.1 Estimated hazard functions, United States

...ing hazard function parameters. In keeping with our interpretation of the exponential hazard as a local approximation, the ranges of the tabled and graphed hazard functions have been chosen to reflect observed historical maximum durations.

Prewar U.S. expansions display strong evidence of duration dependence. The estimated exponential-linear expansion hazard rises sharply, from .03 to...

Table 6.4

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\beta)</th>
<th>(\exp(\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1.099</td>
<td>.045</td>
</tr>
<tr>
<td>G1</td>
<td>1.998</td>
<td>.333</td>
</tr>
<tr>
<td>GBH</td>
<td>3.495</td>
<td>.333</td>
</tr>
<tr>
<td>USA</td>
<td>2.969</td>
<td>.051</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\beta)</th>
<th>(\exp(\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>2.940</td>
<td>.058</td>
</tr>
<tr>
<td>G2</td>
<td>1.905</td>
<td>.045</td>
</tr>
<tr>
<td>GB2</td>
<td>3.040</td>
<td>.048</td>
</tr>
<tr>
<td>USA2</td>
<td>2.707</td>
<td>.062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\beta)</th>
<th>(\exp(\beta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>3.589</td>
<td>.028</td>
</tr>
<tr>
<td>G3</td>
<td>3.580</td>
<td>.021</td>
</tr>
<tr>
<td>GB3</td>
<td>3.871</td>
<td>.021</td>
</tr>
<tr>
<td>USA3</td>
<td>3.164</td>
<td>.031</td>
</tr>
</tbody>
</table>

Note: For sample descriptions, see Table 6.3.

...fifty months. The \(p \)-values in Table 6.7 indicate that we can soundly reject the constant-hazard null; the \(p \)-value for the null that \(\beta_1 = 0 \) in the exponential-linear model \((\beta_1)\), for example, is .001. The evidence against the linear-quadratic model, however, is less strong; the \(p \)-value for the null hypothesis that \(\beta_1 = 0 \) in the exponential-quadratic model \((\beta_2)\) is .18.

Conversely, prewar U.S. contractions do not show strong evidence of duration dependence. The estimated exponential-linear expansion hazard rises only slowly, from .06 to .12 after seventy months. The estimated exponential-quadratic contraction hazard is inverted-U shaped, achieving a maximum of .09 after thirty-six months, but dropping back to .03 after seventy-two months. The \(p \)-values indicate that the constant-hazard null is hard to reject; \(p_1 \) is .17, and \(p_2 \) is .20.

The postwar U.S. results provide striking contrast. Postwar U.S. expansions display no duration dependence, while postwar U.S. contractions display strong positive duration dependence. In short, postwar duration dependence patterns, cataloged in Figure 6.2 and Tables 6.4–6.6, are precisely opposite those of the prewar period!

9. We report asymptotic \(p \)-values associated with the Wald statistics in the exponential-linear and exponential-quadratic models. The \(p \)-values give the exact \(F \)-statistic at least as large as that observed.
The estimated exponential-linear and exponential-quadratic hazard functions for postwar U.S. expansions are hardly distinguishable from each other or from the estimated exponential-constant hazard, rising from .02 to only .03 after ninety-six months. Moreover, the p-values indicate that the data conform closely to the exponential-constant model ($p_1 = .23, p_2 = .43$). Conversely, the estimated hazards for postwar U.S. contractions rise extremely sharply. The estimated exponential-linear and exponential-quadratic hazards cannot be distinguished from each other but are readily distinguished from the constant hazard, rising from .07 to .29 in just twelve months. The deviation from constant-hazard behavior is highly statistically significant, with $p_1 = .03$.

The estimated exponential-linear and exponential-quadratic hazard functions are not limited to average slopes, although, as we have stressed, the slope changes are large and important. In particular, differences between the overall level of prewar and postwar expansion and contraction hazards exist—expansion hazards are higher in the prewar period, whereas contraction hazards are higher in the postwar period. These insights from the conditional perspective of hazard analysis—also noted in Sichel (1991)—lead to a deeper understanding of the unconditional distributional shifts documented in Diebold and Rudebusch (1992).
Table 6.7

