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Chapter One:

Structural exchange rate modeling has proven extremely difficult during the

Introduction

recent post-1973 float. The disappointment climaxed with the papers of Meese

and Rogoff (1983a, 1983b), who showed that a "naive" random walk model

distinctly dominated received theoretical models in terms of predictive

performance for the major dollar spot rates.

to seek the reasons for this failure by exploring the temporal behavior of seven

One purpose of this monograph is

major dollar exchange rates using nonstructural time-series methods.

The Meese-Rogoff finding does not mean that exchange rates evolve as random

walks; rather it simply means that the random walk is a better stochastic

approximation than any of their other candidate models. 1In this monograph, we

use optimal model specification techniques, including formal unit root tests

which allow for trend, and find that all of the exchange rates studied do in

- fact evolve as random walks or random:walks with drift (to a very close

approximation) . This result is consistent with efficient asset markets, and

provides an explanation for the Meese-Rogoff results.

Far more subtle forces are at work, however, which lead to interesting

econometric problems and have implications for the measurement of exchange rate

volatility and moment structure.

substantial conditional heteroskedasticity.

It is shown that all exchange rates display

A particularly reasonable

parameterization of this conditional heteroskedasticity, which captures the

observed clustering of prediction error variances, is developed in Chapter 2.

Estimation and hypothesis testing of this ARCH ({(Autoregressive Conditional

Heteroskedasticity) model are treated in depth, and it is shown that an

independent, identically distributed structure in first differences (i.e., a

random walk) emerges only as a very special case. What appear to be random

walks (in terms of conditional mean behavior) are not random walks at all;

successive first-differenced observations, while uncorrelated, are not

independent. Again, the nature of this serial dependence is studied in detail.

The problem of testing for serial correlation in the presence of ARCH is also




treated, and the asymptotic distributions of some important serial correlation
test statistics are characterized in the presence of ARCH.

Another insight of Chapter 2 is that, if ARCH is present, it leads to
unconditionally leptokurtic exchange rate distributions, even though the
conditional distribution is Gaussian. This fact is used to explain the well-
known fat-tailed unconditional distributions of exchange rate movements. In
addition, central limit theorems for temporal aggregation of ARCH processes are
proved, which show that the unconditional density approaches normality as
observational frequency decreases.

In summary, then, groundwork is laid in Chapter 2 via detailed
characterization of conditional and unconditional ARCH moment structures,
treatment of hypothesis testing for ARCH effects and estimation of ARCH models,
central limit theorems for temporal aggregation of ARCH processes {in spite of
the fact that successive obsgervations are not independent), and derivation of
the properties of serial correlation tests in the preseﬂce of ARCH. The results
are used and refined in later chapters to study the nature of nominal and real
exchange rate movements.

In Chapter 3, the univariate stochastic structures of seven major weekly
dollar spot exchange rates are studied; each rate is found to possess one {and
only one) unit root in its autoregressive lag operator polynomial and strong
ARCH effects. Maximum likelihood estimates of the ARCH model parameters are
obtained for each exchange rate. They are then used to construct meaningful
measures of exchange rate volatility which are compared to various measures
commonly used in the literature. In addition to providing useful volatility
measures and explaining the leptokurtosis found in each exchange rate, it is
shown that the time-varying conditional variances may be used to construct
superior prediction intervals, which are “"tighter® in more trangquil times and
"wider" in more volatile times than prediction intervals obtained via classical
methods.

In Chapter 4, the data are aggregated to monthly frequency, and the
theoretical results of Chapter 2 are verified. Specifically, the conditional

mean behavior of each rate is still well described by a random walk (with larger



innovation variance, due to the lower frequency of observation). Kurtosis is
substantially reduced for each currency, as are ARCH effects, confirming the
predictions of the earlier limit theorems. Neither ARCH nor the associated
leptokurtosis is completely eliminated, however.

Real exchange rates are examined in Chapter 5, leading to tests of absolute
and relative purchasing power parity (PPP) that simultaneously control for
residual ARCH effects. The formal unit root tests which are used facilitate
rigorous analysis of both CPI- and WPI-based real exchange rates. While
absolute PPP is decisively rejected, relative PPP is accepted, apart from low-
order ARCH effects in the residuals. As a precursor to the PPP analysis, the
relations between three important parity conditions (uncovered interest parity,
purchasing power parity, and real interest parity) are characterized and related
to recent literature. Finally, the nature and implications of long-run versus

short-run deviations from PPP are considered.




Chapter Two: Conditional Heteroskedasticity in Economic Time Serias

2.1) Introduction and Susmary

In this chapter we introduce a model of autoregressive conditional heteroskedasti-
city (ARCH). The model is motivated explicitly by considerations arising in a time-
series context, and it will play a key role in the analysis of dollar spot exchange
rates of later chapters. In section 2.2, we begin by developing a parameterization of
the ARCH model introduced by Engle (1982b) and comparing it to more standard modelé of
conditonal heteroskedasticity which, while of great use in a cross-sectional context,
are difficult to apply and therefore of limited value in a time-series environment. It
is argued that such a model represents a natural and powerful generalization of the
“classical" time-series models which have proved so useful in ecomometrics, such as the
class of autoregressive moving average (ARMA) processes. More generally, in fact, the
allowance for possible conditional heteroskedasticity provides a gemeralization of the
entire class of linearly regular covariance-stationary stochastic processes. The
motivation and properties of ARCH processes are developed in detail. It is shown that
a classical process consisting of independent identically distributed (iid)
observations, or a regression or time-series model with iid disturbances, arises as a
special case. The autoregressive model with conditionally heteroskedastic disturbances
is treated in depth, both for illustration and to lay the foundation for the work of
later chapters. In particular, both the conditional and unconditional moment
structures are treated.

Section 2.3 considers the temporal aggregationm of ARCH processes. <Central limit
theorems are proved which show that the leptokurtic unconditional densities of ARCH
processes approach normality when aggregated, in spite of the fact that successive
observations are not independent. As a corollary, it is shown that convergence to
normality coincides with diwinishing ARCH effects, so that temporal aggregation of ARCH
processes produces independent, identically distributed Gaussian white noise in the

limit. This unifies the results of later chapters, in which we see that while strong



ARCH effects are found in all high-frequemcy dollar spot exchange rates, they diminish
with frequency of observation. Similarly, while high-frequency exchange rates are
highly leptokurtic, convergence to normality is seen as observational frequency
decreases.

Section 2.4 treats estimation and hypothesis testing in ARCH models, and section
2.5 treats associated problems of testing for serial correlation in the presence of
conditonal heteroskedasticity. Specifically, the properties of the Bartlett standard
errors and the Box-Pierce and Box-Ljung "portmanteau" tests are characterized in the
presence of ARCH. It is shown that all of the tests have empirical size larger than
nominal size, leading to larger than nominal probability of type I error. Appropriate
correction factors are developed analytically and shown to perform very well in a
numerical example. Again, the results have substantive implications in terms of the
analysis of later chapters, in which we are constantly testing for exchange rate serial

correlation in the presence of ARCH. Concluding remarks are given in section 2.6.
2.2) Autoregressive Conditrionally Heteroskedastic Processes
2.2.1) Conditional Moment Structure

Consider a time series (et} such that :

2
t-1, " et—p) ~ N(O,at)

2
Gp = Eley_y veer £, )

€ -p
Such processes, first studied by Engle (1982b), display what is known as autoregressive
conditional heteroskedasticity (ARCH). The process is defined in terms of the
conditional {as opposed to unconditional) density, and has the interesting property
that the conditional variance may move over time, being a function of p past realized
‘innovations. We therefore denote the model by ARCH(p). To make the model useful, the
funcion f(.) must be parameterized, and conditions must be imposed to guarantee

positive conditional (and unconditional) variances.




Throughout this book we adopt the following natural parameterization:

2
(etl Eys ctor Et-p) ~ N(Ogat).

where:

Z, = (1, ¢

t-1' "7 fe—p
= t
a (ao. ooy ap)

ag >0, @ >0, i =1, .o, p -

i

The conditional variance of €, is allowed to vary over time as a limear function of
past squared realizations. In the expected value sense, then, today's variability
depends linearly on yesterday's variability, so that large changes tend to be followed
by large changes, and small by small, of either sign. Such temporal clustering of
prediction error variances has been well documented in the classic work on stochastic
generating mechanisms for financial markets such as Fama (1965, 1976) and Mandelbrot
(1963). (McNees (1979) discusses the same issues in terms of forecast error variaace
clustering in the context of econometric pre&iction.) The ARCH model formalizes this
phenomenon and enables us to test for it rigorously since the 1id model is nested
within the ARCH model, occurring when a =@y = ... = a = 0.

Comparison with a pth-order zero-mean stationary autoregressive model is

instructive. Suppose:

2
€ | €e_1» *tt Spop N (ut. ¢)

a

+ ..o+ p

e © P1 €e-1 p St—p

= R(L) €
where all roots of [1 ~ R(L)}] lie outside the unit circle. Like the ARCH model, this

model is also defined in terms of the conditiomal distribution. The evolution of

conditional moments is exactly the converse, however: the conditional mean evolves in



an autoregressive fashion, while the conditional variance is held fixed. The
desirability of models that allow for evolution of both conditional means and
conditional variances is obvious. Before proceeding to such models, however, we pause
to  contrast the ARCH model with a standard "textbook" approach to conditional

heteroskedasticity. Suppose that:

2
e. | o ~ N0, ot)
2
o, = exp(Z a)

= exp(ul) exp(qzztz) e exp(qutp)

where Qt is the time-t information set, Zt is a (1 x p) vector of exogenous variables
that explain the variance (Z.; = 1 for all t), and a is a (p x 1) parameter vector.
{The classical iid structure emerges when g = (“1’ 0, ..., 0).) For example, the

common specification

2
g, ~ N(O, at)
2 _ 2 <
% T % ¥j¢

where Xy is one of the regressors in an equation of which €, is the disturbance,
emerges when p = 2, Z, = (1, 1ln x4;) and a = (1n og,»s)' . The problem with such an
approach is that the appropriate set of forcing variables (Z) for the variance is
rarely known in the context of the analysis of economic time series (as opposed to
cross sections). The ARCH wodel, on the other hand, may be viewed as a general

approximation to conditional heteroskedasticity of unknown form.
2.2.2) Unconditional Moment Structure

The unconditional moment structure of ARCH processes 1s very interesting. By
symmetry, all odd-ordered moments are zero. Even-ordered moments may or may not exist
(i.e. may or may not be finite). Nemec (1985) has shown that no nondegenerate ARCH

process has finite moments of all orders, and that progressively more stringent




requirements maust be satisfied for existence of progressively higher order moments.

For example, Engle (1982b) has shown that for an ARCH(o) process, the
P
unconditional variance is finite Iif § a < 1. Similarly, Milhoj (1985) shows that

i=1

the uncoanditional fourth moment exists if:
. -1
3 a' (I-y) a<l

where a' = (ul, P up) and ¥

(pxp
set q = 0 for ¥ < 0 and k > p.

) is defined by 'ij = ul+j+ a4 where we

Actual calculation of the unconditional moments 18 done by applying the law of

iterated expectations. Consider, for example, the ARCH (1) process:

2
€t ! €e-1 ~ NO,0)

2 _ + 2
% T % T % fe-g
ao > 0, 0 < ul <1.
Rewrite the variance equation as:
2 2
ECe I ey ay toap ey

Taking expectations of both sides giveé:

Thus,
2.0
1 - ay
More generally, it can be shown that:
2 - %
P
l1-t a
i=1 1

for an ARCH(p) process.

Conditional normality may be similarly exploited for the calculation of



unconditional fourth moments.

conditional normality, we have:

Consider again the first order model.

t-1

Thus, taking expectations of both sides:

2
u, = 3 E(ao t oo et—l)

3 E(ué + u% 64

and therefore:

t-1

2
3 1+
% ( al)

2

+ 2a0 &y ez

3 (ah+ ok wy*t2a5 0 / Q1

Y4

2
a - al) (1-13 al)

t-1

2 (2

4
) = 3 o, = 3(00 * oo Et-l) .

)

- al) )

Then because of

More generally, we can modify a result of Milhoj (1985) to obtain a general expression

for the fourth moment of an ARCH(p) process.

Milhoj considers the

process {Xi}, where {Xt} 1s ARCH(p) and shows that:

2 2,2
0) = E(X - EX
Y ,® it )

X

2 04

1-3a a-w'la

2y

2
2

1-3aa-9ta

But the will should note at once that:

2
sz(o) = E(xt - “2
4 4
E Xt o
2

¥y .

)

2
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Thus,
2
2
b2 , 2
] = u
4 -1 2
1-3a'"(I-vy) a
ag
where by = *——*E;——~— -
1l -1 «a
i-1 1

This brings us to a very important result:

tailed", relative to the normal.

Theorewm

Consider an ARCH(p) process with

P
ag > 0, a; >0, i =1, ..., p, T
0 1 1=1
and
. -1
3a' (I -9) fa<1.
Such a process is leptokurtic.
Proof
ul‘ 2
Kurtosis = -— = +
2 -1
4y 1 -3a" (L -4¢) a

The facts that a, > 0
i

det (I - ¥) >0 .

Thus,

0<3a (I -9lact

so,
2

1 -3a' (1 - v)—l

ARCH processes are leptokurtic, or ffat-

This is stated formally below.

(li(]:i

& < 1 guarantee that




which means that the kurtosis must be greater than three.

corresponds to normality.)

11

(Kurtosis of three

QED

Finally, as an example of how processes which display serial correlation in the

conditional mean can be fruitfully combined with ARCH processes (allowing for serial

correlation in the conditional variance), we consider the following AR (1) process with

ARCH (1) disturbances:

= +
Ye P Y1 T B

2
£ | €1 ~ N(O.ot)

2 . 2
% %9 T % %1

ol <1, 0 <o) <1//3, a5 >0 .

The unconditional density of the innovation ¢ is easily seen to have all odd-ordered

moments equal to zero, second moment a / (1 - “1)’ and fourth moment:

The kurtosis 1is therefore:

so that the density 1is fat-tailed relative to the normal.

density of y, is normal with mean 1 Y and variance % +

2
3 1+
a ( al)

2
1 - al) 1-3 @ )

3 (1 + al) 1 - ul)

2
1-3 ul)

density 1s leptokurtic with mean zero and variance:

GO
A -a) a-od

2
01 Ct_ly

Thus, while the conditional

its unconditional
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2.3) Temporal Aggregation of ARCH Processes

Consider a time series (yt}z=1 , obeying an ARCH probability law, where t =1, 2,

3, ... is some "fundamental"” time scale. Now form the m—period temporal aggregate:

o m—-1
S5, = L Yo t=m, 2m, 3@, ...
=0 "7
We write the time series as {S:):iT'm, or {8 *}Tim , where t = km is equivalent to !

t t =1

= k. For example, if {Dt}tzl , 1s a daily time series, then the series of weekly

T/5

returns corresponds to the m = 5 day aggregate {wt*}t*=1’

where:

W o= é D =D +D + ... +0D , t =m, 2m, ...
t i=Q t-i t t-1 t-4
and t = k @ <=> t* = k.

We are interested in the properties of such aggregates as m + . In other words,
we ask "Does S: have a limiting distribution as m + «» , and if so, what is it?"
Unfortunately, standard central limit theory does not apply because, as shown above,
the elements of {yt} are not independent. We can, however, exploit a theorem of White
(1984) for regression with dependent identically (unconditiona}ly) distributed
observations to characterize the limiting distribution of the aggregate. We reproduce

it here in a slightly different notation.

Theorem
Given:
(1) y = X + €
(ii) {(xt'et)'} is a stationary ergodic sequence;

(1i1) (a) E (X r) 9223 0 as r + =, where {a,} is adapted to

ot Son | 9-

{X =1, «oa, P, 1 =1, ..., k;

thi€chls B




(iv)

2
») E ]xthi ethl {w, h =1,

-1/2
var (m /

(c) v
m

(d) Define Mot § = E(XOhiEOh'Q-j)

1

- E

3

s ey

P’

i

1,

(Xgns sonl 05—y

eae, ks

X'e) is uniformly positive definite;

), h

«ee, k, assume

=1'

eee, ko For h =1, ..., p, i =1,
1/
Q0 2 «
that zjso(var HOhij) < w.
2
(a) E|xthi] {w,h=1, ..., p, 1
(b) M= E(Xéxt) is positive definite;

k;

Then Vm » V finite and positive definite as m —-—> = , and:

D—1/2

where D = wlvml,

- P a -
Then Dm - D + 0, where Dm = (X'X/m)

Suppose in addition that

)

a

There exists Vm

i

~Gm(x'x/m)'1.

/m(s - 8y) 2N (0,1), ,

symmetric and positive semidefinite such that Vm - Vm + 0.

Consider first the case in which y, follows a pure ARCH(p) process, and write

y = Xg + ¢, where X is simply & column vector of ones.

conditions (i) - (iv) are satisfied, where

v
m

v

and qz is the unconditional variance of € given by:

Thus,

1

D=V = 02 and we have:

%

P

I a
i=1 i

2
o

i o a
P /m (BIn 80) ~ N (0,1)

or

(8,~ 8p) > (o,

2
[°)

Under our assumptions, however, o= 0, and, of course,

).

