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Chapter one: Introduction 

Structural exchange rate modeling has proven extremely difficult during the 

recent post-1973 float. The disappointment climaxed with the papers of Meese 

and Rogoff (1983a, 1983b), who showed that a wnaive w random walk model 

distinctly dominated received theoretical models in terms of predictive 

performance for the major dollar spot rates. One purpose of this monograph is 

to seek the reasons for this failure by exploring the temporal behavior of seven 

major dollar exchange rates using nonstructural time-series methods. 

The Meese-Rogoff finding does not mean that exchange rates evolve as random 

walks; rather it simply means that the random walk is a better stochastic 

approximation than any of their other candidate models. In this monograph, we 

use optimal model specification techniques, including formal unit root tests 

which allow for trend, and find that all of the exchange rates studied do in 

fact evolve as random walks orrandom,~alks with drift (to a very close 

approximation). This result is consistent with efficient asset markets, and 

provides an explanation for the Meese-Rogoff results. 

Far more subtle forces are at work, however, which lead to interesting 

econometric problems and have implications for the measurement of exchange rate 

volatility and moment structure. It is shown that all exchange rates display 

substantial conditional heteroskedasticity. A particularly reasonable 

parameterization of this conditional heteroskectasticity, which captures the 

observed clustering of prediction error variances, is developed in Chapter 2. 

Estimation and hypothesis testing of this ARCH (Autoregressive Conditional 

Heteroskedasticity) model are treated in depth, and it is shown that an 

independent, identically distributed structure in first differences (i.e., a 

random walk) emerges only as a very special case. What appear to be random 

walks (in terms of conditional mean behavior) are not random walks at all; 

successive first-differenced observations, while uncorrelated, are not 

independent. Again, the nature of this serial dependence is studied in detail. 

The problem of testing for serial correlation in the presence of ARCH is also 
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treated, and the asymptotic distributions of some important serial correlation 

test statistics are characterized in the presence of ARCH. 

Another insight of Chapter 2 is that, if ARCH is present, it leads to 

unconditionally leptokurtic exchange rate distributions, even though the 

conditional distribution is Gaussian. This fact is used to explain the well­

known fat-tailed unconditional distributions of exchange rate movements. In 

addition, central limit theorems for temporal aggregation of ARCH processes are 

proved, which show that the unconditional density approaches normality as 

observational frequency decreases. 

In summary, then, groundwork is laid in Chapter 2 via detailed 

characterization of conditional and unconditional ARCH moment structures, 

treatment of hypothesis testing for ARCH effects and estimation of ARCH models, 

central limit theorems for temporal aggregation of ARCH processes (in spite of 

the fact that successive observations are not independent), and derivation of 

the properties of serial correlation tests in the presence of ARCH. The results 

are used and refined in later chapters to study the nature of nominal and real 

exchange rate movements. 

In Chapter 3, the univariate stochastic structures of seven major weekly 

dollar spot exchange rates are studied; each rate is found to possess one (and 

only one) unit root in its autoregressive lag operator polynomial and strong 

ARCH effects. Maximum likelihood estimates of the ARCH model parameters are 

obtained for each exchange rate. They are then used to construct meaningful 

measures of exchange rate volatility which are compared to various measures 

commonly used in the literature. In addition to providing useful volatility 

measures and explaining the leptokurtosis found in each exchange rate, it is 

shown that the time-varying conditional variances may be used to construct 

superior prediction intervals, which are -tighterft in more tranquil times and 

ftwider" in more volatile times than prediction intervals obtained via classical 

methods. 

In Chapter 4, the data are aggregated to monthly frequency, and the 

theoretical results of Chapter 2 are verified. Specifically, the conditional 

mean behavior of each rate is still well described by a random walk (with larger 
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innovation variance, due to the lower frequency of observation). Kurtosis is 

substantially reduced for each currency, as are ARCH effects, confirming the 

predictions of the earlier limit theorems. Neither ARCH nor the associated 

leptokurtosis is completely eliminated, however. 

Real exchange rates are examined in Chapter 5, leading to tests of absolute 

and relative purchasing power parity (PPP) that simultaneously control for 

residual ARCH effects. The formal unit root tests which are used facilitate 

rigorous analysis of both CPI- and WPI-based real exchange rates. While 

absolute PPP is decisively rejected, relative PPP is accepted, apart from low­

order ARCH effects in the residuals. As a precursor to the PPP analysis, the 

relations between three important parity conditions (uncovered interest parity, 

purchasing power parity, and real interest parity) are characterized and related 

to recent literature. Finally, the nature and implications of long-run versus 

short-run deviations from PPP are considered. 