<table>
<thead>
<tr>
<th>Sample</th>
<th>(p_1)</th>
<th>(p_2)</th>
<th>Sample</th>
<th>(p_1)</th>
<th>(p_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prewar Expansions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.17</td>
<td>0.472</td>
<td>1</td>
<td>0.15</td>
<td>0.410</td>
</tr>
<tr>
<td>G1</td>
<td>0.002</td>
<td>0.425</td>
<td>G1</td>
<td>0.001</td>
<td>0.351</td>
</tr>
<tr>
<td>G1H</td>
<td>0.012</td>
<td>0.055</td>
<td>G1H</td>
<td>0.010</td>
<td>0.161</td>
</tr>
<tr>
<td>US1</td>
<td>0.001</td>
<td>0.181</td>
<td>US1</td>
<td>0.002</td>
<td>0.193</td>
</tr>
<tr>
<td>Prewar Contractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.70</td>
<td>0.468</td>
<td>1</td>
<td>0.22</td>
<td>0.441</td>
</tr>
<tr>
<td>G2</td>
<td>0.169</td>
<td>0.319</td>
<td>G2</td>
<td>0.027</td>
<td>0.346</td>
</tr>
<tr>
<td>G1H</td>
<td>0.228</td>
<td>0.496</td>
<td>G1H</td>
<td>0.264</td>
<td>0.384</td>
</tr>
<tr>
<td>US2</td>
<td>0.172</td>
<td>0.201</td>
<td>US2</td>
<td>0.149</td>
<td>0.295</td>
</tr>
<tr>
<td>Prewar Peak to peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.048</td>
<td>0.176</td>
<td>G1</td>
<td>0.037</td>
<td>0.245</td>
</tr>
<tr>
<td>G1H</td>
<td>0.024</td>
<td>0.203</td>
<td>US3</td>
<td>0.011</td>
<td>0.099</td>
</tr>
</tbody>
</table>

Note: We report asymptotic \(p \)-values associated with the Wald statistic in the exponential-linear and exponential-quadratic models. \(p_1 \) is the \(p \)-value for the null hypothesis that \(\beta_1 = 0 \) in the exponential-linear model. \(p_2 \) is the \(p \)-value for the null hypothesis that \(\beta_2 = 0 \) in the exponential-quadratic model. For sample descriptions, see Table 6.3.

Evidence of duration dependence in U.S. whole cycles, whether measured peak to peak or trough to trough, is also present in the prewar data. Moreover, the \(p \)-values indicate significance of the quadratic hazard term in the U.S. case. Finding duration dependence in prewar whole cycles is not surprising, in light of our finding of duration dependence in prewar expansions. It is rather surprising, however, not to find significant duration dependence in postwar whole cycles, in light of our finding of significant duration dependence in postwar contractions. This may be due to low power, related to the fact that postwar whole-cycle behavior is dominated by expansion behavior (more than 80 percent of the postwar period was spent in the expansion state, as opposed to approximately 50 percent of the prewar period).

Now let us consider the evidence for France, Germany, and Great Britain. The estimated international exponential-constant, exponential-linear, and exponential quadratic prewar hazard functions, shown in Figures 6.3–6.5 and Tables 6.4–6.6, indicate striking cross-country conformity in prewar business cycle duration dependence patterns. All expansion hazards show strong positive duration dependence. The estimated hazard for German expansions, for example, rises from near zero after twelve months to 0.31 after seventy-two months. France and Great Britain also show substantial slope in their expansion hazard functions. Like that of the U.S. hazard, the departures of the French, German, and British hazards from constancy are highly signif.
For contractions, the U.S. prewar findings are again mimicked in France, Germany, and Britain: no evidence of duration dependence is found. All estimated contraction hazards are nearly constant, and the deviations from constancy are never significant. In contrast to the estimated expansion hazards, which start near zero and grow relatively quickly (and at increasing rates), the estimated contraction hazards start near .05 and grow less quickly (and at decreasing rates).

Evidence for duration dependence in prewar whole cycles, which is strong in the U.S. samples, is also strong in the French, German, and British samples. For both peak-to-peak and trough-to-trough samples, all values of p_i are less than .05. As in the United States, it would appear that the significant international prewar whole-cycle duration dependence is a manifestation of the significant half-cycle (expansion) duration dependence.
6.3 Concluding Remarks

We began this paper by asking whether expansions, contractions, or whole cycles are more likely or less likely to end as they grow older, a question whose answer is of importance both methodologically and substantively. Methodologically, for example, the answer has implications for the proper specification of empirical macroeconomic models, such as the Markov switching models proposed recently by Hamilton (1989). Substantively, for example, the answer has implications for turning-point prediction and business-cycle dating, as pointed out by Diebold and Rudebusch (1989, 1991).