The reader may verify that

for all sample sizes m, M = 1,
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~ - l m
g = (X'X) X'y =— [ vy .
m mt=]l t
Thus,
2
I m a a
— T y ~NA(0,—/),
mt=l ¢ m
so0,
m a 2
£y ~N (0,mg ).
t=1 t

We have just proved the followimg proposition.

Proposition 2.1
P
tafl

If a time series {yt} follows a zero mean pth order ARCH process with X
i

i=1

then the aggregated series (S:*} has an uncouditional normal distribution as m » «.

Now assume that y, is not a pure ARCH process; rather, assume a Pth order
autoregression (about a possibly nonzero mean) with pth order ARCH disturbances.

Consider once again the representation:
y = Xg + e

where X = (1,...,1)' and ¢ is a zero—mean AR-ARCH (P,p) process. The regularity

conditions of the White theorem are again satisfied, with:

-1/2 ~1/2 m
V = var (m X'¢) = var (m L e
a t=1l t

a

-1 m [¢]
t=l (1 - ga X1 -% ¢ p)
L 11

%0
ST T eg0y)
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where o;, 1 = 1...P is the ith autocorrelation of the AR(P) process (with parameters
$ys cees bp ) which describes the evolution of the conditional mean of y. As before,

M =1, and D = V. We therefore have:

%0
=TT 1 99,

97 m (G-s) 2N (0,1,
or:

%
m (L= 1 o =1 450"

~ a
Bm ~ N (80)

Finally, then,

mq

0
(Q-ga)l-1¢5p)
i 1]

o a
~ N , .
télyt . (meo )

This establishes the following proposition.

Proposition 2.2:

If a time series {yt) follows an AR-ARCH(P,p) process about a (possibly) nonzero
mean, and ay {1 , then the aggregated series {Sm*} has an unconditional normal

t
distribution as m --> = .

To illustrate the results, the simple first order ARCH process:

2
t-1

1/2

)

y, = Nt 0,1)(.5+ .5y

t
is used. A sufficiently large realization is obtained such that 5,000 observations on
the aggregated series {S:} are available, for m = 0, 4, 12, 25, 50, and 100. In

Figure 2.1, we plot kurtosis as a function of m; the convergence to normality is




g alt
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evident at once. The convergence to normality is also confirmed by a wide range of
other diagnostics such as Kolmogorov's D, normal probability plots, and the perceatiles
of the standardized distribution. The kurtosis corresponding to m = 1 (no aggregation)

is 9.011, which matches very closely the analytical kurtosis of:

3 (1 - al)z

7 .
1 -3 9

As we aggregate, both the kurtosis and the studentized range drop monotonically umtil

respective values of 3.226 and 9.5 are obtained for m = 100. The skewness, of course,

stays close to zero throughout.

2.4) Estimation and Hypothesis Testing

First note that the log likelihood is given by:

T
In L = const - in (Zt a)i/2 - 2 5 —-.

1 t

[ ]

t

We can use this likelihood function to obtain consisteat, asymptotically efficient
parameter estimates, as well as a Lagrange multiplier test of the null hypothesis of no
ARCH effects. 1In what follows it will prove useful to model a time series {yt} »
allowing for a time-varying conditional mean, which we denote by th . The X's may be
composed of both exogenous and lagged dependent variables; later, we will explicitly
model third order dutoregressions with ARCH innovations. In amy case, X is taken to be
a (T x K) matrix, while B8 is a (K x 1) vector of parameters. The log likelihood
function 1is then:

T

1al(8, a; y, X) = const - £ 1ln o,
t=1 t

N
Ihes 1
™

[nd Nlﬁ N



17

The likelihood ratio (LR) test of the null hypothesis oy = see = g

given by:

2
-2 1“(Lw(8, a)/Ln(B,u)) asy Xp *

= 0 is then

The LR test requires estimates under both the null and alternative, of course, so

that an IM test which requires estimates only under the null may serve as a convenient

preliminary diagnostic. The LM statistic is:

- aa , asy 2
IM =4d'I d "~ Xp

alnL

where d is the score vector with respect to qa, 30

, 1%® i5 the gq block of the

inverse of the information matrix, and both d and 1%* are evaluated under the null.

To obtain these, rewrite the likelihood function as:

2
(y, - X B)
1nL = const - tla(Z a)ll2 -1 z ot .
t 2 Zta
Thus,
2
1 )
3lnL 1 e 1%
45 T2z, 2L 7
t (Zta)
which equals under Hy:
1 1 2
~—5IZ' +—F5 12 ¢
202 t 204 t "t
2
z' €
1 t t
2L 3 3D
o [+

It should also be noted that:




amat
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To obtain the information matrix under the null, we can proceed immediately to

take second derivatives:

2
1
»21aL 3 1% %
Fe2lzrg, (g5 DI
dada a e @
2 2
z' 2 € A
t t t 1 t t t
=£(—%)—7(Z—a‘1)+£(‘5)2—;——2.
(Z_a) t t° (2 _a)
t t
Taking expectations under the null we have:
. 2
=_l YA Ztc
bR 3
o
1
- _ l_z Zt Zt
2 4
o
L4 % 1
Negating, this equals i—z i " 2' Z, where Z is the matrix whose t'M row 1
o 2g
Zt' Similarly,
1 —
321nL__§(£ Xt(yt XtB) )
3Bag’ 38 Ztu
*
o b Xt xt
Zta

Taking negative expectations under the null gives:

X! X
t v _ 1 .
L 2——2-()( X) .
g g

In addition,
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= 0, after taking negative expectations under the null.

Thus, 2

(X'X/g ) [ 0

(K x K) (K x (p+1))
1/H = : .
o . .

4
¢] AN (2'2/(2¢ ))
((p+1) x X) ((p+1) x (p+l1))

-1
and Iualﬂ° = 204(2' z) " .
Now we can construct the LM statistic as:

w = Lyzn'ede aThly
20 20

= % £ z2(z' z) Yz

2

€

where ft = (;7-— 1) and f = [ft]' a (T x 1) vector.

This test shares the optimality property of maximum local power with the

likelihood-ratio and Wald tests. (See, for example, Engle (1982a).)

In addition,

LM statistic may be calculated by regressing the squared residuals (from a regression

of y on X) on an intercept and p own lags. TR? from such a regression is then

asymptotically equivalent to LM, and Diebold and Pauly (1985) show that the power

characteristics of the two versions of the test are essentially identical for sample

sizes greater than 150, both for first order ARCH processes and higher order processes.

Once the IM test has determined that ARCH effects are operative, maximum-—

likelihood estimation should be undertaken. Engle (1982b) has shown that the

efficiency of MLE relative to LS is very large, and may approach infinity.

Block diagonality of the information matrix, the MLE's may be calculated by the method
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of scoring, which involves an iterative sequence of LS ;egressions on transformed
variables. This is rather tedious, however, relative to straightforward numerical
maximization of the log likelihood, which is directly applicable in both the univariate
and multivariate cases. For this reason full maximum—likelihood estimation is used

throughout this book.

2.5) The Asymptotic Distributions of Some Common Serial Correlatiom

Test Statistics in the Presence of ARCH

2.5.1) Backgrouad

The problem of testing for serial correlation arises constantly in time-series
econometrics. Sometimes, as with forward premia in efficient markets ;tudies, the time
series to be tested for serial correlation is directly observed. Sometimes, as with
regsiduals from an estimated model, the observed series 1s only an estimate 6f the true,
but unknown, series to be tested for serial correlation. Either way, the presence of
heteroskedastigity violates the assumptions upon which tests for serial correlation
rest.

This observation is particularly crucial in light of the recent realization that
conditional heteroskedasticity may be commonly present in the time-series context.
(See, for example, Engle (1982b), Weiss (1984), ﬁomowltz and Hakkio (1985), Diebold and
Pauly (1986), and Tsay (1987), inter alia.) There are two approaches to resolution of
the problem. First, one may attempt to develop tests for serial correlation that are
robust to heteroskedasticty of unknown form. This is the approach taken by Domowitz
and Hakkio (1983) who combine Godfrey's (1978) Lagrange multiplier test for serial
correlation with White's (1980) heteroskedasticity-comsistent covariance matrix
estimator. The advantage of such an approach is its generality; the cost is reduced
power in situations when the form of the heteroskedasticity is known or can be well
approximated.

The second approach is to parameterize, or approximate, the form of the
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heteroskedasticity, and develop serial correlation tests specifically taking it into
account. This of course has costs and benefits opposite those of the Domowitz-Hakkio
approach. To the extent that the heteroskedasticity approximation is accurate, the
test will perform well, and vice versa.

The model of autoregressive conditional heteroskedasticty (ARCH) due to Engle
(1982b) has been found to provide a parsimonious and descriptively accurate
approximation in many contexts (inflation: Engle (1982¢), foreign exchange markets:
Domowitz and Hakkio (1985), Diebold and Pauly (1986), Diebold and Nerlove (1986); stock
market: Diebold, Lee and Im (1985); term structure of interest rates: Engle, Lillien
and Robbins (1987)). 1In this section we consider the properties of two important model
specification tools, the sample autocorrelation function and the Box-Pierce (1970) and
Ljung-Box (1978) “portmanteau" statistics, in the presence of ARCH. The theory of the
Bartlett standard errors is first developed, and then the portmanteau tests are
treated. We build upon the results if Milhoj (1985) to show why the presence of ARCH
renders the usual Bartlett standard error bands overly conservative, relative to the
nominal 5% test size, and we develop an ARCH-corrected standard error estimate. This
leads directly to ARCH-corrected confidence intervals under the null of uncorrelated
white noise. We then treat‘the Box-Pierce and Box-Ljung serial correlation test
statistics and show that they do not have the usual X2 limiting null distribution. An
appropriate normalization is found which does have a limiting X2 distribution,

however. The results are illustrated with a numerical example.
2.5.2) Correcting the Bartlett Standard Error Bands

Consider a zero-mean time series {xt}z=1' It can be shown (Anderson (1942),
Bartlett (1946)) that, under the null of Gaussian white noise, the sample

autocorrelation at lag 1 :

(o) = X0
y(0)
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where ;(T) = 1/T & x xt_T is asymptotically normally distributed with mean 0 and
variance:
R T-x
var (p(1)) = ——mm ,
T (T + 2)
or, as a further approximation, 1/T. This result leads to the so-called Bartlett 951
confidence interval under the aull:

1.96
p(t) = 0.0 = 9 .

/T

Under ARCH,however, the sample autocorrelations are normal with mean O and variance:

Y Z(T)
/Ty +_E__" )
g

T 4
where y 2(1—) is the autocovariance at lag 1 for the squared process {xf)t_l and ¢ 1
x
the squared unconditional variance of the x process. (See Milhoj (1985).) Because:

Y z(r)

X % > 0 for all ¢

a

it {s clear that Bartlett's standard error is "too small" in the presence of ARCH, in
the sense that, for example, the true 95% confidence interval is wider than the

computed 951" confidence interval. Note, however, that:

Y 2(t)

lim (/1) (1 +__"_4__) = /T
D= o

since y 2(t) ~> 0 as 1 -> = , by stationarity and ergodicity of
x

2
{x"} . Because y 2(1) and o are easily consistently estimated, we can construct a
X

consistent estimate of the variance of the sample autocorrelations as:

1 500
S(o = (/T (4 + —Z—)
g



23

which leads to the corrected confidence interval:

o (1) = 0.0 & 1.96 (s(n)!/2 .

To implement the results over, say, the first K autocorrelations, we first obtain:

- t ~
ﬂx(l') — g 1= 1 ...K

= 2% =t pah?

~ 2 ~2 2 ~2
sz(r) =1/T ¢ (x, -0 ) (xt_T -—o0), t=1...K

and then construct the bands via the above formula.

To illustrate, 500 observations are generated on the process:

Xp = &0 & | eey = NCO, °§)’ °i =og toag 55-1 :

The first 20 autocorrelations of x are calculated, along with the Bartlett 1.96
standard error bands and the ARCH-corrected Bartlett 1.96 standard error bands. One
thousand replications are performed for each of ten points in the parameter space: a

= 0.0, .1, .2, .3, .4, .5, .6, .7,..8, .9. Without loss of generality, we can
set ay = 1 - q; (Pantula (1985)), which waintains the unconditional variance at 1.0.
The case of a) = 0.0 of course corresponds to independent white noise. The
realizations are generated via the cannonical form:

1/2

e = N (0,D(ay + a er_))

t t-1

500
where we set g = 0 . The same one-thousand sets of 500 innovations {Nt(O,l)}tal were
used to generate the ARCH realization at each explored point of the sample space; this

provides powerful variance reduction. The proportions of rejections (in 1000
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repetitions over 20 autocorrelations) relative to the uncorrected Bartlett 95%
confideace interval are given in Table 2.1 as P, while rejection frequencies relativ
to the corrected intervals appear as P_.

The results are easily interpreted. When o = 0, of course, the nominal size (
approximately equals the actual size (4.6%). This is also true if the ARCH correcti
is (needlessly) applied. As oy rises, however, so too does the empirical size of th
uncorrected confidence interval, so that, for example, when ay = .9, the probability
a type I error is more than twice the nominal probability of 5. The ARCH—corrected
intervals, on the other hand, maintain nominal size.

The problem of spurious "significance"” of sample autocorrelations due to ARCH
becomes progressively less serious for progressively higher—ordered autocorrelations
due to the earlier mentioned fact that the "correction factor" tends to unity as 1 +

This is of little value in practice, however, because it is precisely the 1lc¢
order autocorrelations which are typically calculated. The calculation of twenty
sample autocorrelations in the simulations reported above was done with the eventual
calculation of Box-Pierce statistics in mind; had fewer sample autocorrelations beer
calculated, the average deviation from nominal test size would have been substantial
larger.

Consider, for example, the ARCH(l) case described above. The reader may verify

that:

Y z(r) 24T
x

I S T
gA 1-3 02
1
so that the standard error is:
2 ol
Laeyk.
/ T 1-3 ay

The corrected and uncorrected confidence intervals are shown in Figure 2.2
for a; = «5. Clearly, moat of the divergence occurs at the low-order

autocorrelations. The deviation from nominal test size is different at each
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autocorrelation lag, becoming progressively smaller as the lag order gets larger.
Thus, to repeat for emphasis, the entries in the first row of Table 2.1 are very
conservative, in the sense that it is not uncommon practice to examine only the first 5
or 10 autocorrelations, which would lead to much higher rejection proportions. This is
strongly illustrated in the first row of Table 2.2, which reports rejection proportions
based on only the first 5 sample autocorrelations.

It is of interest to note that the probabilities of type I error may be calculated
analytically, as follows. Under the Bartlett assumption of true independent,

identically distributed noise,
- a l
0 (1) ~ N (0,) = N ((0,C(T) ) .

In reality, however,

T
(o ow (o, L C N {0
o () ~ N (0, & I—;-—E)] =N {0,0,(T, 1)) -
-3 a
1

Thus, the probability that ;x(r) exceeds 1.96 Bartlett standard errors of zero is:

P (o (v | > 1.96 /C,(D))

i < (T -
=P ]:{Ipx(r) [/ /AT, 1)) > 1.96 —[
- /C (T, 1)

2 ’
/¢ (T)
=P (|z] > 1.9
'/cz(T:T)

where Z is a N(0,1) random variable. Since [CI(T) / CZ(T.r)] <1, for all T, ¢, it
follows that P(.) > .05. If a; = .5 and T = 500, for example, the probabilities of

type I error are .378(7 = 1),

.164(7¢ = 3), .100(t = 5), and .051(t = 10).
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4
2.5.3) On the Existence of EX
t

Strictly speaking, the above results require existence of the fourth raw mcment o

Xy yy- This 1is because:
Y 2(r) = oY 2(1‘1) + ool # a Y 2(t—P)
x x x

with

4 4
YXZ(O) = Ext o

A
=y, -0 -

Thus, 1f u, does not exist {(i.e., is infinite) then neither does vy 2(:). Milhoj (1985)
x
shows that a necessary and sufficient condition for existence of v for a pth-order

ARCH process is given by:
L] —l »
Ja' (I-¥) o<1

L - .
where g (“l""'ap) and (p:p) is defined by Yij

T eyt %oy
where we set o = 0 for k £ 0 and k > p.

In actual applications, of course, it is not known whether the conditioam is
satisfied, and the analyst should proceed under the assumption that it is. Even if the
true moment of lanterest has infinite value, the best sample approximation for the
purposes of correcting the Bartlett sfandard errors will still be obtained by following
the procedure outlined above.

As an example, consider again the ARCH(1l) case. Then the existence condition

for g boils down to:
ap < 1//3 = .577.

Thus, in the earlier-tabulated example, the cases of a = .6, .7, 8, and .9 all

correspond to B,= = yet the ARCH correction continues to work well,
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2.5.4) The Box-Pierce and Ljung-Box Statistics

The Box-Pierce (1970) serial correlation test statistic (to lag K) is given by:

-

K ~2
BP(K) =T £ p (1)
=1 x

Due to its direct dependence ;i, it is also affected by ARCH and must be modified if

nominal size is to be maintained. Since under the null of independent white noise we

know that:
- d
p(T) ->N(0,1/T), t=1, 2, 3, seey
we have:
~ d
/T p(1) » N(O,1).
Thus,
~2 d 2
Top (1) » xl

and therefore by asymptotic independence of the sample autocorrelations:

K ~2 d 2
T zlp (v) » xK, which is the Box-Pierce result.
-

Under ARCH, however,

Y, (v
b () % N(O,1/T (1 +x4—)).
a
Thus, ()
sz T HQ ) )
{T/ (1 +—)1" p (1) » N(O, 1),
4 X
g
8s0:
Y 2(r)

x ~2 d 2
{T/ U +—)}p (1) »y
4 x 1
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Because the bracketed term is less than or equal to one for all ¢, each term in the sut
involved in the uncorrected Box—Pierce statistic is "too large," leading to larger tha:
nominal size.