Chapter Two: Conditional Setero.kedasticlty in II:conoaic 'lime Serie. 

2.1} Introduction and s..-ry 

In this chapter we introduce a model of autoregressive conditional heteroskedasti­

city (ARCH). The model is motivated explicitly by considerations arising in a time­

series context. and it will playa key role in the analysis of dollar spot exchange 

rates of later chapters. In section 2.2. we begin by developing a parameterization of 

the ARCH model introduced by Engle (1982b) and comparing it to more standard models of 

conditonal heteroskedasticity which, while of great use in a cross-sectional context, 

are difficult to apply and therefore of limited value in a time-series environment. It 

is argued that such a model represents a natural and powerful generalization of the 

"classical" time-series models which have proved so useful in econometrics. such as the 

class of autoregressive moving average (ARMA) processes. More generally. in fact, the 

allowance for possible conditional heteroskedasticity provides a generalization of the 

entire class of linearly regular covariance-stationary stochastic processes. The 

motivation and properties of ARCH processes are developed in detail. It is shown that 

a classical process consisting of independent identically distributed (iid) 

observations, or a regression or time-series model with iid disturbances, arises as a 

special case. The autoregressive model with conditionally heteroskedastic disturbances 

is treated in depth, both for illustration and to lay the foundation for the work of 

later chapters. In particular, both "the conditional and unconditional moment 

structures are treated. 

Section 2.3 considers the temporal aggregation of ARCH processes. Central limit 

theorems are proved which show that the leptokurtic unconditional densities of ARCH 

processes approach normality when aggregated, in spite of the fact that successive 

observations are not independent. As a corollary, it is shown that convergence to 

normality coincides with diminishing ARCH effects, so that temporal aggregation of ARCH 

processes produces independent, identically distributed Gaussian white noise in the 

limit. This unifies the results of later chapters, in which we see that while strong 
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ARCH effects are found in all high-frequency dollar spot exchange rates, they diminish 

witn frequency of observation. Similarly, while high-frequency exchange rates are 

highly leptokurtic, convergence to normality is seen as observational frequency 

decreases. 

Section 2.4 treats estimation and hypothesis testing in ARCH models, and section 

2.S treats associated problems of testing for serial correlation in the presence of 

conditonal heteroskedasticity. Specifically, the properties of the Bartlett standard 

errors and the Box-Pierce and Box-Ljung "portmanteau" tests are characterized in the 

presence of ARCH. It is shown that all of the tests have empirical size larger than 

nominal size, leading to larger than nominal probability of type I error. Appropriate 

correction factors are developed analytically and shown to perform very well in a 

numerical example. Again, the results have substantive implications in terms of the 

analysis of later chapters, in which we are constantly testing for ex~hange rate serial 

correlation in the presence of ARCH. Concluding remarks are given in section 2.6. 

2.2) Autoregressive Conditionally Beteroskedastic Processes 

2.2.1) Coaditioaal Mo.ent Structure 

Consider a time series {E t } such that 

Such processes, first studied by Engle (1982b), display what is known as autoregressive 

conditional heteroskedasticity (ARCH). The process is defined in terms of the 

conditional (as opposed to unconditional) density, and has the interesting property 

that the conditional variance may move over time, being a function of p past realized 

innovations. We therefore denote the model by ARCH(p). To make the model useful, the 

funcion f(.) must be parameterized, and conditions must be imposed to guarantee 

positive conditional (and unconditional) variances. 
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Throughout this book we adopt the following natural parameterization: 

P2 2
 
at 00 + r ai £t-i
 

i=l 

- Z at 
where: 

• • •• a ). 
p 

a o ) O. a
i 

~ 0, i ~ I, ••• , p • 

The conditional variance of £t is allowed to vary over time as a linear function of 

past squared realizations. In the expected value sense, then, today's variability 

depends linearly on yesterday's variability, so that large changes tend to be followed 

by large changes, and small by small, of either sign. Such temporal clustering of 

prediction error variances has been well documented in the classic work on stochastic 

generating mechanisms for financial markets such as Yama (1965, 1976) and Handelbrot 

(1963). (McNees (1979) discusses the same issues in terms of forecast error variance 

clustering in the context of econometric prediction.) The ARCH model formalizes this 

phenomenon and enables us to test for it rigorously since the iid model is nested 

within the ARCH model, occurring when ~ ~ x ••• ~ 2 O. 