Here we have investigated the patterns of duration dependence in U.S. prewar and postwar business cycles using a parsimonious yet flexible hazard model, deepening our understanding of the nature of postwar stabilization documented in Diebold and Rudebusch (1992). We presented evidence of a postwar shift in U.S. business-cycle duration dependence patterns: postwar expansion hazards display less duration dependence and are lower on average, while postwar contraction hazards display more duration dependence and are higher on average.

Moreover, we compared our prewar U.S. results with those obtained using prewar data from France, Germany, and Great Britain. We found that, for prewar expansions, all four countries exhibit evidence of positive duration dependence. For prewar contractions, none of the countries do. The results paint a similar prewar picture for each country: statistically significant and economically important positive duration dependence is consistently associated with expansions and never associated with contractions. The similarities in the prewar pattern of duration dependence across countries suggest conformity across countries in the characteristics of business cycles.

The empirical results in this paper and in our earlier papers pose substantial challenges for the construction of macroeconomic models; we hope that our measurement stimulates fresh theory. Obvious questions abound: What types of economic propagation mechanisms induce duration dependence in aggregate output, and what types do not? What are the theoretical hazard functions associated with the equilibria of various business-cycle models, and how do they compare with those estimated from real data? What types of models are capable of generating equilibria with differing expansion and contraction hazard functions, and how do they relate to existing linear and nonlinear models? How can we explain and model secular variation in the degree of duration dependence in expansions and contractions? Some recent work has begun to address various of these questions (e.g., Murphy, Shleifer, and Vishny 1989 develop a model in which cyclical duration is influenced by the stock of durables), but much remains to be done.

Appendix

Specialization and Generalization of the Exponential-Quadratic Hazard Model

Confidence Intervals

Confidence intervals for the true but unknown hazard may be obtained in straightforward fashion. Taylor series expansion of \(\lambda(\tau, \beta) \) around \(\lambda(\tau, \beta) \) yields...
\[\lambda(\tau; \beta) = \lambda(\tau; \beta) + \Delta \lambda(\tau; \beta; \beta') \cdot \beta - \beta', \]

where \(\beta' \) denotes the maximum likelihood estimate of \(\beta \). Mean squared error is therefore approximated by

\[E(\lambda(\tau; \beta) - \lambda(\tau; \beta)) = \Delta \lambda(\tau; \beta; \beta') \cdot \beta - \beta'. \]

By asymptotic unbiasedness of the maximum likelihood estimate, \(E(\beta - \beta) \) is asymptotically just \(\text{cov}(\beta) \), which we estimate in standard fashion as \(-\Delta^2 \ln L(\beta; \beta') \) evaluated at \(\beta = \beta' \). Thus, as \(T \to \infty \),

\[E(\lambda(\tau; \beta) - \lambda(\tau; \beta)) \to \text{var}[\lambda(\tau; \beta)]. \]

For the exponential-quadratic hazard, recall that the first derivative of the hazard is

\[\Delta \lambda(\tau; \beta)/\Delta \beta = \begin{bmatrix} \lambda(\tau) \exp(\beta_n + \beta_n x + \beta_n v^2) \\
\lambda(\tau) \exp(\beta_n + \beta_n x + \beta_n v^2) \end{bmatrix}, \]

and that the Hessian is

\[\Delta^2 \ln L(\beta; \beta') = -\int_0^\infty \sum_{i=1}^n \begin{bmatrix} \lambda(\tau) \exp(\beta_n + \beta_n x + \beta_n v^2) \\
\lambda(\tau) \exp(\beta_n + \beta_n x + \beta_n v^2) \end{bmatrix} \]

thus producing the asymptotic variance of the estimated hazard

\[\text{var}[\lambda(\tau; \beta)] = \exp[2(\beta_n + \beta_n x + \beta_n v^2)]|\tau|, \tau| \]
where
\[\Phi(x) = \int_{-\infty}^{x} (2\pi)^{-1/2} \exp(-v^2/2) dv \]
denotes the standard normal c.d.f. Insertion of (A3) into (A2) yields
\[
A(\tau) = \exp(\beta_0 - \beta^T(4\beta)/(2\pi)^{1/2}) \left(\Phi[1 + \beta/2(2\beta)] - \frac{1}{\pi}(\Phi[-\beta/2] + \Phi[\beta/2]) \right),
\]
which, when evaluated for \(t = 1, 2, \ldots, T \) and inserted into (A1), yields the log likelihood function.