The empirical sizes of the standard and corrected Box—Pierce statistics are shown
below in Table 2.1 (K = 20) and Table 2.2 (K = 5); the ARCH~corrected statistics
perform quite well. It is Interesting to note that the very large deviations from
nominal size (i.e., much larger than the average deviation of the first 20 sample
autocorrelations reported earlier) of the uncorrected Box-Pierce statistics in the
presence of ARCH are due to the "cumulation" of errors. This is true regardless of the
value of K. Of course, as argued earlier, the problem is made worse as K decreases;
this is easily seen by comparing the third rows of Tables 2.1 and 2.2.

Similarly, the Ljung-Box (1978) statistic:

K -1 2
LB(K) = T (T+2) £ (T-¢) p (1),
=i x
of which the Box-Pierce statistic is an asymptotic approximation, may be easily -

corrected for ARCH.

2.5.5) Conclusions

In summary, we have shown that the presence of ARCH invalidates the asyaptotic
distributions of the sample autocorrelations and the Box-Pierce and Box-Ljung test
statistics for serial correlation, when computed in the usual fashion. It was shown,
both analytically and numerically, that the presence of ARCH renders empirical size
(i.e., probability of Type I error) larger than nominal size, leading to spuriously
"significant” sample autocorrelations and portmanteau diagnostics. Appropriate
correction factors were developed and shown to produce highly satisfactory results,
with nominal and empirical sizes being approximately equal.

We have also shown that the error in the Box-Pierce and Box-Ljung statistics,

calculated through lag K, is progressively more severe for progressively smaller K.
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This provides yet another reason, in addition to those given in Box and Pierce (p.
1513) to be wary of test statistics based on small K.

The analysis in the text focused on the case of observed time series. As is well
known (Durbin (1970)), the results do not generalize directly to the case of testing
for serial correlation in the residuals of estimated models, because the residual
autocorrelations are approximately representable as a singular linear transformation of
the true disturbance autocorrelations. Box and Pierce (1970) have, however, shown that
the dimension of the singularity is equal to d, the degrees of freedom lost in
estimating d model parameters. The results remain valid, then, when the statistics are

tested against a distribution.

2
Xk-d
Finally, it should be pointed out that the presence of ARCH makes the Bartlett
standard errors and the portmanteau tests more conservative; thus, a failure to reject
the null of no serial correlation using the uncorrected statistics may be trusted. If

the null is rejected, however, and conditional heteroskedasticity of the autoregressive

type is suspected, the corrections should be employed.
2.6) Concluding Remarks

In this chapter we introduced a model of autoregressive conditional
heteroskedasticity (ARCH) which will play a key role in later chapters. We showed that
ARCH effects, if present, lead to clustering of prediction error variances; in
particular, the conditional variance may be forecasted. The moment structure was
studied in detail, and it was shown that all ARCH processes are leptokurtic, and that
this leptokurtosis 1s reduced by temporal aggregation. We discussed that maximum
likelihood parameter estimation and showed that the LM principle produces convenient
hypothesis tests. Finally, well-performing ARCH-corrections for serial correlation

tests were developed and illustrated.
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Table 2.1
Empirical Size Results, Box-Pierce Tests -
And Bartlett Standard Errors, Based on Firat 20 Autocorrelations

o= 0 .1 .2 .3 A .5 .6 .7 - .8 .9

P .047 . 048 .051 .057 .058 .059 074 .084 .096 .106
Pc .048 . 048 .048 .051 . 046 046 .049 .048 047 044
BP .053 .052 .063 .074 . 095 127 .215 . 280 .378 . 429

BPc .052 .052 .054 .054 . 044 .042 .051 .060 .063 .055

* Based on 1000 repetitions

P = Rejection Percentage, Bartlett Standard Errors

Pc = Rejection Percentage, ARCH—Corrected Bartlett Standard Errors
BP = Rejection Percentage, Box-Pierce Statistic

BPc = Rejection Percentage, ARCH-Corrected Box-Pierce Statistic

Table 2.2
Empirical Size Results, Box—Pierce Test -
And Bartlett Standard Errors, Based on First 5 Aatocorrelations

o= 0 .1 .2 .3 .4 .5 -6 .7 .8 .9

P .047 .062 .065 .076 .085 .113 .147 .178 .246  .285
Pc  .049 .054 .051 .048 .046 .050 .046 .042 .049 .047
BP  .049 .066 074 .112 ,151 2213 .299  .366 .523 .610

BPc .048 . 047 - 048 040 .041 .048 047 . 040 .052 . 047

* Based on 1000 repetitions

P = Rejection Percentage, Bartlett Standard Errors
Pc = Rejection Percentage, ARCH—Corrected Bartlett Standard Errors
BP = Rejection Percentage, Box-Pierce Statistiec

BPc = Rejection Percentage, ARCH-Corrected Box-Pierce Statistic
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Chapter Three: Weekly Univariate Nominal Exchange Rate Fluctuations

3.1) Introduction

The difficulties involved in explaining exchange rate movements during the post-
1973 float with standard purchasing power parity, monetary, or portfolio balance models
have become increasingly apparent. Meese and Rogoff (1983a, 1983b) systematically
document the pervasive out-of -sample empirical failure of these models, and they find
that a simple random walk model predicts the major rates during the floating period as
well as (or better than) any of the alternative models.! These models (both structural
and nonstructural) include a flexible price monetary model (Frenkel, 1976; Bilson,
1979), a sticky price monetary model (Dornbusch, 1976; Frankel, 1979), a sticky price
monetary model with current account effects (Hooper and Morton, 1982), six univariate
time series models, a vector autoregressive model, and the forward rate.2 The failure
of the structural models is all the more striking in light of the fact that the Meese-
Rogoff predictive comparisons use ex post realizations of exogenous variables.

Assertions that dollar spot rates under the recent float have followed approximate
random walks are common, but formal empirical an;lysis of the time series properties of
exchange rates is lacking in the literature.3 In this chapter we attempt to shed light
on these issues by using a number of time series techniques to study the stochastic
structure of the éeven major dollar spot rates: the Canadian Dollar (CD), the French
Franc (FF), the Deutschemark (DM), the Italian Lira (LIR), the Japanese Yen (YEN), the
Swiss Franc (SF), and the British Pound (BP). We find that, in the class of 1linear
time series models with white noise innovations, the random walk is a very good

approximation to the underlying probability structure; clearly, then, we would not

; See also Meese and Rogoff (1983b), Cornell (1977), Mussa (1979), and Frenkel (1981).
They also investigated a variety of prefiltering and specification techniques,
including the T/1nT rule (Hannan, 1970), the Akaike (1974) information criterion,
the Schwarz (1978) information criterion, weighted autoregressions, and frequency

3 domain methods.

For work related to the random—walk hypothesis see Meese and Singleton (1982) and
Callen, Kwan, and Yip (1985). See also the related early work of Poole (1966, 1967)
concerning the 1950-1962 Canadian float.
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expect any other linear model to dominate in terms of predictive performance. However,

. when the class of models under consideration is broadened to allow for possible
nonlinearities, we find strong evidence of autoregressive conditional
heteroskedasticity (Engle, 1982b) in the one step ahead prediction errors, so that the
disturbances in the "random walk™ are uncorrelated but not independent.

The finding of autoregressiv; ;onditional heteroskedasticity (ARCH) in all of the
exchange rates studied is very important. First, ARCH provides a way of formalizing
the observation that large changes tend to be followed by large changes (of either
sign), and small by small, leading to contiguous periods of volatility and stability.
We show later that even a visual inspection of the data indicates ARCH phenomena, and
the formal hypothesis testing and estimation procedures which are used enable a
rigorous formulation. Second, the observed ARCH éffects are consistent with the
leptokurtosis in exchange rate changes, which has been well documented by Westerfield
(1977) and which all of ghe series display; this is because ARCH processes possess
“fat-tailed" unconditional densities, even though their conditional densities are
normal. Thus, the results indicate that an appropriate and descriptively acéurate
stochastic generating process for the logarithm of spot rates is the random walk with
ARCH innovations.

Another substantive result of this study is the formulation of staclsticéily and
economically meaningful measures of exchange rate volatility. The nature, time
pattern, and economic effects of exchange rate volatility are recurrent topics in the
literature. Volatility of exchange rates is of importance because of the uncertainty
it creates for prices of exports and imports, for the value of international reserves
and for open positions in foreign currency,4 as well as for the domestic currency value
of debt payments and workers' remittances, which in turn affect domestic wages, prices,
output, employment, and other variables‘s Furthermore, the degree of exchange rate
volatility affects the ability of a country similtaneously to maintain internal and

external balance, and is also directly related to market efficiency. With respect to

Forward markets cannot completely eliminate the risk, because of costly coverage
5 (i.e., the forward premium) and transaction costs.
See Lanyi and Suss (1982).
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these matters, exchange rate volatility under fixed and floating regimes and the
changes (if any) in that volatility over time have been widely debated. Issues such as
the relationship of Federal Reserve operating procedures to exchange rate volatility,
the effects of exchange rate volatility on the natural rate of unemployment, the
effects of volatiflity on the bid/ask spread as well as on the volume and prices of
internationally traded goods, and so on, have received attention-6 Furthermore, under
risk aversion, risk premia will form a "wedge" in international equilibrium conditions
such as uncovered interest parity and way therefore influence the determination of spot
exchange rates. Risk premia depend on the variability of the distribution of future
spot rates, which (as shown below) is nonconstant. The resulting time-varying risk
premia have been studied by Domowitz and Hakkio (1985) and Diebold and Pauly (1987).

A generally acceptable measure of volatility has not been found, however, although
several have been proposed. Moving variances, moving average absolute deviations, as
well as standard error of moving trend regressions and moving autoregressions, have
been tried, but for reasons discussed below none is really satisfactory. Moreover, the
many different measures which have been used often make potentially complementary
studies incomparable.7

First, the "moving sample" approach to volatility calculation can lead to
seriously misleading results. The implicit assumption is that volatility changes over
time, and the use of a moving sample represents a crude attempt to capture those
changes. However, if volatility is changing over time, then the moving sample approach
is always suboptimal because it throws away information; rather, some attempt should be
made to uncover and model the nature of the time-varying volatility. On the other

hand, if the volatility is not time varying, then the moving sample approach will

6 See, for example, Bergstrand (1983), Zis (1983), Akhtar and Hilton (1984), Levich
(1985), Kennen and Rodrick (1985), Huang (1981), Frenkel and Mussa (1983), Hooper
and Kohlhagen (1978), Kreinin (1977), and Cushman (1983). To place the work in
historical perspective, see also the seminal papers by Friedman {1953) and Johnson
(1969).

7

See, for example, Kennen and Rodrick (1985). By "moving" volatility measures, we

mean that they are calculated on a moving subset of available data, such as the most
recent v observations. The most common example is a movong variance about a moving
mean.
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produce volatility measures that nevertheless appear time varying, sometimes strongly
so. Second, volatility measures not based ou sample secoad moments are incoansistent
with mean-~variance expected utility amalysis. Thus. for example, measures based on
average absolute deviations are of limited value. Finally, the conditioaal, rather
than the unconditional, second moment should be the focus when studying volariliry,
since any uancertainty in exchange rate movements which can be removed by conditioning
upon other variables or upon the past is economically irrelevaant. In this respect, the
use of the standard error of moving trend regressions or autoregressions is
appropriate, but the approach remains subject to the same criticisms regarding moving
samples.

The problem, of course, is that standard tests and models of unconditional
heteroskedasticity are irrelevant, while tests for conditional heteroskedasticity are
difficult to apply, because they require knowledge of the “forcing variables™ which
drive the variance. ARCH models, on the other hand, provide a parsimoanious and
accurate description of an evolving conditional variance. We may view the ARCH model
as using a set of latent variables (past squared innovations) to drive the conditiomal
variance. By estimating an appropriate ARCH model for each exchange rate, we can solve
for the fmplied time series of conditional variances, and thus obtain a meaningful
wmeasure of volatility for that rate.

Finally, our finding of random walks with ARCH disturbances means that,
although AlnSt cannot be forecast, its changing variance can be forecast.8 Thus, ARCH
may be exploited to obtain time-varyiang confidence intervals for point forecasts of
exchange rate changes (zero for a random—walk model). 1In periods of high volatility
these iatervals are large, and in less volatile periods they are smaller. This stands
in marked contrast to the standard constant variance random—walk model, which ignores
the changing environment in which forecasts are produced and the associated temporal

movements in forecast error variances.

8 Here and throughout, lnSt is a generic expression standing for any or all of the log
exchange rate series.
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3.2) Moving Sample Moments as Volatility Measures

Before proceeding further, we pause to illustrate the misleading results that can

arise when moving sample moments are used as volatility measures. Consider the time

series Ve ~ N(O, gz) « In this case, the conditional variance, which happens to be

equal to the unconditional variance, is not time-varying. A researcher looking at the

data, however, has no immediate way of knowing that fact and so we consider the

propertiea of the usual moving variance calculated about a moving mean. The N-period

moving variance 1s given by:

- ;;)

N
S =(1L/N+#1) 1 (y
t 1=0 t-1
‘where ;L is the N-period moving mean given by:
_ N
y, = (1 / N+1) T y _
t 1=0 t-i
We can rewrite this as:
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If we let {Nt(O, 1)} be an iid sequence of Gaussian random variables with mean zero

and variance one such that yt = g Nt , then:
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where Xy o is a time-t realization of a chi-square random variable with one degree of
’

freedom such that Xf e = Nz . Because we want to study the time-—series properties of
»

(Et} , 1t will prove useful to adopt the normalization:
—1 1 / 2 —
St = (N+ a ) St -

Then,

5 p Y2 N+ 7 D)
L x _ y + g .
t 1=0 l,t N t
| | ] |
A B

Part A of this expression is an N-period moving-average process whose innovations
follow a chi-square distribution with one degree of freedom. Furthermore, it is
noninvertible for all N, and therefore displays substantial persistence. This is ome
source of the spurious temporal movements in §; . The other source is the term
denoted by B, which 1is particularly interesting because of the nonlimearities
introduced through ;i . For example, consider the first-order case N = 1. Then:

= 2 2 =2
S = 12 Ye t 1/2 Ye-1 ~ e

2 2 2 2 -2
= /2 Xpe to /12 X1, e-1 ~ Ye

2 2 2 2 2 2
a /2 Xj,e ¥ O /2 X1,te-1 Vaye - Wby - U2y,

R R VN C LR VN C NI LE VL

t-1
2 2 2 2 2 2 2 2 2
a /2 x,e o /2 Xp,e-1 ~ ¢ /4 e ¢ /4 X1,e-1 ~ ¢ /2NN

2 2
X1,e-1 ¢ /2 NN

2 2 2
G/l‘xl,t*'a/“ 1



39

The nonlinearity is clearly evident in the NtNt—l term.

To highlight these effects, we generate 100 pseudorandom normal deviates with zero
mean and unit variance using IMSL subroutine GGNML, and the time—series of two-period,
ten-period, and twenty-five-period moving sample variances are computed. They are
shown in Figures 3.1 and 3.2. While all three series are centered at unity, they
display substantial time variation. As expected, the amplitude of fluctuations is
higher for the two-period moving variance, while the persistence is stronger for the
ten—- and twenty-five-period moving variances. Either way, however, the uncritical use

of moving sample moments (or residuals from moving regressions) as volatility measures

may lead to severe data misinterpretation.

3.3) The Data

We study weekly spot rates from the first week of July 1973 to the second week of
August 1985. All data are interbank closing spot prices (bid s%de), Wednesdays, taken
from the International Monetary Markets Yearbook. Wednesdays were chosen because very
few holidays occur on that day, and there i1s no problem of "weekend effects."

By "weekend effect'" we do not necessarily mean a calendar effect assoclated with
the regular occurrence of weekends, although such effects may arise as well. More
generally, we are referring to the temporal line—up problem of, for example, the

occurrence of weekends in a daily sample. In the AR(1) representation:

lnSt = p lnst_l + €
for example, we have good reason to suspect that the relationship between Monday (t)
and Friday (t-1) differs from that of contiguous business days, due to the different
amount of information coming to the market over the weekend.

In our sample of 632 observations, fewer than eight holidays occur on a Wednesday;
when they did, the observation for the following Thursday was used. Working (1960) and

Meese and Rogoff (1983a) argue that point sample data are more desirable than weekly
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averages, since if the true model follows a random walk on a day to day basis then the
series of weekly averages exhibits positive serial correlation. Following standard
convention, all exchange rates except the pound are measured in units of local currency
per dollar.