Comparison with a pth-order zero-mean stationary autoregressive model is 

instructive. Suppose: 

where all roots of [1 - R(L») lie outside the unit circle. Like the ARCH model, this 

model is also defined in terms of the conditional distribution. The evolution of 

conditional moments is exactly the converse, however: the conditional mean evolves in 
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an autoregressive fashion, while the conditional variance is held fixed. The 

desirability of models that allow for evolution of both conditional means and 

conditional variances is obvious. Before proceeding to such models, however, we pause 

1:~/ contrast the ARCH model with a standard "textbook" approach to conditional 

heteroskedasticity. Suppose that: 

where ~ is the time-t information set. Zt is a (1 x p) vector of exogenous variables 

that explain the variance (Ztl = 1 for all t), and a is a (p x 1) parameter vector. 

(The classical iid structure emerges when a = (ai' 0, •••• 0).) For example, the 

common specification 

where xi is one of the regressors in an equation of which E is the disturbance,t 

emerges when p = 2, Zt - (1, In Xtt) and a = (In a~,. s)' The problem with such an 

approach is that the appropriate set of forcing variables (Z) for the variance is 

rarely known in the context of the analysis of economic time series (as opposed to 

cross sections). The ARCH model, on the other hand, may be viewed as a general 

approximation to conditional heteroskedasticity of unknown form. 

2.2.2) Unconditional Ko.ent Structure 

The unconditional moment structure of ARCH processes is very interesting. By 

symmetry, all odd-ordered moments are ~ero. Even-ordered moments mayor may not exist 

(i.e. mayor may not be finite). Nemec (1985) has shown that no nondegenerate ARCH 

process has finite moments of ali orders, and that progressively more stringent 
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requirements IIR1st be satisfied foe existence of progeessively higher order moments. 

Foe example, Engle (1982b) has shown that foe an ARCH(o) peocess, the 
p 

unconditional variance is finite if E a < 1. Similarly, Hilhoj (1985) shows that 
i 

i 2 l 

the unconditional fourth moment exists if: 

3 a' (1-,,)
-1 

a < 1 

where a' x (aI' •••• a p) and (pip) is defined by ,.ij a i +j -I- a i _
j 

where we 

set ~ ~ 0 for k < 0 and k ) p. 

Actual calculation of the unconditional moments is done by applying the law of 

iteeated expectations. Consider, for example, the ARCH (1) process: 

«0 ) 0, 0 c ~ < 1 • 

Reweite the variance equation as: 

Taking expectations of both sides gives: 

Thus, 

2 
o 

Moee generally, it can be shown that: 

2 
o 

for an ARCH(p) process. 

Conditional normality may be similarly exploited foe the calculation of 
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unconditional fourth moments. Consider again the first order model. Then because of 

conditional normality. we have: 

Thus. taking expectations of both sides: 

and therefore: 

II •
4 

y (0)

i 

More generally, we can modify a result of Milhoj (1985) to obtain a general expression 

for the fourth moment of an ARCH(p) process. Mi1hoj considers the 

2 process {X where {X is ARCH(p) and shows that:t}, t} 

-1 
1 - 3 a' (I - 'P) a 

1 - 3 a' (I - 'P)-1 a • 

But the will should note at once that: 

2 
- 114 - 112 
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Thus, 

-1
1 - ) a' (I - If) a 

an
where "2 p
 

1 - 1: Cl
1i-I 

This brings us to a very important result: ARCH processes are 1eptokurtic, or "fat ­

tailed", relative to the normal. This is stated formally below. 

Theore. 

Consider an ARCH(p) process with 

P 
I, •.• , p, l: Cli < 1, 

1=1 

and 

Such a process is leptokurtic. 

Proof" 

2 
Kurtosis + 1 

-1 
1 - ) a' (I -.,) a 

P 
The facts that Cl > 0 1 

i 1, •••• P and l: Cl < 1 guarantee that
1

1=1 

det (I - .,) > 0 • 

Thus, 

o < ) a' (I - '¥) -la < 1 • 

so, 

2 
~--~------1- > 2,
 
1 - ) a' (I - '¥) a
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which means that the kurtosis must be greater than three. (Kurtosis of three 

corresponds to normality.) QED 

Finally, as an example of how processes which display serial correlation in the 

conditional mean can be fruitfully combined with ARCH processes (allowing for serial 

correlation in the conditional variance), we consider the following AR (1) process with 

ARCH (1) disturbsnces: 