The Likelihood Function for the Model with Covariates

Consider the introduction of a vector of covariates into the hazard function: that is, consider
\[
\lambda(Z_{i,t}, \tau; \beta),
\]
where \(x_t = \sum_{i=1}^{T} x_t. \) Note that the total period used for estimation is \(\sum_{t=1}^{T} \).

The log likelihood is
\[
\ln L(\beta; \tau_1, \ldots, \tau_T) = \sum_{i=1}^{T} \left[d(i) \ln \lambda(Z_{i,t}, \tau; \beta) - \int_0^\tau \lambda(Z_{i,t}, x; \beta) dx \right].
\]
The score is
\[
\frac{\partial}{\partial \beta} \ln L(\beta) = \sum_{i=1}^{T} \left[\frac{d}{\partial \beta} \lambda(Z_{i,t}, \tau; \beta) \| \lambda(Z_{i,t}, \tau; \beta) \| - \int_0^\tau \frac{d}{\partial \beta} \lambda(Z_{i,t}, x; \beta) \| \lambda(Z_{i,t}, x; \beta) \| dx \right],
\]
and the Hessian is
\[
\frac{\partial^2}{\partial \beta \partial \beta'} \ln L(\beta) = \sum_{i=1}^{T} \left[\frac{d}{\partial \beta^2} \lambda(Z_{i,t}, \tau; \beta) \| \lambda(Z_{i,t}, \tau; \beta) \| - \int_0^\tau \frac{d^2}{\partial \beta \partial \beta'} \lambda(Z_{i,t}, x; \beta) \| \lambda(Z_{i,t}, x; \beta) \| dx \right].
\]
In the exponential-quadratic case, we have
\[
\lambda(Z_{i,t}, \tau; \beta) = \exp(\beta_0 + \beta_1 \tau + \beta_2 \tau^2 + Z_{i,t} \gamma),
\]
where both \(Z_{i,t} \) and \(\gamma \) are vectors, so that the score and Hessian are

References

the label expansion or contraction to each quarter. It is understood that
the committee observes a large set of variables. Let us denote the vector of ob-
servables by Y, and its history by Y_t. On the basis of a set of informal rules
and internal discussion, the committee determines the appropriate label for
each quarter, which we can denote by S_t, for state of the economy. The Busi-
ness Cycle Dating Committee is in effect inducing a mapping from the ob-
served series $[Y]$ to the reported labels $[S]$. If the committee's methods are
stable over time, we can write this mapping as

$$S_t = \text{NBER} ([Y])$$

I call this the NBER business cycle filter.

Since the authors base their study on the series $[S]$, one has to think about
the nature of the NBER filter that generated it. Does the Business Cycle Dat-
ing Committee impose some sort of prior reasoning on how it assigns the label
contraction or expansion to a particular economic quarter? If so, then the de-
pendence in the series $[S]$ may be a mixture of the committee's prior and the 'true'
dependence in the underlying economy. In order to justify working with $[S]$, we
must be able to argue that the data are sufficiently informative to outweigh the prior beliefs of the committee members. Could small biases in
the committee's dating conventions induce significant changes in the infer-
ces made by the authors in their work? This is a difficult question, but it
suggests that, if the questions raised in these papers are indeed important, then
more in depth empirical research needs to be done.

Are Business Cycles Duration Dependent?

The current paper reinforces the authors' past findings of duration depend-
ence in business cycle data. The general finding is that, regardless of country,
time period, or measure of the business cycle (contractions, expansions, or full cycle), durations display constant or increasing hazard. The data sug-
gest no significant evidence of decreasing hazard. So, the longer the economy
has been in a state, the more likely a transition will occur. This suggests that
some simple models of the business cycle are misspecified. For example, the
Markov switching model of Hamilton (1989) assumes a constant hazard. The
finding by Diebold et al. of positive duration dependence suggests that it may
be a useful avenue of research to generalize the Markov switching model to
allow for an increasing hazard. This poses some tricky econometric problems.
Identification of the Markov-switching probabilities is known to be problem-
atic in Hamilton's specification. A more complicated specification may suffer
even deeper identification problems. Researchers who attempt to generalize
Hamilton's approach in this direction should be aware of this problem before
they begin and take it seriously when making inferences.

Has the Nature of the Business Cycle Changed?

Diebold et al. use their estimated duration model to argue that the stochastic
nature of the business cycle changed after the Second World War. This claim