All of the analysis presented below 1; based on the log spot rate, in order to
conform with the literature and avoid some technical problems. The log specification
avoids prediction problems arising from Jensen's inequality {(Meese and Rogoff, 1983a)
and (1 - L)lnSt has the convenient interpretation of approximate perceantage change-9

The data were not seasonally adjusted, due to the spurious serial correlation
which filters such as X-1l1 can introduce. (See Grether and Nerlove (1970), Cleveland
and Tiao (1976) and Nerlove, Grether and Carvalho (1979).) Instead, we chose to use
time and frequency domain approaches to investigate the presence of seasonality and
model it if found to occur; this is in the spirit of the new "model-based" approach to
seasonal adjustment as surveyed in Bell and Hilmer (1984). Of course, temporal
arbitrage makes pronounced seagsonality unlikely in exchange rates, and the data show no

evidence of 1t.
3.4) Model Formulation

Plotas of the log exchange rates are given in Figures 3.3 through 3.9. The
appreciation of the dollar which began in 1980 is evident in each of the exchange rates
studied. Depreclation of the currency is indicated by an exchange rate increase,
except for the BP, for which the opposite is true. Similarly, the beginnings of the
recent decline in the dollar are evident in thg'last few observations of each series.
The pre~1980 period, on the other hand, is characterized by less coherence in the

exchange rate fluctuations, with the SF, YEN, BP and DM appreciating versus the dollar,

Jensen's inequality ensures that E ( é-) # E%§7 » where S is the exchange rate
measured in units of foreign currency per unit of local currency. Thus, for

example, while the DM/$ rate is the reciprocal of the $/DM rate, their expected
values are not reciprocals.
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while the FF, LIR and CD either held steady or depreciated.

A visual inspection indicates nonstationarity in each of the series, although its
form may not be the same for each series. For example, the DM, YEN, SF and BP display
no apparent trend; instead, they appear to be homogeneous nonstationary processes,
meaning that they are stationary and invertible after suitable differencing. The CD,
FF, and LIR, on the other hand, have a prolonged history of depreciation versus the
dollar, so that a "trend plus irregular" model might be more reasonable, where the
irregular component could be either stationary or integrated. Thus, because
homogeneous nonstationarity of order one implies that the local behavior of the series
is invariant up to level, while homogeneous nonstationarity of order two implies
invariance up to level and slope,10 the graphs indicate that a first difference 1is
almost certainly required to achieve stationarity, and that a second difference may be
required as well. Differencing must be undertaken with caution, however, because if
the true model is trend plus a stationary disturbance, then differencing will remove
the trend but introduce a unit root into the moving-average component of the stationary
disturbance. Trended and integrated series also have very different properties in
terms of prediction, as we show below.

The sample autocorrelation functions are calculated for each series up to lag 40
and clearly indicate homogeneous nonstationarity, as evidenced by the fact that all are

positive, fail to damp, and have very smooth, persistent movements. 11

Even the YEN,
whose autocorrelation function declines the most quickly, has a sample autocorrelation
of .848 at lag 20. The first twelve sample autocorrelations of each series are given
in Table 3.1.

The sample partial autocorrelation functions are also calculated for each of the
seven exchange rates, and the results are qualitatively the same for each series: each
has a very large and highly significant value (extremely close to one) at lag 1, while

the values at all other lags are insignificantly different from zero. Specifically,

the lag 1 sample partial autocorrelations for the CD, FF, DM, LIR, YEN, SF, BP are,

10

11 See Box and Jenkins (1976).

This is conforms to the results of Wichern (1973) and Granger and Newbold (1977).
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respectively, .99, 1,00, 1.00, 1.00, 1.00, 1.00 and .99. It is clear that the distinct
cutoff in the sample partial autocorrelation functions after lag 1, the smooth and
slowly declining behavior of the sample autocorrelatioan functions, and fhe values of
the highly significant first sample partial autocorrelation strpngly suggest first
order homogeneous nonstationarity in general, and the random walk in particular, for
each series. The first twelve sample partial autocorrelations are givean in Table 3.2.

Estimation of the spectral density functions confirmed these results; each was
absolutely dominated by a single large low frequency peak, sharply concentrated at the
origin.l2

To summarize, then, we have argued that each series is highly nonstationary and
presented'some preliminary evidence indicative of random walk, or at least homogeneous,
behavior. As pointed out earlier, however, we must be wary of uncritical

differencing. Four candidate models are therefore considered:

Ml) 1InS is stationary about a nonzero mean:
(L) (1aS, —up) = 0,(L) ¢,

where all roots of ¢1, and el are outside the unit circle.

M2) 1nS 1s integrated of order one about a nonzero mean:
(1 - L) a,(L) (InS_ = up) = 0,(L) ey,

where all roots of 02 and 92 are outside the unit circle.

M3) 1nS has stationary deviations from linear trend:
0. (L) (IS, - 82 - 63 €) = a,(L) €
3 t 0 1 3 3’

where all roots of ¢3 and 93 are outside the unit circle.

M4) 1InS is integrated about a linear trend:

12 The weights were 1/25 ... 7/25 ... 1/25.



about trend.

Thus, while overdifferencing leads to noninvertibility, the parameters of the
gseries may still be estimated in a consistent and unblased fashion. Inappropriate
trend removal, on the other hand, leads to incorrect forecasts aad predictioa intervals
at all forecastiang horizons. Thus, the reason why in the tests below the null, as
opposed to the alternative; is that of a unit root is because of the relative
importance of errors of differencing versus errors of not differencing. As Dickey,
Bell and Miller (1986) note:

“Failure to include a differencing operator when it is needed results in bounded
forecast intervals that must eventually be too narrow, giving unreasonable confideance
in the forecasts, especially the long term forecasts. This can be especially true if a
polynomial trend plus stationary error model is used when differencing is needed.”

In order to investigate the possibility of unit roots im the autoregressive lag-
operator polynomials of our exchange rate series, while nevertheless allowing for treand
or-nonzero mean under the alternative, a number of formal unit root tests are
performed. 1In the appendix to this chapter we give a detailed descrlptibn of all
testing procedures.

Solo's (1984) test 18 a Lagrange multiplier (LM) test for unit roots in general
AR&A models; since it is an LM test, it requires estimates only under the null of a
unit root. We therefore begin by differemcing the series and formulating appropriate
models. Use of optimal model specification procedures, such as the Schwarz (1978)
information criterion, as well as the usual diagnostics such as the sample
autocorrelation fumction, reveal no evidence of a moving average component in any of

the seven (1 - L)lnSt series, however.!3 The simpler Dickey-Fuller test for unit roots

13 The Schwarz information criterion (SIC) is a simple modification of the Akaike
(1974) information criterion. Hannan (1981) has shown that it is a consistent
identification procedure, in the sense that in large samples it identifies the correct
model with probability ome. This highly desirable property, which does not hold for the
AIC, makes the SIC a powerful model specification tool. The SIC is given by:

Vs

1nT
SIC = 1n GHL + T

and the model which minimizes SIC is selected.

( +q)
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statistic has been tabulated by Dickey (1976) using Monte—Carlo methods and is reported
in Fuller (1976) as rt . (It does not have the t-distribution.)
The reader may easily verify that in the simpler case in which only a nonzero mean

ts allowed under the alternative, we have:

P
= [ ] - +
AlnS_ =~ K{ + 8] 1nS__, +JEZBJ (I“Sc—j+1 1“St-j) e,
where
P
K! =u (1 +% o)
1 j=1 ]

. ,"l/l -
and the other parameters are as defined above. The asymptotic distribution of the

studentized statistic of ei differs from that of T and, following Dickey, we denote

it by ;u . Again, the percentiles are given in Fuller's book.

The results of the ;u and ;r tests are given in Tables 3.3 and 3.4,
respectively. While it is desirable to allow for trend under the alternative (;r) R
1f, in fact, no trend is present then ;u will be a more powerful test; for this
reason, the results of both tests are reported. The basic message is quite clear:
each series contalas a unit root, regardless of the possible presence of treud.la Some
evidence of such trend is displayed by the CD, FF, and LIR. 1In addition, the small

magnitude and general statistical insignificance of the 8, , j =2, ..., p, indicate

3
very little serial correlation in any of the first—differenced series.

The Dickey-Fuller tests may be interpreted in several ways: First, they wmay be
viewed as tests of a unit root(s) in the autoregressive representations of the seven
exchange rates. Because we choose a cutoff lag of seven (Iincluding the unit root), the
test is strictly valid only if the true processes followed by the exchange rates are
AR(p), p < 7. Of course, if the underlying models are full ARMA processes, then the
fitting of a finite AR representation can only be viewed as an approximation. Said and
Dickey (1985) show, however, that even if the underlying process is a full ARMA, the AR
approximation is a good one. The only-issue is the appropriate degree of the AR

1/3

approximation (p); they show that one should make p = op(N_ ), so that the value p =7

14 This is consistent with the results of Meese and Singleton (1982).
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used here is more than adequate for N = 632.

Further tests reject conclusively the null of an additional unit root in any of
the seven series. (See Tables 3.5 and 3.6.) Thus, regardless of the possible presence
of linear trend, each series is appropriately made stationary by taking a first
difference. To guard against deviations from nominal test size due to the pretest
implications of the sequential testing procedure, a formal joint test of the null
hypothesis of two unit roots is also performed.

The model (with trend allowed under the alternative) becomes:

AlnS +P;2 § AzlnS t+e .
t- t-

L5 i t

lnSt = BO 4'81 t +'82 1nS + 8

t-1 3

The null of two unit roots is given by:

(Bgs B4 8,5 830 = (0, 0, 1, 1)
and the null distribution of the "F" test of this hypothesis has been tabulated by
Hasza and Fuller (1979). (It does not have the F—distribution.) The results are given
in Table 3.4, in the column labled "F." As expected, we reject the null for each rate,
further confirming the result of one, but not twe, unit roots in each series.

To summarize the results thus far, then, a wide range of diagnostic tools in both
the time and frequency domains indicates that all of the log exchange rates have
"integrated" time-series representations. Specifically, each rate has one unit root in
its autoregressive lag operator polynomial. A first difference, then, is sufficient to
render each series stationary.

Finally, for later reference it should be pointed out that Pantula (1985) shows
that the asymptotic distribution of the Dickey-Fuller statistics is invariant to condi-
tional heteroskedasticity of the autoregressive type. This is important, in the sense
that while our unit root tests are tests for a special type of serial correlation, they
are robust to autoregressive conditional heteroskedasticity. This is not true of
standard tests for stationary serial correlation such as the Durbin-Watson test.

The differenced series appear in Figures 3.10 - 3.16. A visual inspection of

these AlnS series reveals no evidence of serlal correlation, although there does seem
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to be persistence in the conditional variances, as we discuss in detail below. The
sample autocorrelations are calculated for each AlnS series up to lag 40, and in each
case they strongly indicate white noise. The first twelve sample autocorrelations for
each series are given in Table 3.7, along with their asymptotic standard errors
(Bartlett, 19&6).15 For each series, all sample autocorrelations are very small, and
almost all are within the Bartlett two standard error bands. The sample partial
autocorrelation functions and sample inverse autocorrelation functions similarly
indicate white noise. 1In addition, since the Bartlett "tests" are at the (approximate)
5X level, we would expect roughly 5% of the sample autocorrelations to appear
significant, purely on the basis of type I errors. The actual percentage in Table 4 is
7%, which is in close agreement.

The Ljung-Box (LB) statistics, which are reported in Table 8 for lags of 6, 12,
and 18, also generally indicate the absence of serial correlation, although the results
are not so conclusive. Note that since no parameters have been estimated, no degrees
of freedom are lost. Thus, for example, the LB statistic at lag 18 has a null
distribution of xfs. With few exceptions, for all series.at all lags, the null of
white noise cannot be rejected at the 1lX¥ level. At other levels the results are mixed,
vi;h some series, such as the S5F, not enabling rejection at any reasonable level, and
others enabling rejection. It must be remembered that due to the large sample size, it
becomes very easy to reject, so that it is crucial to examine the magnitude and
importance of any deviations from white noise in addition to their statistical
significance. (This 18 ifn fact the reason for presenting the saumple autocorrelations
in Table 3.7). Indeed, from a decision—theoretic viewpoint, we should use stringent
significance levels when working in large samples, in order to achieve very small
probabilities of both type I and type II errors, rather than arbitrarily fixiang P(type
1) at, say, 5%, and letting P(type II) + O. In fact, 1if conditional
heteroskedasticity is present, we would expect to see large values of serial

correlation test statistics, even if the series displays no serial correlation, as

15 While Bartlett's standard errors depeud upon normality, leptokurtic deviations frou

normality such as exist in the foreign exchange markets will simply make the tests
more conservative.
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shown in chapter 2. This view is supported by the Domowitz-Hakkio (1983)
heteroskedasticity-robust LM test values shown in Table 3.9.

Spectral analyses also indicate that the first difference of each AlnS series is
close to white noise; the estimated spectral density functions display no noticeable
power concentrations in any particular frequency bands.l6 In addition, Fisher's (1929)
kappa, reported in Table 3.8, does not enable rejection of the the null at any

17

reasonable level. Fisher's kappa is the ratio of the maximum to the average

periodogram ordinate:

SumP
M-1

where MaxP is the maximum periodogram ordinate and SumP is the sum of the M - 1

FK = MaxP / (

)

periodogram ordinates. Under the null hypothesis of independent normally distributed
observatiouns,

-1 -1 -1
P(M FK > g) = -1y M a-i™,

£
3=1 3

where k is the largest integer less than g-l. Tables are given in Fuller (1976), inter

There i8 no indication of seasonality in any of the first differenced series,
whether analyzed in the frequency or time domain. In fact, taking a seasonal
difference to produce the series (1 - L){(1 - LSZ)InSt introduces {spurious) seasonality
in all cases. The sample autocorrelation functions of (1 - L)(1 - L52)1nst, for all
exchange rates, display sharp and significant spikes at lag 52, whereas the earlier
first differenced series did not.

Finally, in order to access the distributional properties of the
41nS series, a wide range of descriptive statistics is also reported in Table 3.8,
including mean, variance, standard deviation, coefficient of variation, skewness,

kurtosis, Kolmogorov's D statistic for the null hypothesis of normality, the Kiefer—

16 A simple triangular lag window was used, with weights 1/25, 2/25, ..., 7/25, 6/25,

esey 1/25.
The only exception is the CD, for which we do reject at the 2Z level. In light of

our time domain results, this is quite anomolous, and we ascribe it to a type I
error.

17
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Salmon (1983) Lagrange multiplier normality test, and a wide range of order

statistics. As expected, we cannot reject the null of a zero mean, except for those
series which appear to contain a linear trend in nondifferenced form (CD, FF, LIR). It
is important to note also that in each case the hypothesis of normality is rejected,
whether an interquartile range test, Kolmogorov's D, or the Kiefer-Salmon test is

used. Evidence on the nature of deviations from normality may be gleaned from the
sample skewness and kurtosis measures. While skewness of each series is always very
close to zero, the kurtosis (shifted so that zero kurtosis corresponds to normality) {is
very large, ranging from 1.23 for the ™ to 8.09 for the LIR. Normal probability plots
were also generated for each series and further confirmed this finding. In addition,

the Kiefer-Salmon Lagrange multiplier statistic:

N ~ 5 N . 2
K3-——(u3-3ul) +—(u4—6u2+3)
6 24
= KS, +Ks,

2
distributed as X4 under the null of normality, may be decomposed into two
asymptotically independent xi variates, the first being an IM test for normal skewness

and the second, an LM test for normal kurtosis. The sample moments uy which enter

P

the KS statistic must be calculated from residuals standardized by o, , the maximum
likelihood estimate of the innovation variance. The test statistics reported in Table
3.8 show the clear nonnormality of each series, most of which is due to

leptokurtosis. ¥For a fairly large fraction of the series we also reject the null of
zero skewness, but as shown above the skewness is in fact negligibly small, the
statistical rejection being due to large sample size.

In Table 3.10 the same test statistics are presented for the residuals from a
third-order autoregression including a constant term. The results are similar, except
that, as expected, the LB statistics fail to reject the aull of uncorrelated dis-
turbances for each series. We conclude that, while "A1nS s close to white noise for

each series, any slight serial correlation present is well captured by an AR(3) model.
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In conclusion, we have shown that a wide variety of techniques leads to the same
result: the evolution of the conditional mean of the stochastic structures of the seven

exchange rates studied are such that AlnS is close (in the class of linear time series

wodels) to & randon valke We now proceed to {nvestigate further the properties of

these "random walks."
3.5) Empirical Results

The results of the LM test (TR2 version) for ARCH in the AlnS series (both raw
variables and AR(3) residuals) are given in Table 3.11; the existence of a strong ARCH
effect in all series, with the possible exception of the FF, is clear. (The nulls of
no first, secoand, third, fourth, and eighth order ARCH are rejected at the 1Z level for
each series except the FF.) Unfortunately, these tests are of little use in specifying
the appropriate order of the ARCH processes, since they test the joint null
that Gy = ... = “p = 0 . Thus, while they almost always reject, that does not mean
that all the ui's are necessarily nonzero. Likelihood ratio tests, on the other hand,
enable us to test subset restrictions such as, for example, GB - “9 = alO = 0 in an
ARCH(10) model. For this reason, high order (ARCH(12)) models are estimated by maximum
likelihood for each series, and likelihood-ratio tests are then used to test a wide
range of exclusion restrictions. The ARCH(12) results for the seven currencies are
given in Table 3.12. The Davidon-Fletcher—Powell algorithm is used to maximize the
likelihoods; square roots, rather than the levels, of all ARCH parameters are estimated
in order to ensure that oy > 0 and a; ? 0, for all 1 = 1, ..., p. By the invariance
property of the maximum likelihood estimator, the squared values of these estimates are

the MLE's of the parameter levels.