Yt p yt-l + £t 

2 
- N(O,at)£t £t-l 

2 2 
at aa+ ell £t-l 

Ipi ( I, o c ell c 1/13, elo ) o • 

The unconditional density of the innovation £ is easily seen to have all odd-ordered 

moments equal to zero, second moment aa / (1 - ell)' and fourth moment: 

2 
(1 - el ) (1 - 3 el )

1 1 

The kurtosis is therefore: 

3 (1 + ~) (l - a )
l 

) 3 
2 

(1 - 3 ell) 

so that the density is fat-tailed relative to the normal. Thus, while the conditional 

density of Yt is normal with mean PYt-l and variance aa + ell £~-l' its unconditional 

density is leptokurtic with mean zero and variance: 

2
(1 - C1t) (L - P ) 
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2.3) Ieaporal Aggregation of ARCH Processes 

T
Consider a time series {Yt}t~l ' obeying an ARCH probability law, where t = 1, 2, 

3, ••• is some "fundamental" time scale. Now form the m-period temporal aggregate: 

m-1 
I: Yt -i • t = ... 2m, 3m, ••• • 

i=O 

We write the time series as {sm}T/m.m or {S *}T~. • where t km is equivalent to t'2 

t t=1' t t =1 

~ k. For example, if {D ' is a daily time series, then the series of weekly
t}t:1 

}T/5returns corresponds to the m = 5 day aggregate {wt* t*=l' 

where: 

4 
W I: D = D + D + ••• + D • tam. 2m. '" 

t iaO t-i t t-1 t-4 

and t a k m <-) t* = k. 

We are interested in the properties of such aggregates as m +~. In other words, 

we ask "Does s~ have a limiting distribution as m + ~ , and if so. what is it?" 

Unfortunately, standard central limit theory does not apply because, as shown above. 

the elements of {Yt} are not independent. We can, however, exploit a theorem of White 

(1984) for regression with dependent identically (unconditionally) distributed 

observations to characterize the limiting distribution of the aggregate. We reproduce 

it here in a slightly different notation. 

'Iheorell 

Given: 

(i) Y - XB + £;o 

(ii) {(Xt'£t)'} is a stationary ergodic sequence; 

(iii) (a) E (X £Oh IG_ 'l~'!!+ 0 as r + .... where W } is adapted toOhi r) t 

{X hi £th }. h = 1. • •• , p. i = 1, •••• k;t 
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(b) E jX Eth 1
2 < "", h = 1, "" P, i = 1, •••• k;

t hi 
-1/2

(c)	 V var (m X'£) is uniformly positive definite; 
m 

1, ••• ,p,i 1,(d)	 Define Il Ohi j = E(XOhi£Ohln_j) - E (XOhi£Ohln_j-l)' h
 

•••• k , For h = 1. "', p, i = 1, "', k, assume
 

that 

(iv) (a) < _, h = 1, ••• , P. i = 1. • •• , k ; 

(b)	 M =E(X~Xt) is positive definite; 

Then V + V finite and positive definite as m --) - , and: 
m
 

D-1/2 ,Im( B - 8 ~ N (0, I), •
 
n 0) 

Suppose in addition that 

p 

(v) There exists V symmetric and positive semidefinite such that Vm - Vm + O. 
m 

Consider first the case in which Yt follows a pure ARCH(p) process, and write 

Y D X8 + E, where X is simply a column vector of ones. The reader may verify that 

2conditions (i) - (iv) are satisfied, where V V = 0 for all sample sizes m, M = 1, 
m 

and 0 
2 is the unconditional variance of E given by:t 

Thus, D = V - ,,z and we have: 

a.!.. ,1m (B - 8 - N (0.1) 
(J m 0) 

or 
2 

(13 - 13
a
- N (0, 0 ) . 

m	 0) 
m 

Under our assumptions. however. BOA 0, and. of course. 
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-1 m 
B (X'X) X'y E Y • 

m m t=l t 

Thus, 

2 
m a a 

N (0,--),1: Y 
m t=l t m 

so, 

m a 2 
1: Y - N (O,rna ).

t=L t 

We have just p~oved the following p~oposition. 

Proposition 2.1 

P 

If a ti.e series (y t} follows a zero _an pth order All.CB process with 1: (). < 
i 

i=l 

then the aggregated series (S~*} has an unconditional aoc.al distribution as m + 00_ 

Now assume that Yt is not a pu~e ARCH p~ocess; ~athe~, assume a Pth o~de~ 

auto~egression (about a possibly nonze~o mean) with pth o~de~ ARCH distu~bances. 