The log likelihood was stated earlier as:

T T si
1nL{B, a; AlnS, X) = const ~ £ lnac -1/2 7 -
t=1 t=1 o,

}O

This is of course conditional on {AlnSt, Xt t = —ptl

since, for example,




52

2 .
af - oy + o g + ...t a €l-p

ted éf‘che exact likelihood function would require knowledge of the uncondi-

1" density function of the ARCH process, a closed—form expression for which is not

tavailable. (See Pantula (1985).) However, the particular initial conditions used will

" be asymptotically inconsequential. We therefore follow standard practice and coundition
on the first p observations. The point log likelihoods are therefore summed from t =
ptl to T.

Table 3.12 shows the estimated square root parameter values (with their associated
t-statistics), iterations to comvergence, log likelihoods, the su;s of the ag and the
unconditional variances, ag /(1 —iglgi) « A wide range of ARCH (p*): p* < 12, subset
models 1s estimated, and likelihood—-ratio tests are performed to test the exclusion re-
strictions. All currencies have significant ARCH effects at lag 10 or higher, and, iun
fact, the CD, IM, and BP have significant twelfth order ARCH Effects. Although we can
not reject the null of ajp T a4y < 0 for the FF, LIR, and YEN, and we can not reject
the null of ayp = 0 for the SF, the twelfth order specification is retained in order to
maintain conformity among the models since the large number of degrees of freedoam

. enables us to maintain the twelfth order model at little cost. Similarly, an intercept
term to pick up trend and three lags of AlnS to pick up any serial correlatiom present
in any of the series are included. Although our earlier results show little, if any,
serial correlation, it is important that it be modeled, if presemnt, in order to avoid
confusion with ARCH effects. Again, there is little cost in terms of lost degrees of

freedom. Thus, the models which were estimated are all third order AR representations

(with allowance for a nonzero mean) with twelfth-~order ARCH disturbances:

- p3L3) (AlnSt - w) =g,

2
~ N (0.at)
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As expected, the intercept and AR parameters are often insignificant and always
very small, while many of the ARCH parameters are highly significant and of substantial
magnitude. The intercept term is insignificant for all exchange rates; the CD, FF and
LIR, which had significant means according to the t-tests presented in Table 3, now do
not. This difference is due to the fact that we have now modeled the conditional
heteroskedasticity, as well as the slight serial correlation, that appears in each of
those series. All but one of the twenty-one autoregressive lag coefficients for the
seven currencles are positive, all are very small, and most are insignificant, as
expected. The currencies with significant autoregressive terms are the CD, LIR and
YEN, each of which has two significant lags.

All of the /ao coefficients are highly significant for each series, and they are
substantially smaller then the sample standard deviations shown in Table 4, or the
standard errors of the innovations from classical AR(3) models. This 1s because the
lagged squared innovations make a large contribution to the conditional variance, as
indicated by the large number of significant
/ai coefficients, and the resulting ARCH effects also boost the unconditional variance.

Convergence is obtained for each exchange rate in no more than thirty iterations,
where the initial conditions for maximum likelihood iteration are given by the least
squares estimates. Furthermore, the log likelihood was noticeably single-peaked,
leading to the same parameter estimates regardlegs of initial conditions. It 1is of
interest to note the substantial number of significant ARCH coefficlents for the FF
(and their sum of .7), in spite of the fact that the earlier LM test indicated little
ARCH. Also, the LIR ARCH parameters sum to 1.258, indicating nonexistence of

unconditional second momem:.18

Engle (1982b) and Engle, Lilien, -and Robins (1987) argue on a priori grounds that
the ays i =1, ..., p should be monotonically decreasing. This follows from the basic

intuition of the ARCH model, which is that high volatility “today" tends to be followed

18 It should be noted that most of the implied unconditional moments are somewhat

larger than their counterparts from Table 3. This may be due to the overpara
meterized nature of the models, which can only increase the implied unconditional
variance, since all ARCH parameters are constrained to be positive.
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" and vice versa. In this spirit, it is unreasonable

by similar volatility “tomorrow,
to let a squared innovation from the distant past have a greater effect on current
conditional variance than a squared innovation from the recent past. This intuition
may be enforced by restricting the L i = l...p to be monotonically decreasing. Both

“Fisher lags™ (linearly declining weights) and geometric lags are explored. Note that

both of these are two parameter models, as follows:

Linear
2 2 2 2
s = - +...+
Utlet—l‘ , et-p @9 +0 (p et—l+ (p 1) €2 Et—p]
Geometric
2 2 p.2
aese - + ses +
Gt] € Et—p %9 eet_1+ 8 Et—p

The estimates of the linearly constrained ARCH models are given in Table 3.13.
Use of the maximized log likelihoods of the linearly constrained and unconstrained
models to construct formal likelihood-ratio tests statistics (distributed xil under the
null that the linearly restricted model holds) shows that the data generally do not
strongly reject the restriction. This stands in marked contrast to the geometrically
constrained model, which is decisively rejected for all exchange rates. The geometric
weights simply decrease too quickly, while the linear weights allow a slower decline.
Ingpection of Table 8 reveals that the estimates and significance of
s Pys Poy and P, are little changed, and, as before, the estimates of /uo are highly
significant. In addition, all /0 estimates are highly significant and range from .08
to .12. Furthermore, for each exchange rate, the sum of the implied lag weights, given
by 78 8 , 1s slightly smaller than the corresponding figure for the unconstrained
model, leading to a smaller unconditional innovation variance. This occurs because the
linearly decreasing lag weights remove the influence of occasional large

unconstrained a, estimates at high lags.
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The estimated conditional variances are easily obtained. We begin with the

estimated disturbances:

- ~

e, = AlnS

jt Jt—con-1 - plj AlnS

AlnS AlnS

1,t-1" P2y 1,6-2 T P37 -3

j = CD, FF, DM, LIR, YEN,SF, BP.

The estimated conditional variance is then given by:

12
-2 - R ~z
a = + I a € .
jt 03 s=1 i} J,t-

§ = CD, FF, DM, LIR, YEN,SF, BP.

The time series of estimated conditional variances from the constrained ARCH(12)
model are graphed below in Figures 3.17 - 3.23.

While there are substantial "own country" effects in the movements of the
conditional variance of each rate, similarities in the qualitative conditional variance
movements are apparent. There {8 a tendency toward high conditional variance in the
very early part of the float, due largely to the uncertainty created by the 70X
increase in the posted price of Arabian crude oil of October 16, 1973, and the
additional 100X increase of December 24. As we progress to the middle of the 1970's we
see generally smaller conditional variances as the gloomy economic news translated into
relatively smooth dollar depreciation, culminating in the historic lows achieved
against the DM, YEN and other major currencies on December 29, 1977. The year 1978,
particularly the latter part, brings a return of higher volatility, as large
intervention efforts by the Federal Reserve and the Treasury begin to turn the dollar
around. The further OPEC three-stage 14.5XZ crude oil price boost increases economic
uncertainty, and the year ends with widespread ression forcasts in spite of a still
(relatively) vigorous economy. Another period of very high conditional variances
arises in mid-1981, as interest rates in the 20X range bring the dollar to new highs
against the major European currencies. The CD also reaches a post-1931 low on July 31,

closing at 80.9 U.S. cents. As inflation subsides, so too does exchange rate
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volatility, but it does begin to grow again toward the end of the sample.

The ARCH-based prediction intervals clearly capture and exploit these movements in
conditional variance. As an example, the Al“SDM gseries is plotted in figure 3.24%,
along with its ARCH-based 2;t and its classical 2; l-step ahead prediction
intervals. The classical 2; bands are basically time—invariant and horizontal at
+ 3%Z. Some high-frequency movement in the classical bands occurs, of course, due to
the slight serial correlation which produces slightly changing l-step ahead point
forecasts. Movements in the ARCH-based prediction intervals are more systematic, being

much tighter in tranquil times and wider in more volatile periods.

3.6) Conclusions

We show that the percentage changes of nominal dollar spot exchange rates under
the recent floating rate regime have approximate random—walk conditional mean behavior
but contain substantial nonlinearities which manifest themselves in the form of ARCH
effects in the conditional variance. This leads to economically and statistically
meaningful measures of exchange rate volatility, explains the leptokurtosis which has
previously been found in the distribution of exchange rate changes, and enables the

construction of superior predictioan intervals.
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CD

.99
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-.02
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1.00
.99
<99
.98
.97
.97
.96
.96
.95
.94
.94
.94

FF

1.00
.04
-.08
.00
-.02
-.03
.04
.01
-.03
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<99
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.98
.97
.97
.96
<95
.95
.94
.93
<92
<92

.99

-.03
-.10
-.02
-.03
-.05
.06

-.00
-.06
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Table 3.1
Weekly Nominal Dollar Spot Rates
Sample Autocorrelations For 1nS

LIR

.99
.99
.98
.98
.97
.97
.96
.96
.95
.95
.94
.93

Table 3.2
Weekly Nominal Dollar Spot Rates
Sample Partial Autocorrelations For 1aS

LIR

<99
.01
-.05
.03
-.02
-.03
.00
-.03
-.02

YEN

.99
.99
.98
.97
.97
.96
.95
<94
.93
.93
.92
.91

.99
-.08
-.10
~.06
-.03
.00
.02
=.00
.03

SF

1.00
.99
.98
.98
.97
.97
»96
»95
.95
<94
<93
.92

BP

.99

.98
.98
.97
.96
.96
.95
<94
.93
.92
.92

BP

.99
.05
-.02
.00
-.06
-.06
.01
~.02
-.06




AlnS const
cb  .00047
(1.40)
FF . 00001
(.00)
DM .0286
(.94)
LIR .00095
(.10)
YEN .03504
(1.60)
SF 00427
(1.60)
BP  .00034
(.19)

Test For Unit Root in 1nS, Nonzero Mean Allowed Under the Alternative

1nS(=1)
-, 00008
(=.04)%

.00061
(«30)%*

-.00312
(-.89)

.00011
(.08)*

~.00637
(-1.61)

-.00589
(~1.79)

-.00191
(=.71)

Table 3.3

.Weekly Nominal Dollar Spot Rates

A1nS(~1) AlnS(-2) A1nS(-3)
.11020 .07363 ~.93947
(2.73)%%%  (1,82)* (=-.34)

. 04886 . 10077 05169
(1.22) (2,52)%%% (1.28)*
.07045 .06419 .03954
(1.77)* (1.60)* (.98)
.01961 .07926 .09217
(.49) (1.97)** (2.25)*%
. 06043 . 10695 .05718
(1.50) (2.66) %% (1.41)
.05805 .02279 04091
(1.45) (.56) (1.00)
.03027 02500 04710
(. 74) (.61) (1.16)

AlnS(=4)
-.08294
(-2.05)#*

.00120
(.03)

.01077
(.27)

.01109
(.27)

.05221
(1.28)

04124
(1.01)

. 10210
(2.52)%nn

* Significant at the 10X level
** Significant at the 5% level
**%* Significant at the 2X level

A1nS(=5)
-, 00044
(=.01)

-.073743
(-1.84)*

-.00179
(-.04)

-.07886
(-1.93)»

-.00315
(-.08)

.02275
(.56)

-.00627
(-.15)

41n8(-6)
~. 03537
(-.88)

-.06666
(-1.67)*

-.07191
(-1.81)*

-.02507 A
(- 61)

-.02854
(-.70)

-.02140
(=.53)

-.05500
(~1.33)



AlnS

ch

FF

LIR

YEN

SF

BP

Const

-.00075
(~1.37)

+00485
(1.08)

.00225
(+73)

.04200
(1.52)

04974
(1.85)*

.00215
(.59)

. 00404
(1.11)

t 1InS(-1)
. 00001 ~-.02084
(2.84)*%% (~2,74)
.00001 -.00383
(1.71)* (~1.16)
.00000 ~-.00399
(1.39) (-1.12)
.00001 -.00648
(1.58) (~1.47)
~., 00000 ~.00885
(=.95) (-1.86)
.00000 -.00458
(.86) (~1.26)
~.00001 -.00522
(-1.17) (-1.33)

TABLE 3.4

Weekly Nominal Dollar Spot Rates
Test For Unit Root im luS, Trend Allowed Under the Alternative

AlnS(~1) AlnS(-=2) AlnS(-3)
.11783 ,08271 ~-. 00459
(2,93)%%%x (2,05)**% (-,11)
.04921 .10116 .05292
(1.23)  (2.53)**%  (1,32)
.06911 ,06280 .03898
(1.73)% (1.56) (.97)
.02216 ,08162 09472
(.55) (2.03)%* (2.32)%*
.06129 ,10792 .05832
(1.52) (2,68)*%* (1.44)

. 05642 .02065 .03899
(1.40) (.51) (.96)
.03156 .02635 .04873
(.77) (.65) (1.20)

AlnS(~4) AlnS(~5)
-.07391  .00822
(~1.83)*% (.20)
.00274  -.07274
(.07) (-1.81)*
.00972 -,00383
(.24) (-.10)
.01442 -.07538
(.35) (-1.84)*
.05379 -,00111
(1.32) (-.03)
.03881 .01988
(.95) (.48)
.10393  -,00441

(2.56)%** (~-,11)

* gignificant at 10% level
** gignificant at 5% level

*%% gignificant at 2% level

AlnS(-6)

~.02566
(-.64)

-.06526
(=1.64)*

-,07355
(~1.85)%

-.02162
(-.53)

-.02641
(-.65)

-,02416
(-.59)

-.05311
(-1.28)

F

31,40%%%

30,90%*x

28.34%%%

26,71 %%k

22, 84%%%

24, 49 %%

23.70%#%%

69




Azlns

cb

FF

LIR

YEN

SF

BP

AlnS(-1)
-.9567)
(=10, 18) %%

-.88617
(=9.61)%%x

-.85727
(~9.18)%%x

-.69468
(=7.91)%%n

- 77272
(~B.74) k%

-. 85506
(=8.97)%%%

-, 78678
(=8,28) kkn

8%108¢-2)
.07267
(. 84)

-.05256
(=.62)

-.07012
(-.81)

-.26714
(=3.25)%%*

-.16876
(=2.03)%*

~-.08768
(=.98)

-.17572
(=1.96)x

22148 (-3)

+15302
(1.94)%

.05338
(+68)

.00016
(.00)

-.16358
(=2.15)**

-.06393
(-.82)

. =.06225

(=~.174)

-. 14812
(-1.76)*

Table 3.5
Weekly Nominal Dollar Spot Rates
Test Por Unit root im AlnS

42108¢-3) A%1nS(-4)

+ 14020
(1.98) %% .

.11287
(1.57)

04216
(.57

~. 06268
(~.88)

-.00975
(=.13)

~-,02072
(=-.27)

-.11010
(-1.40)

.06178
(.98)

.12016
(1.85)%

.05316
(.81)

+ 05401
(-.84)

.03%17
(.60)

.02083
(.31)

~.00969
(-.14)

* Significant ant the 10X level
** significant at the 5% level
*x% Significant at the 2X level

421n8(-5)
,07139
(1.33)

L04211
(.75)

04725
(.85)

-, 13957
(=2.52)wnx

.03204
(.58)

.04295
(.76)

~. 01411
(~.24)

82108(=6)
.04929
(1.22)

-.00583
(~.14)

-. 03847
(-.94)

09

-.15352
(=3.79)%xn

~. 00059
(-.01)

01654
(«40)

~.07008
(-1.69)*



A21nS c
CD  .00049%
(2.28)**
FF  .00106
(1.92)*
DM .00021
(.38)
LIR .00156
(2.98)*&*
YEN =-.00013
(-,25)
SF -.00034
(=.53)
BP -.00081
(~1.47)

41nS(-1)
-1.00360
(10, 46)%%%

-.92034
(—9.82) %%

-.85890
(—9.18)%*%

-.78415
(~8.50)%%x

-.77329
(=8.74) kA%

-.85773
(-8.98) wax

-.81026
(-8.41)%xx

4%1n8¢-1)
L1176
(1.27)

-.02409
(-.28)

-.06870
(-.79)

-.19316
(~2.27) %%

-.16831
(=2.02)*%

-.08558
(-.95)

-.15550
(-1.72)%

Table 3.6
Weekly Nominal Dollar Spot Rates

Test For Unit Root in AlnS,

Nonzero Mean Allowed Under the Altermative

22108 (-2)
.18546
(2.32) %%

.07663
(.97)

.00137
(.02)

-.10441
(-1.34)

-.06358
(-.81)

-.06056
{=.72)

-.13084
(~1.54)

42108(-3)
.16668
(2.34) W

.13233
(1.82)*

.04322
(.59)

-.01465
(-.20)

-.00950
(-.13)

-.01949
(-.25)

-.09561
(1.21)

821n8(-4)

.08275
(1.31)

.13579
(2.07)%*

.05402
(.82)

-.01583
(-.24)

.03935
(.60)

.02171
(.32)

.00155
(.02)

* Significant at the 10% level
** Significant at the 5% level

*4% Significant at the 2% level

4%1nS(~5)

.08621
(1.60)

.05331
(.95)

04783
(.86)

-.11245
(-2.02)**

.03218
(.58)

. 04356
.77)

-.00642
(=.11)

4%1ns(-6)

.05727
(1.42)%*

-.00001
(-.00012)

-,03817
(~.93)

19

-.13979
(~3.45)%#w

-.00052
(-.01)

.01687
(.41)

-.06613
(~1.59)*
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TABLE 3.7
Weekly Mominal Dollar Spot Rates
Sample Autocorrelations And Bartlett's Standard Errors, AlnS

LAG co FF M LIR YEN SF BP
1 L119% .048 .068  .019 075 .054 .035
(-040) (.040) (.040) (.040) (.040) (.040) (.040)
2 .081% .108* .065  .079 L116% .033 .022
(.040) (.040)  (.040) (.040) (.040) (.040) (.040)
3 -.006 .067 .047 .087% .070 .049 .049
(.041) (.040) (.040) (.040) (.040) (.040) (-040)
4  -.082 -.005 .003 012 .064 .034 .101
(.041) (.041) (.041) (.041) (.041) (.041)  (.041)
5 -.025 -.044 .010 -.058 .012 .040 .001
(.041) (.041) (.041) (.041) (.041) (.041) (.041)
6  -.050 -.066 -.069 -.018 -.016 -.016 -.046
(.041) (.041)  (.041) (.041) (.041) (.041)  (.041)
7 -.065 -.019 .018 117+ .005 -.014 .069
(.041) (.041) (.041) (.041) (.041) (.041) (-041)
8 .002 .021 021 -.034 .032 .029 .077
(.041) (.041) (.041) (.041) (.041) (.041) (.041)
9 -.045 .012 .029 -.020 -.005 .030 -.053
(.041) T (.041) (.041) (.041) (.041) (.041) (.041)
10 -.008 .076 .037 .054 -.071 .053 .005
(-041) (.041) (.041) (.041) (.041) (.041) (-041)
11 .023 .028 .024  .035 -.026 -.009 .006
(.041) (.041) (.041) (.041) (.041) (.041) (.041)
12 .019 .050 .051 .002 .016 .042 . .067
(.041) (.041) (.041) (.041) (.041) (.041) (.041)

*
Exceeds two standard errors.




TABLE 3.8

Weekly Nominsl Dollar Spot Rates

Test Stastistics, AlnS

STATISTIC [4Y FF DM LIR YEN SF BP

LB(6) 19, 47hun 15.80%% 10.11 11.52% 18.000#» 5.99 10. 52
LB(12) 24, 130 22.28%% 13.86 23,98%% 22, 534n 10.23 22.08%+
LB(18) 26. h4w 24.83 21,20 34, 30%%% 35,1302 15.95 31, 10%»
H-l 315 315 315 315 315 315 315
MaxP .001 «002 . 002 .002 .002 .002 . 002
SumP .017 . 122 <120 . 100 .103 -169 - 117

FK 12.175%%% 4,888 5.172 4.797 6.589 4.358 5,643
Mean . 00049 .00126 . 00034 .00189 ~.00017 -.00024 ~-.00104
t ((u=0) 2, 35%% 2. 28%% . 61 3. TT%n% -.33 -.37 -1.92%
Variance .00003 +00019 .00019 . 00016 .00016 . 00027 00018
Std. Dev. .00526 .01390 .01381 .01260 .01276 .01640 .01360
cv 1068. 27 1100. 66 4078.43 666.63 =7532.13 -6848.97 -1310.93
Skewness + 36098 . 26069 -.08594 . 44196 -.21592 -.1072 + 34407
Kurtosis 4.70565 2.53659 1.23452 8.08811 3.26364 1.495 3.2979

0 «0700Ra C0712188% «056M4% 20930 . 10769%%* < 055404+ 072%%%
kS 633.61%4% 178,994 %4 38.97hax 1667, 124%% 280, 55% %% 58, 74%%% 268, 34%n*
ksl 31.908%n 6. 86%k% 77 18, 54%%% 4,88%% 1.20 12, 24400
Ks2 60].71%%% 172, 13#%% 38.20%%% 1648, 58%#%% 275.670*% 57.54% k% 256, 1xan
Maximum .03754 07478 «05776 .09679 . 06980 .06616 . 07246
Q3 .00309 .00788 . 00826 .00725 . 00641 «00892 .00543
Median - 00067 . 00070 «00050 .00061 . 00030 . 00039 -. 00058
Ql -.00240 -. 00545 -.00732 -.00373 -, 00520 -.00872 ~. 00839
Minisum -.01762 -.04583 -, 04839 ~-.07490 -. 05671 ~.05421 -.05322
Mode 0 0 0 0 0 0 0

SR 10, 49%#% 8. 688%% 7.69%%n 13,63%%% 9. 91 %% 7o 34nn% 9. 240h%

NOTES: LB(N) = Ljung-Box statistic at lag N
dent periodogram ordinates

H-1 =

ber of indep

MaxP = maximum periodogram ordinate, MinP = minimum periodogram ordinate

SuaP = sum of periodogram ordinates
FK = Fisher's kappa

CV = coefficient of variation
D = Kolmogorov's D for the null hypothesis of normality
KS = Kiefer-Salmon normality test, decomposed into KS1 (skewness test) and KS2 (kurtosis test)
SR = Studentized Range

Significance levels:

% = 107, ** = 5%, **% = }¥

£9



Order

One
Three
Eight
Twelve

Domowitz-Hakkio Heteroskedasticity-Robust Serial Correlation Tests,

cD

4. 44%
7.00*
12.60
13.20

FF

1.11
8.56%*
15.51%%
19.44%

Table 3.9
Weekly Nominal Dollar Spot Rates

DM LIR YEN
2.11 .09 2,46
3.84 5.99 8.38%*
8.79 10.76 12.08
11.31 15.01 14.28

* Significant at 10X level
** Significant at 51 level
*%% 5ignificant at 1% Llevel

SF

1.39
2.38
4.85
7.08

41nS

BP

.40
1.68
7.12
10.11



Statistic cDh

LB6 5¢35%
LB12 9.62

LB18 11.61

M-1 313

MaxP .001

SumP .017

FX 11, 50%**
Variance . 00003
Std. Dev. . 00523
Skewness .38285
Kurtosis 4,03491
KS 432, 63%%%
KS1 15,27%%%
KS2 417, 36%%%
D .06806%%*
SR 10, 143%%*
Max 03516

Q3 .00275
Med . 00003

Ql -.00275
Min -.01789
Mode -, 00375

FF

6, 84%%
11.82
14.79

313

.002

.116

4,98

. 00018
.01359

. 18860
2.49136
162, 32%%%
3.71%
158.6]1%#**
«06986%**
8.618
07164

. 00649
-.00031

. 00673

-~ 04548
~.00892

GERMANY

Weekly Nowinal Dollar Spot Rates
AlnS AR(3) Residuals

Test Statistics,

DM

4,61*
7.72
16.11
313

»003
115
7.20
.00018

. 01356
-.09304
1.38697
49, 76%%x
+ 90
48.B6x%x
. 05830*% %%
8.,035%%%
.06168

. 00748

. 00002
-.06995
-. 04727
-.00989

LIR

5.15%
18,79%*
28.99%*
313

.002

. 097

5.16

. 00016

. 01245
.35371
8,26591
1768.62%%%
13.03%*%
1755,59%%%
« 09548% %%
13,659%%+
+ 09245

. 00536
-.00126
~.00542
-.07760
-.01922

YEN

1.86
7.06
21.11%
313

002

. 100

6,68

. 00016
.01265
-.17610
3.67942
350.06%*x
3.23*
346, 83%4x
2 09519% %%
10.274%%%
. 06969

. 00625

. 00057

-. 00545
-.06028

. 00158

NOTES: LB(N) = Ljung-Box statistic at lag N (distributed xz(N'4) under the null)

M-1 = pnumber of independent perlodogram ordinates

MaxP = maximum periodogram ordinate, MinP = minimum periodogram ordinate

SumP = sum of periodogram ordinates

FK = Fisher's kappa
CV = coefficient of

variation

D = Kolmogorov's D for the null hypothesis of normality
KS = Kiefer-Salmon normality test, decomposed into KS1 (skewness test) and KS2 (kurtosis test)

Significance levels:

* = 10%, ** = 5%,

Akk = 1%

SF

1.55
5.40
12.30
313

.003
.165
5.02
.00026
01624
~.04691
1.63186
68.00%**
.23

67, 77%%%
<0549 6% %%
7.405%%%
. 06831
.00866
.00059
-.00867
-.05194
-.00077

BP

7.73%%
19.22%%
28, 30%*
313

. 002

.115

4.97
.00018
.01359
.30513
3.19811
271,53 %%
9. T0**x
261.83%x*
2072934 %%
9.205%**
.07185

. 00663

. 00029
-.00693
~.05325
-.00866



(5]

Obgseryed Time Series

ARCH(1)
ARCH(2)
ARCH(3)
ARCH(4)
ARCH(8)
ARCH(12)

AR(3) Residuals

ARCH(1)
ARCH(2)
ARCH(3)
ARCH(4)
ARCH(8)
ARCH(12)

21,67k %
21,97%4%
21, 94% %
19.98*%%
23, 55% %%
25,57%%%

35, 13%%%
35, 39%%%
35,33 wx
36, 00%R%
36, 56% %%
38, 40%%%

FF

3. 67
2,82
5.53
3.29
12.34
14.35

2.28%
2.49
4.19
5.66
13.40
15.34

Table 3.11
Weekly Nominal Dollar Spot Rates

ARCH Test Statistics,

g, Blhnx
12, 84%%%
22.66%%%
21 49%nn
38, 12%%%
46, 16%%%

5. 98%%
10, 62%%%
15,93k %4
19, 00 #x
35.98%nx
44, 48%%x

LIR

20, L1752
20.05%%*
24.36%%x
24, 5%
110, 82%%*
120, 94xnn

23, 59%%%
23.56%%n
264 45%%%
26, 77h%n
118,55%%%
129, 50%%*

AlnS

YEN

4,4 an4
9. BSH#*
10,194
14, 32%%#
23, 06kun
26.51%%%

3.12%
6. 94%%
7.25%
9, 54%%
16, 53%%
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Figure 5.4

CHANGE IN LOG WPI-BASED REAL EXCHANGE RATE
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Table 5.11
Yonthly Beal (CPI-Based) Dollar Spot Rates
ARCH Tests, AlnRt

ARCH CD FF¥ DM LIR YEN SF
1 1. 00 1.64 3.74 .57 2.83 .86
2 1.07 2.23 5.48+« 2,27 3.27 .99
3 1.27 2.86 5.43 3.69 3.26 + 98
4 1.66 3.15 5.88 3.88 8.32% 1.22
8 2.77 3. 61 7.24 5.63 14.05* 2,04
12 9.08 3.60 7.95 13.22 14.80 5.39

Significance levels: * = 102, #% = ST #ax = )Y

Table 5.12
Monthly Real (WPI-Based) Dollar Spot Rates
ARCH Tests, Aln’Rt

ARCH Ch FF DM LIR YEN SF
1 2.02 2.58 3.58 2,36 2.47 48
2 2.22 2.90 3.36 2.38 2.47 .61
3 2.52 4.19 5.18 2,54 2.46 «56
4 2.65 4.57 5.52 2.62 5.05 .90
8 4.85 ' 4.32 5.97 4. 58 15.76%*  1.9]
12 8.01 4.15 6.48 9.97 17.01 5.13

Significance levels: * = 10%, #*% = S5, *4% = 17

10.61%%
10. 63

10.91

BP
«29

<54

9. 64%%
10.32

11.38
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LB(6)
LB(12)
LB(18)
M~1

MaxP
SumP

FK

Mean

t (u=0)
Variance
Std. Dev.
cv
Skewness
Kurtosis

Minimum
SR

NOTES: LB(N) = Ljung-Box statistic at lag N

(%))

10. 98+
3. 8404
38, 58%%x
72

. 003
.028
7.3050%%
.00151
1.29

. 00020

. 01401
930.12

« 88442
2.80292
o 110248 8%
71,2158
17.78%%%
53,4300
+ 06207

. 00806
.00103
~. 00676
-.03069
6.62170%%

Monthly Real (CPI-Based) Dollar Spot Hates

FF

4.97
5.82
8.28

72

.008
<160
3.5551

. 03331
1.03
»00111

. 03331
1167.59
+ 15027
1.4733

« 088564 %
12.56%4%
.31
12.0544»
.11672
.02181
.00365
~. 01298
=. 09409
6.32829*

Table 5.9

Descriptive Statistica, alnR

DM

2.66
5.43
9.35

72

.008
.161
3.5581
.00381
1.37
.00112
. 03347
878.831
-. 00082
1.39539
. 06734
9. 784 x4
.00

9. 788 na
+10502
.02261
.0039]
=~ 01514
~-.10192

6.18309+

LIR

3.00
4,34
5.67

72

006

. 127
3.2525
.00218
.89

. 00088

. 02968
1360.17
.38071
1.29123
098168 4%
13.62%%%
3.36%*
10, 26%*»
.09402

- 01445
-.00100
-.01312
-.08210
5.93364

M-l = oumber of independent periodogram ordinstes

MaxP = maximum periodogram ordinate, MinP = minimum periodogram ordinate
SumP = sum of periodogram ordinates

PK = Figher's kappa
CV = coefficient of variation
D = Kolmogorov's D for the null hypothesis of normality
KS = Kiefer-Salmon normality test, decowposed info KS1 (skewness test) and KS2 (kurtosis test)

SR = Studentized Range

Significance levels:

* = 10X, %% = 5%, k& a ]X

YEN

4.60
8.68
17.30

72

.008

. 154
3.8217
.00019
.07

. 00107

. 03270
17030.1
-.01231
1.52199
07107
12.334%%
.00

12, 33%%%
.13133
.01726
.00233
~.01813
-.08201
6.52371%%

SF

2.62
4.40

10. 96

72

009

. 207
3.0592
.00122
.39
00144
.03789
3112.28
.25700
2.02176
.08608%4%
24,31 %%
1.56

22, 75k %%
.15820
01995
.00374
~.01783
-+ 11326
7.16378k%%

B8P

2,70
6.28
17.11
72

.011
.167
4.5681
.00059
.21
.00116
. 03401
5805.18
-.59929
1.32193
.06173
17,11 %4
8. 4gwnx
8. 61%%a
.08087
.02413
. 00190
-.01884
-.13538
6.35764#

OEL
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Table 5.7
Monthly Real (CPI-Based) Dollar Spot Rates
Sample Autocorrelations and Bartlett Standard Errors, AlnR

TAG Cch FF DM LIR YEN SF BP
1 -.126 -.069 -.033 -.050 .076 .013 .037
(.083) (.083) (.083) (.083) (.083) (.083) (.083)
2 -.169 .072 . 066 .039 ~-.049 076 .070
(.084) (.084) (.084) (.084) (.084) (.084) (.084)
3 .116 .030 . 005 +056 .21 .035 ~.051
(.087) (.087) (.087) (.087) (.087) (.087) (.087)
4 -.008 .076 -.042 -.075 .015 -.018 041
(.088) (.088) (.088) (.088) (.088) (.088) (.088)
5 .089 .058 -.017 .073 . 045 -.020 .078
(.088) (.088) (.088) (.088) (.088) (.088) (.088)
6 -.086 ~.113 -.100 -.043 -.075 -.097 -.035
(.088) (.088) (.088) (.088) (.088) (.088) (.088)
7 -.042 -.009 .027 .003 -.022 .011 .016
(.089) (.089) (.089) (.089) (.089) (.089) (.089)
8 .121 - 006 .042 -.011 .021 -.059 -.092
(.089) (.089) (.089) (.089) (.089) (.089) (.089)
9 -.053 -.024 -.033 -.051 -.030 -.013 .055
(.090) (. 090) (.090) (.090) (.090) (-090) = (.090)
10 -.026 -.011 .072 -.026 -.055 ~.042 .027
(.090) (.090) (.090) (.090) (.090) (.090) (.090)
11 .238% -.005 .036 -.026 . 036 .073 . 100
(.090) (.090) (.090) (.090) (.090) (.090) (.090)"
12 ~e259% -.067 -.086 -.066 .139 -.024 -.015
(.095) (.095) (.095) (.095) (.095) (.095) (.095)

* Exceeds two standard errors
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AlnR

Ccb

FF

LIR

SF

BP

const

.00191
(1.51)

.00278
(.98)

.00244
(.83)

. 00184
¢.71)

.00131
(.48)

.00359
(.90)

-.00075
(-.25)

1nR_,

~.03744
{-1.86)

-.01125
(-.80)

-.01063
(~.60)

-.01537
(-.80)

«.05778
(-1.98)

-.02257
(1.04)

-.03964
(-1.87)

AlnR_,

-, 12247
(=1.43)

-.13082
(=-1.52)

-. 01595
(-.18)

-.06602
(~.76)

. 04856
(.56)

. 02074
(.24)

.06283
(.73)

*
%
ik

Table 5.5
Monthly Real (WPI-Based) Dollar Spot Rates
Test For Unit Boot 1in laR;, Nonzero Mean Allowed Under the Alternative

AloR_,

-.16963
(-1.96)**

. 03256
(.37)

07641
(.85)

.03703
(.42)

~.06198
(-.72)

.07924
(.88)

.11192
(1.26)

Significant at 10X Level
Significant at 5% Level
Significant at 2% Level

AloR_,

. 03467
(.40)

.03134
(.35)

-. 04845
(-.55)

. 02924
(.33

. 14280
(1.65)*

-00939
(.10)

-. 10614
(~1.20)

AlnR_a

.02161
(.25)

.04235
(.47)

-.09204
(~1.04)

-. 06722
(-.77)

.05571
(.64)

-.06068
(~.67)

.02626
(.30)

AlnR_

.12575
(1.49)

.03834
(.44)

~.01532
(=.17)

. 07244
(.83)

.04163
(.48)

-.03149
(-.35)

. 11627
(1.32)

gt
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AlnR

ch

FF

LIR

SF

BP

const

.00183
(1.47)

.00113
(.40)

400299
(1.01)

» 00159
(.62)

~.00019
(-.07)

.00425
(«97)

.00023
(. 07)

Table 5.3

Monthly Real (CPI-Based) Dollar Spot Rates
Test For Unit Root in 1nR;, CPI, Ronzero Mean Allowed Under The Alternative

1ok,

-. 01127
(-.72)

-.01249
(~.83)

. 00208
(~.14)

-, 01762
(-.91)

-.04312
(-1.98)

~.02719
(~1.33)

~-.03151
(-1.62)

*

X%k

AlnR_l

-.12697
(~1.46)

—.09445
(-1.10)

~.04052
(-.46)

~-.03303
(-.39)

11711
(1.36)

. 02537
(.29)

. 05308
(.61)

AlnR_2 AlnR_3 AlnR_A

-.18165 .10102

.01218

(~2.07)%%(1.13)(.13)

.06763  .05431
(.77) (.62)

.07073 -.00952
(.78) (-.11)

.02827 .07248
(.33) (.85)

=. 05951 .15053
(~.68) (1.75)*

.09938 .05309
(1.10)  (.58)

10147 -,05778
(1.14)  (-.65)

Significant at 10% Level
** Significant at 5% Level
Significant at 2% Level

. 09827
(1.11)

~.05815

(-.65)

=~.04597
(=:53)

.01735
(.20)

-.00612
(~.07)

+ 05998
(.67)

AlnR_5

«13702
(1.57)

+ 06070
(.69)

~.03003
(-.34)

.09460
(1.10)

141

.08470
(.98)

—-. 00880
(-.10)

11412
(1.28)
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sarial correlation, much as for the nominal rates. (Even the two "significant" CD
sample autocorrelations at lags 1l and 12 are greatly reduced when the WPI is used.)
The lack of serial correlation is further confirmed by the distributional statistics it
Tables 5.9 and 5.10, which agaln are very similar to those for monthly nominal rates.
In particular, they indicate absence of serial corgelation, with symmetric leptokurtic
unconditional behavior. Again, the leptokurtosis is greatly reduced relative to those
of weekly nominal rates, but roughly identical to that found in monthly nominal rates.
The ARCH tests, reported in Tables 5.11 and 5.12, are roughly identical to those
of the monthly nominal rates, with one exception: the conditioning on relative prices
has removed the ARCH effects for the LIR. Three remaining major rates (DM, YEN, BP),
show significant ARCH effects, however. This means that the serial correlation tests

are in fact overly conservative, yet we still can detect no serial correlation.

5.6) Conclusions

We show that monthly real dollar spot exchange rates, like the monthly nominal
rates upon which they are based, evolve as approximate random walks and display weak
ARCH effectg. Thus, deviations from absolute PPP tend to persist, while deviations
from relative PPP are approximately uncorrelated noise. The ifmplications of our
failure to reject relative PPP for the validity of other parity conditions are
discusged; in particular, if we fail to reject one of the other remaining parity

conditions, we should fail to reject the third.
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because 1t enables us to exploit the stochastic structure of absolute PPP deviations to

directly characterize the nature of relative PPP deviationms.

5.5) Empirical Analysis

We work with the bilateral dollar exchange rates of the major industrial
countries: Canada, France, Germany, Italy, Japan, Switzerland and the United
Kingdom. Both the consumer price index (CPI) and the wholesale price index (WPI) were
used in calculating the inflation rates for PPP testing. Some authors argue that the
WPI is more likely to represent tradeable prices and hence is the preferred price
series; however, since both indexes have been used in the literature and arguments have
been made in favor of both of them, we prefer to remain agnostic on this point.

In fact, following Frenkel (1981), we may use both price indexes to gain soume
preliminary insight into the likelihood of PPP. 1In order for PPP to hold, it must be
(at least approximately) true that the price of tradeables (Pp) relative to the price
of nontradeéble (PN) is constant. If the CPI reflects more nontradeable goods prices
and the WPI reflects more tradeable prices, then we can get a rough feel for Py/Py bf
examining the CPI/WPI ratios. Such an analysis indicated near relative price stability
for Canada, Germany, Italy, Britain, and the United States. France displayed some
relative price movements in the turbulent early years of the float, while Japan and
Switzerland showed some movement throughout the period. On the basis of this
preliminary analysis, we might expect to see less evidence of PPP, or at least more
prolonged deviations from PPP, in the French, Japanese and Swiss cases.

First, it should be noted that the two versions (CPI and WPI) of the log real
exchange rate are very similar, the only difference being that the WPI-based series are
perhaps slightly more volatile, due to greater volatility in wholesale prices.4 Second,

the movements in real exchange rates closely mimic those of the corresponding nominal

4 The sample period is again July 1973 through August 1985. The other data details

are the same as in Chapter 4, with one exception: for conformity the BP is now in
Local/$.
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This has implications for research strategy in international economles. Although
the rigorous testing of each parity condition requires sophisticated (and different)
econometric tools, direct testing of EARIP is perhaps the most difficult. This

suggests, as a first step in research strategy, testing omly EAUIP and EAFPP. If those

two conditions hold, then EARIP must hold as well.

S5.4) On The Stochastic Behavior of Deviations From PPP

In this section we test the validity of absolute and relative PPP by examining the
stochastic properties of deviations from absolute PPP. The approach has several
advantages relative to least-squares estimation of (5.2.4) and (5.2.7). First, as we
show below, the conditional heteroskedasticity found in nomindl exchange rates is also
present In real rates, due largely to the fact that movements in real rates are
dominated by nominal rate movements. This means that tests of (5.2.4) and (5.2.7) will
be biased, unless the heteroskedasticity in {E:} i8 controlled for. While this is not
difficult, being a direct application of the previously developed ARCH model, it does
not allow for direct examination of the temporal pattern of deviations from PPP.

Put differently, the "short run" and "loag run' behavior of deviations from PPP

may be quite different.3 In fact, many economists belleve that in the long run, PPP ig

valid and therefore serves as a useful benchmark. Most modern exchange rate models,
guch as the Dormbusch (1976) overshooting model, and recent attempts to model
deviations from PPP (in terms of costly pricing decisions, degree of substitutability
of domestic and foreign goods, and exchange rate volatility for a market characterized

by monopolistic competition) continue to take long run PPP as the reference point. If

thig 18 correct, we have both a "benchmark model"™ with which to discuss current over-

We ugse the terms "long run" and “short run” in the sense of impulse response
analysis of a dynamic system. A parity condition 1s said to hold (stochastically)
in the short run if deviations from it are uncorrelated noise« A parity condition
is said to hold (stochastically) in the long run if deviations from it are serially
correlated (but stationary) about a zero mean. A parity condition is said to hold
neither in the short run nor the long run if deviations from it are either
nonstationary ({mplying permanent drift) or stationary about a nonzero mean.
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e Ot *
(5.3.1) e e N

apart from second order terms.
Ex-ante relative purchasing power parity (EAPPP) equates expected k-period

inflation rate differentials to expected k-period nominal exchange rate depreciation:

* X
e e e
s - - P -
e St Pew B P Bt
(5.3.2) - - .
S P *
¢ e P

(5.3.3) T, = r
where

(5.3.4) T

Under rational expectations, of course, the “expectations” in the above formalae are
replaced by mathematical expectations conditional on the time—t information set Qt.
Although all of the results below hold under rational expectations, rationality is in
no way required.

It will prove useful to rewrite (5.3.3) as:

e *e

P - P P - P
tH "t * t+k  t
(5.3.3") f, - (_P______) = ikt- (T__) .
t

The following proposition 1s then immediate:

Proposition:

1f any two of (5.3.1), (5.3.2), and (5.3.3) is true, then the third is also

true. Conversely, if any ome of (5.3.1), (5.3.2), and (5.3.3) is falge, then one or

both of the remaining two is false as well.
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i
(5.2.6) Alnst = Aln($;} .

The hypothesis is tested as (BO’Bl) = (0,1) in the regression:

P*
: t
(5.2.7) Alnst = 8¢ + 81 Aln(?:) + € *

Alternatively, AlnRt may be viewed as the deviation from relative PPP and tested
as zero-mean white noise. Again, many factors such as asymmetric changes in transport
costs, comwercial policies and nontariff barriers, the weights used for aggregate
indexes, and systematic differences in rates of change of productivity in the traded
and non-traded good sectors can impair the validity of the theory.

Relative PPP is particularly important because, together with uncovered interest
parity and real interest parity, it is one of ghe three key parity conditions of
international economics. We show below that any two of these three conditions implies
the third. 1In particular, relative PPP and uncovered interest parity imply real »
interest rate parity. If real interest rate parity ‘holds, then small-country monetary
policy 1s rendered impotent in terms of its ability to affect the real rate of
interest, and hence saving and investment decisions. In the absence of uncovered

interest parity and/or relative PPP, on the other hand, systematic real interest

differentials can persist.

5.3) The Relationship Between the Three Parity Conditions

5.3.a) Background

We digress temporarily to characterize the relationship between the three key
parity conditions of international economics: uncovered interest rate parity,
purchasing power parity, and real interest rate parity. MNumerous papers in the

literature attempt to independently test these hypotheses; some recent examples are
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Chapter FPive: Real Exchange Rate Movements

5.1) Introduction

The recent float has led to renewed theoretical and empirical interest in the
purchasing power parity (PPP) doctrine. In this chapter we examine the validity of
various versions of PPP, in light of the random-walk conditional mean behavior, and
ARCH conditional variance behavior, which was documented in earlier chapters for
nominal exchange rates. We begin by motivating the absolute and relative versions of
the PPP hypothesis in terms of their implications for the behavior of real, as opposed
to nominal, exchange rates. In section 5.2 we show that the two PPP hypotheses are
intimately related, and argue that many phenomena which may lead directly to failure of
absolute PPP need not impare the validity of telat;ve PPP. 1In section 5.3, the
relationship between three key international parity conditions (relative PPP, uncovered
interest parity, and real interest parity) is explicltly characterized, and the
resulting implications for empirical testing are developed. In section 5.4, the study
of deviations from both absolute and relative PPP is motivated in terms of impulse
response characteristics of a dynamic system. This sets the stage for the empirical
analysis of section 5.5, in which both CPI-based and WPI-based real exchange rate

movements are considered. Section 5.6 concludes.

5.2) Forms of Purchasing Power Parity

The arbitrage-based "law of one price", extended to aggregate price levels, is the
underlying motivation of aggregate purchasing power parity. Costless instantaneous
arbitrage assures uniform pricing (in terms of the same currency) of a common goods

basket. Thus, the real exchange rate, given by:
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Table 4.6
Monthly Nominal Dollar Spot Rates
Test Statistics, 41nS

[%1] FF M LIR YEN SF BP
LB(6) 9.85 5.70 2.03 3.17 3.88 3. 16 4.52
LB(12) 27.68%%% 6,47 5.15 4.69 7.25 4.36 8.05
LB(18) 34, 90*% 8,88 8.26 5.85 17.02 9.81 19.55
M-1 72 72 72 72 72 72 72
MaxP 003 . 006 .008 .006 .008 . 008 .010
SunP .025 .155 .159 . 124 147 .207 .150
FK 7.6731%%  2,9794 3.5676 3.3169 3.8604 2.9444 4.8123
Mean .00214 .00498 00116 .00801 -.00072 -.00157 -.00403
t(u=0) 1.96%* 1.83» 41900 3.280a% =27 -.50 -1.50
Variance .00017 .00107 .00111L .00086 .00102 .00143 .00104
Std. Dev..01317 ,03278 03327 .02933 .03196 .03788 . 03232
cv 614.816 658.061 2873.9 366. 314 -4416.68 ~2410.93 -801.094
Skewness .92183 .08977 -.09614 46747 ~.29676 .13758 .69625
Kurtosis 3.52449 1. 35460 1.37567 1.10453 1. 50095 1.86460 1.80866
D 1241400 08386 076430 097590 %» .12505%4%  [07866% .06414
RS 103.40%%4 9, 7604% 9. 9844 13.93%4% 14.50%%% 18, S5aan 21. 58aa%
KS1 18.23%*». 15 .22 3. 462 2.08 .45 11.084n*
KS2 B85.170%n 9, 61han 9. 76%n% 10, 470a% 12,420 18, 11wwn 10. 504a»
Maximus .06260 1117 .10211 .09424 .11525 15475 .13135
Q3 . 00766 . 02356 .02184 . 02223 . 01648 . 02084 .01267
Median .00166 . 00344 . 00087 00487 .00184 -.00029 -.00498
qQl -.00592 -.01076 -.01510 -. 00677 -.01180 ~-.02230 -.02435
Minimum -.02943 -.09183 -.10998 -.06721 -.09132 -.11642 -.07912
SR 6.98785%%R6,192] 64 6.37481% 5. 50460 6.46339%% 7,15866%%% 6.51207%%
NOTES: LB(N) = Ljung-Box atatistic at lag N

M-l = ber of independent periodogram ordinates

MaxP = maximum periodogram ordipate, MinP = minimum periodogram ordinate
SumP = sum of periodogram ordinates

FK = Fisher's kappa

CV = coefficient of variation

D = Kolmogorov's D for the null hypothesis of normality

KS = Kiefer-Salmon test, decomposed into KS1 (skewness) and KS2 (kurtosis)
SR = Studentized Rangs

Significancs levels: * = 10X, #* = 5Z  ##* = ]I




AlnS

CD

FF

LIR

YEN

SF

BP

const
-.00768
(-1.98)*x*

. 04012
(1.77)*

. 01341
(.80)

« 24657
(1.75)%*

.31883
(2.12)%=*

.01519
(.78)

.03215
(l.64)*

.00033
(3.06) %+

. 00024
(2.11)%*

.00012
(1.66)*

. 00034
(1.76)*

-. 00008
(-1.01)

. 00008
(.82)

-.00013
(-1.38)

Test For Unit
lnS_l
-. 13479

(=3.04)

-.03376
(-1.96)

-.02716
(-1.41)

~-.03876
(-1.71)

-.05674
(-2.14)

-.03071
(-1.63)

=-.03744
(-1.83)

Table 4.4

Monthly Nominal Dollar Spot Rates
Root in 1nS, Trend Allowed Under The Alternative

AlnS_x
~. 04344
(-.49)

~-.09263
(-1.09)

-.03770
(=o 44)

-.00215
(-.02)

07646
(.89)

.02308
(.27)

. 04692
(«55)

* Sjgnificant at 10X Level
** Significant at 5% Level

AlnS_2
~-.11136
(-1.28)

. 11056
(1.26)

.09725
(1.11)

. 13052
(1.51)

-.03652
(=.42)

. 09575
(1.07)

. 13916
(1.57)

A1n5_3
. 16746
(1.91)*

.07197
(.82)

-.01232
(=.14)

.05947
(.68)

.15095
(1.75)*

.01489
(.17)

~.06069
(-.68)

*** Significant at 2X Level

AlnS_A

.08815
(1.02)

.12539
(1.42)

-.04937
(-.56)

-.06731
(=.77)

.06214
(.71)

-.02455
(-.27)

.07134
(.80)

AlnS_5
14244
(l.66)*

. 09964
(1.14)

~.00633
(-.07)

.07403
(+85)

.06926
(.79)

-.02025
(-.23)

. 14691
(1.64)*
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Table ‘-l
Monthly Nominal Dollar Spot Rates
Sawple Autocorrelations of 1nS

Lag cD FF DM LIR YEN SF BP
1 «975 «978 . 973 .979 .969 .975 .973
2 -953 .961 - 947 «956 +934 « 946 <947
3 .933 . 937 -913 .930 «903 912 914
4 . 909 .911 .878 . 904 . 866 <877 .881
5 . 884 . 884 - 844 .878 . 825 -840 . 847
6 .858 .857 .812 .854 . 782 .803 .810
7 .830 .830 779 .829 742 .768 .769
8 . 807 . 803 - 746 .805 -704 734 .727
9 .782 . 776 711 <779 . 662 .705 . 685

10 757 « 749 679 + 754 .622 677 .643

11 .733 . 722 - 643 .729 .586 - 649 . 600

12 . 704 . 695 .607 .703 . 547 .618 -556

Table 4.2

Monthly Nominal Dollar Spot Rates
Sample Partial Autocorrelations of 1aS

E
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completely nonexistent.? Second, the symmetric stable family is actually quite
restrictive in the sense that there is only one member (the normal distributiom,
corresponding to o = 2) which has finite variance. All other members (0 < a < 2) have
infinite variance. Third, a substantial amount of recent evidence, such as Martin and
Klemosky (1975), Bey and Pinches (1980), Giacotto and Ali (1982,1985), Barone—Adesi and
Talwar (1983), and Diebold, Lee and Im (1985), indicates that the iid assumption may be
seriously violated due to the systematic presence of heteroskedasticity. Thus, more
general central limit theorems are needed. Finally, the fact that asset price or
return data approach normality when. aggregated {(from daily to weekly to monthly, for
example) contradicts the stéble Paretian models. The standard response to this problem
has been to ignore it, using data sufficiently aggfegated such that the assumption of
normality is roughly justified.

The ARCH model, together with the limiting results of chapter 2, represents a
powerful alternative to the stable Paretian models. While stock returns are not the
subject of this monograph, the analysis of foreign exchange "returns" is analogous. 1In
fact, a common stochastic representation for nominal log spot exchange rate changes, as
ploneered by Westerfield (1977), is stable Paretian. Westerfield studies five weekly
exchange rateg over the fixed rate period 1962-1971, and the very early part of the
float, 1973-1975. She finds that the normal distribution is generally rejected in
favor of a Paretian distribution with characteristic exponent less than 2.0, and that

exchange rate "volatility" is greater under the float. The ARCH model allows us to

5 In fact, only two explicit densities of the (uncountably infinitely) many members of
the symmetric stable family have been obtained. The family is therefore defined in
terms of its characteristic function ¢(t) . A random variable X is said to be
symmetric stable if:

lng () =ait-c |e]®

where a 18 the origin, clla is a scale parameter, and a is the characteristic
exponent.

If (a, a, ¢) = (2, 0, 1/2 02) , we have a normal distribution, and if
(a, 3, ¢) = (1, 0, 1) , we get the Cauchy distribution. No other symmetric stable
distribution has a known elementary form. See Kendall and Stuart (1977), p. 122-123.



.

csoslammsunll gaiiqans o3 b Tidedesy 30, Jo saesidel epeneve s SiIN bassvided
» « b a blwwits 43 ‘~»;£\‘§¢1 ﬁaiwﬂ@ qi mﬁ}m}n Mﬂ”ﬂ LA .Hﬁm
' ekl mu ‘v,:;ﬁt.m;m »mi‘:: xxﬂﬂmama B3R mh ﬁm M:t sl b ﬁulfz ,mﬂﬂ?#

‘ et

ot wam (o sosogveveer baslyesy mmao m ifkas owed g a3ah eldesw

A , 5L Yo zsmm wﬁiam eIy oe P ﬁm&ww 850w ztmszml ldgeon.

R aﬁn o bauis: mzs&qp—n by wt Beasaibad yizeedn u uw B mtwm E"
| ada L2 Mm sdp ohil- .aslmnma qm: MAMM Dk mwwmaq,a a coragomtol

.am;m widasw i3 Yo saad.‘s nesls yellemp done %;&m:au: aan mrthuu a3

)

L wdt .uhw eamsai¥iagit Jsom Jo asiiss 3usm jed \;:umw Sosfer o1 biad eendadSvaves

- ,.,.@mnaam tEX a3 w bazuchive sk ,\aiaoﬂmuﬁat}m o2 sl ai ?tmgm o3 o Aiué
| | ~fewad Ri o83 38 Wmoatw o8 besl deldy Yo lis
smum sew. ol mamk mmmqm& 1o 1&5 & & sxm W mlsm aiw L o

:lu- m waddons. &2 &AM mwtq iim m&mw & '.h w;:w Mﬁnm m» w,»m»

Lo sucoslisy m»mx wwyeal daiw msmn

‘»gv\i#ig. ST :
0 .
m: L34 mnm mszmm hiznon 83 dads elnsvsd a.z m hA m}ds e mlmm‘)
mgm& Yadnaw o2 yiflsee %o cdowy w?  .esbiee vg,mmu m m’i wwu qihkmw,xaddu
.«‘ﬁd N--{ At .ﬁhnmam 218 3 los 'ﬂ m zzs .\N ﬂ & adi =l ssoontiey
; mhw o1 To svem sedd mé-mm Jeoneral J6 Bt 93

c{’&o! [ “ Qg\.“ve ‘uue

M:; mwsd wsm mﬂ:x mgrml ;&M u whE | il wﬁ nums m L
.wn bos ma mmaﬁ wd Muw.s &tm wokaey masq s 3ol oldmx srgningr M‘Mm
- zm&:m.w w.tumwa:w; 198 2wl '!su'q.hlm aymegpnl w 3o MJM Y o

®: sands Jedy son d:njm =k t.J aw.r &t baalsieen m ga =3:Wms:tw

. embsgh  caman um:r gew #3 28 J601IXS SEBE sm o1 on xw *m S wansldye uxmmm ‘
. B h miwgmw !aww: P mntn-mwfi o dah m:um 3 aid@
L bem ..u .m us: .!m o noasd bes. .wumm L& M”Mﬁ mmx ﬂsuw ,maqu
A i IR R

Boms mfm Qsigut askses tadye a3 .qu JOEA 35 aoaskive mm gxwm win %8
m:unuh ‘@ﬂm&h m» finddw ealren wm wi 2] S e um ady L1 nm 820845




100

increased, with an average increase of .26, probably due to sampling fluctuations.
Overall, the average kurtosis reduction 1s a healthy 1.73. It should be noted,
however, that while the monthly data are substantially closer to normality than the
weekly data, we have still not obtained complete convergence to normality. Average
monthly kurtosis is 1.78, as opposed to an average weekly kurtosis of 3.52.

The remaining nonnormality is clearly indicated in the reported values of the
Kolmogorov D, Kiefer—-Salmon, and studentized range statistics. While the values of the
test statistics are typically much smaller than those of thelr weekly counterparts, we
nevartheless tend to reject normality for most series at most significance levels. The
bulk of the nonnormality is due to leptokurtosis, as evidenced by the KS2 statistics,
all of which lead to rejection at the 1% level.

The sample variances of Table 4.6 are of independent interest. It was.mentioned
earlier that temporal aggregation of a random walk process leads to another random walk

process with larger innovation variance:

Comparison of Tables 4.6 and 3.8 reveals that the monthly innovation variance is indeed
substantially larger for the monthly series. The ratio of monthly to weekly innovation
variances for the CD, FF, DM, LIR, YEN, SF and BP are, respectively, 5.67, 5.63, 5.84,
5.38, 6.38, 8.94, and 3.85. It is of interest to note that most of the variance
ratios are greater than five. This is somewhat larger than expected, because the
monthly/weekly variance ratio for a pure random walk should be between four and five.

The results of the Lagrange multiplier test for autoregressive conditional
heteroskedasticity are contained in Table 4.7, in which we see that there 1is
substantial evidence of ARCH, but not to the same extent as in the weekly case. Again,
this is consistent with our theoretical results on temporal aggregation of ARCH
processes, which indicate convergence to normality, and hence no ARCH. The CD, FF, and
SF now display little evidence of ARCH{ while the other series display smaller ARCH

effects than in the weekly case. Even for those series which still display significant
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calculation require controlling for it. In this sense the study of monthly nominal
spot rates is a necessary prerequisite to the study of real exchange rates and

purchasing power parity in Chapter 5.

4.2) Empirical Amalysis

We use end-of-month nominal spot rate data for the same period as in the weekly
analysis, July 1973 through August 1985, which yields 146 observations. As before, all
exchange rates are measured in local currency units per dollar, with the exception of
the BP, for which the opposite is true. Strong nonstationarity im all rates is once
again evident. The sample autocorrelations and partial autocorrelations, shown in
Tables 4.1 and 4.2 respectively, again indicate conditional mean behavior very close to
that of a random walk. This is formally verified by the unit root tests allowing for
nonzero mean and trend reported in Tables 4.3 and 4.4. 1In no case can we reject the
null of one unit root at any reasonable significance level; joint tests, however,
sharply reject the null of two unit roots. As before, it should be kept in mind that
the tests are robust to conditional heteroskedasticity.

The finding of approximate random walk conditional mean behavior at the monthly
frequency is to be expected, due to the well-known result that n-period temporal
aggregation of a random walk process with unconditional innovation variance 02 ylelds
another random walk process with innovation variance n 02.1 More generally, temporal
aggregation of an ARMA process with d unit roots yields another ARMA process with d
unitvroots.2

The first-differenced series contaln a number of interesting features. First, the
amplitude of AlnS 1s substantially larger in the case of monthly observations. This is
due to the eariler-mentioned increase of innovation variance due to temporal

aggregation. Second, although there does appear to be some volatility clustering, it

1

2 This restriction will be examined in detail subsequently.

See Brewer (1973) and Amemiya and Wu (1972).
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, Table A3.2
Eapirical Power of Unit Root Tests, 2000 Replicatioms, One—Sided Alternative
Zero-Mean AR(1) Model
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lnSt - ¢ 1nSt_1 - a'yt_l = (1 + d(u)) et(e)

where:

9 1
d(u) = ¢ 4,U

1a1 1L

= L]
yt—l (yt_ln evey yt-p)

Ve = lnSt - lnst_1 B

Define the partitioned vector @ = (¢ | a’ | 4'). Then the null hypothesis is
that ¢ = 1 and that there exists a "true" parameter vector 8y such that:

e (8)) = ¢ 1d (o0, 02{-

t
Given a sample (lnSl...lnST). Solo derives the IM test of this hypothesis. Just as
Fuller’s ; statistic is shown not to possess a limiting normal Aistribution, Solo's IM
statistic does not possess the usual X2 limiting distribution. Rather, IM should have
the same limiting distributioun as ;2, and Solo's proofs confirm this.

The IM test procedure amounts to the following. First, fit an ARMA(p,q) model
to (yt)’ and save the residuals (Et). Next, we generate the regressors:

G = @+ IO 1ms,_ ).

t-1

Finally, we regress € on Zc—l and obtain IM as T R2.

t
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A3.3) General ABMA Representations

Said and Dickey (1984) extend the unit root test to the general ARMA(p,q) case by
approximating the ARMA model as a finite autoregression. OLS can be used to estimate
the coefficients, and this procedure produces test statistics whose limit distributions
are the same as ;, ;u, and ; .

Let us begin with a simple case with normal disturbances. Later we will extend
the results to the general ARMA(p,q) case. Suppose:

1nSt =4 lnSt_1 +y

. t=L,2,...

Yo =T a ¥ + e, +8 ey t=...-2, -1, 0, 1, 2, ...

al, |8] <1, 1nS, =0, e_ - NID .
0 t

If |p| <1, then 1nS. is stationary except for transitory startup effects. (It is an
ARMA(2,1).) O©On the other hand, if p = 1 , then it is ARIMA(1,1,1). The reader should

note the following facts at the outset:

e =71 (‘B)j (y

t oo - = ® Ve-3-1)

2
lnSt o lnSt_l + (a + 8) (yt—l 8 Yooz +8 Yeo3 vee) + e, -

We can use the above results to write:

2
InSg ~ ISy ;= o= D) ImS, ; + (a +8) (o = BYcp ¥ 8 Ye37 o)t

Under the null Ve = AlnSt, 80 we write:

2
AloS, = (a + 8) (AlnS,_;) - 8 AlnS__, + 8" AlnS__5 - ...) + e,
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As an example, consider the AR(2) process:

lnSt tay lnSt_l +ay 1nSt_2 et = 3, 4,00, .

Then,

lnSt = (“ul - “2) 1nSt_l + az(lnst_1 - 1“5:—2) te. .

As claimed above:

P
8, =~ I a, = (a, *+ a,)
1 jm1 17 %2
and:
P
89 ™ I a; = age
2 ja2 3 2

To see that g, = 1 corresponds to the case of a unit root, consider:
1 P

InS = las _, + az(lnSt_l- nS, ) + eur

which 18 obtained by setting By = 1. Rearrangement yields:

- 1nst_2) +e, .

t

(lnSt - las ) = q.z(lnstu1

Thus, the first difference is AR(1), which means that the original series is ARIMA(1l,
1, 0), which is equivalent to an AR(2) with a unit root.

Fuller (1976) considered the distribution of 51 under the null of o - 1 and
showed that for any particular process there exists a scalar ¢ such that N c(al - 1)
has the same asymptotic distribution as ; = N(; = 1), the statistic for the first

order case. He also shows that the studentized statistic for e1 = 1.has the same

asymptotic distribution as ;. This powerful result shows that the_results for the
T ~—

AR(1) process genmeralize in a straightforward manner to higher order processes. The
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1nS,5.  Furthermore, White (1959) has shown that the limit distributions do not depend
on the normality assumption. The finite sample distributions, however, will in genmeral
depend on lnS;, as shown by Evans and Savin (1981).

Substantial attention has been paid to the small-sample power of the
;, ;u' and ;T statistics in Dickey (1984) and Dickey, Bell and Miller (1986). Clearly,
inappropriate use of ;u when only ; is needed, or use of ;T when only ;u or ; is
needed, will lead to reduced power due to the extra parameters which must be
estimated. On the other hand, since we do not know whether, for example, trend might
be present under the alternative, it 1is clearly desirable to allow for it so as not to
bias the test results.

The possibllity immediately arises that the large number of observatioms on our
exchange rate series will afford us the convenience of routinely allowing for trend
while simultaneously achieving high power, due to the consistency of the tests. The
above-mentioned work has, however, focused only on small to medium sized samples (T =
25, 50, 100) and found substantial power differences. Consider, for example, the
powers reported in Table A3.1, reprinted in modified form from Dickey, Bell and Miller
(1986). The data were generated from a zero-mean AR(1l) model, with oi = | and initial
condition Yo = 0 . The tests were at the 5X level against the one-sided alternative
]pl <1, and 2000 replications were performed.

Under the null (p = 1) , the power must equal the size (.05), which is the case
in the table. The typical power problem im unit root tests arises from the fact that
realistic alternatives like p = .7, .8, .9 are very close to the null, making it
difficult to discriminate between null and alternative. Even for N = 100 and p = .9 ,
for example, the power of ; is a healthy .78, while the power of ;T is only .19.

It is therefore clearly desirable to know how quickly the power of our tests
increases with sample size, and in particular, how quickly the power of ;u relative to
;T approaches unity, when in fact there is no need to control for trend. We therefore
extend the power study to sample sizes of N = 250, 400 and 650. The details of the

Monte—Carlo procedure are exactly the same, and the results are reported in Table A3.2.

The results are of immediate interest. First, for N = 650, which is approximately
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1t follows that the approprilate quantity for which percentage points should be
calculated under the null ia N{(g - 1) .

Note that we can also make use of the usual "Student's t" for testing p = I:

T = pN' 1
-2 2 .-1,1/2
(62 (1 1s? p7hY
t=2
where:
~2 N N - 2
of = (/D)) 1 el = /(-2)) 1 (1ms, - 5 1as,_ DY .
t=2 t=2

Under the null, T = Op(l) , but it does not have the "t" distribution. Note that t may

easily be obtained as output from a standard regression package. We have:

lnSt =p lnSt~l te,
or
1nS, - 1nS _, = - las . _; +e -
Thus ; is the usual t statistic in a regression of the first difference of 1nS,  on the
first lag of lnSt.

Dickey and Fuller (1979) show that ; is a monotone function of the likelihood
ratio for the null of p = 1 versus the alternative of p # l. However, for more
specific alternatives, like the stationary model with random initial condition, 1 is
not necessarily the likelihood ratioc test. Recall that the only alternative entertained

thus far is:

lnSt = plnSt_l toe, t=1,2,40.

lnSO = 0

p 1.
We could, however, refine the model to alternatives such as

{ol <1 and {p| > 1.
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CONSTRAINED CONDITIONAL VARIANCE, DM
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Table 3.13

Weekly Nominal Dollar Spot Rates

Congtrained ARCH Models

cp FF DM LIR YEN SF BP
u .00029 .00077 ~.00016  ,00065 -.00021  ~-.00023 ~-,00088
(1.48) (1.61) (-.33) (2.10)*  (-.46) (~.42)  (~1.81)#*
p .12436 .06323 .09167 .06318 .05542 .06323 . 05452
(2.81)%%% (1.48) (2.20)%*%  (1.49) (1.22) (1.49)  (1.24)
Py .07845 .09044 .07200 06785 .07959 .03115  .03981
(1.81)%  (2.11)%*%  (1.71)%  (1.52) (1.77)%  (.72)  (.90)
Py -, 02651 .05090 -.00239  .06138 .08140 .02060  .04679
(~. 60) (1.21) (~.06) (1.38) (1.78)*%  (.48) (1.06)
Ya, 00364 .00797 .00731 .00367 .00803 .00761  .00800
(11.90) %%k (10.12)%%% (B.69)KA* (6.27)a%k (13,72)*%% (7.20)%*%(13,65)%*%
Vo .08372 . 09664 .099]2 .12287 .09184 .10505  .09430
(10.00)#%% (12,97)%k% (13,72)%%% (20.37)%*% (13,89)%%* (14.96)**x(15,74)x%4
iter 12 12 11 12 11 11 11
-1nL 2945,092  2368,180  2374.931  2489.467  2409.401  227B.446 2384.038
Ia 547 .728 .766 1.178 .658 .861 694
a0}1—2a1 .000029 .000234  .000228 NA .000189  .000417 .000209

Significance levels: * 10X, **5%, #&*&1%