Conside~ once again the ~ep~esentation' 

y Xa + £ 

whe~e X = (1, ••• ,1)' and £ is a ze~o-mean AR-ARCH (P,p) process. The regularity 

conditions of the White theo~em are again satisfied, with: 

-1/2 -L/2 m 
V var (m X'd va r (m !: e ) 

m t=l t 

-1 m 
m 1: 

t=l (L - !: a )(1 - !: ~.P.) 
i J .J 

= V 
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1••• P is the ith autocorrelation of the AR(P) process (with parameters 

which describes the evolution of the conditional mean of y. As before, 

where Pi' i 

<P l' "', <Pp 

M = 1, and D = V. We therefore have: 

or: 

Finally, then, 

ma 
o 

a )(1 
i 

This establishes the following proposition. 

Proposition 2.2: 

If a ti.e series {Y } follows an AR-ARCB(P,p) process about a (possibly) DQDZerO
t 

.ean, and 1: a < 1 • then the aggregated series {Sm*} has an unconditional noraal
i 

t 
distribution as m --) m • 

To illustrate the results, the simple first order ARCH process: 

is used. A sufficiently large realization is obtained such that 5,000 observations on 

the aggregated series {S~} are available, for m ~ 0, 4, 12, 25, 50, and 100. In 

Figure 2.1, we plot kurtosis as a function of m; the convergence to normality is 



16 

evident at once. The convergence to normality is also confirmed by a wide range of 

other diagnostics such as Kolmogorov' s D, normal probability plots, and t he pe r-ceut I l es 

of the standardized distribution. The kurtosis corresponding to m = 1 (no aggregation) 

is 9.011, which matches very closely the analytical kurtosis of: 

J (l - a )2
1 9.0 • 

As we aggregate, both the kurtosis and the studentized range drop monotonically until 

respective values of 3.226 and 9.5 are obtained for m = 100. The skewness, of course, 

stays close to zero throughout. 

2.4) EatiJllation and Hypothesis Teat.itMJ 

First note that the log likelihood is given by: 

T T 
In L ~ canst - E In (Zt a)1/

2 
1/2 E 

t=l t=l 

We can use this likelihood function to obtain consistent, asymptotically efficient 

parameter estimates, as well as a Lagrange multiplier test of the null hypothesis of no 

ARCH effects. In what follows it will prove useful to model a time series {Yt}' 

allowing for a time-varying conditional mean, which we denote by XtS. The X's may be 

composed of both exogenous and lagged dependent variables; later, we will explicitly 

model third order autoregressions with ARCH innovations. In any case, X is taken to be 

a (T x K) matrix, while B is a (K x 1) vector of parameters. The log likelihood 

function is then: 

TiT 
lnL(s, a; y, X) ~ const - z In crt -"2 E 

t=l t=l 
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The likelihood ratio (LR) test of the null hypothesis a o is then1 

given by: 

2 - 2 In(L (a, a)/Ln(a,a» a~ x
w .. P 

The LR test requires estimates under both the null and alternative, of course, so 

that an LM test which requires estimates only under the null may serve as a convenient 

preliminary diagnostic. The LM statistic is: 

I aa where d is the score vector with respect to a, 3lnL , is the aa block of the 
3<1 

inverse of the information matrix, and both d and I(lQ are evaluated under the null. 

To obtain these, rewrite the likelihood function as: 

lnL = const - 1:ln{Z a) 1/2 1 1: --=---;;---=__
t - 2" 

Thus, 

which equals under Ho : 

1 1: Z' + _1_ 1: Z' 2 
- 2 2 t 204 t Et

0 

Z' 2 
t Et

1: -2 (-2 -1). 
o 0 

It should also be noted that: 

under H • 
o 
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To obtain the information matrix under the null, we can proceed immediately to 

take second derivatives: 

1)J 

1:(- 1..)
2 

Taking expectations under the null we have: 

Z• Z 2 
1 t t 0 

2" 1: 6 
o 

1 Z~ Zt 
"21:--­4 

a 

z· Z 
Negating, this equals 1 1: ~ = __1_ Z' Z, where Z is the matrix whose tth row 

"2 04 204 

Zt. Similarly, 

Taking negative expectations under the null gives: 

X~ Xt 1 
1: --2- = 2" (X' X) 

o 0 

In addition, 

- 1: 

i 
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• O. after taking negative expectations under the null. 

Thus, 
2 

(X'X/o ) 
(K x K) 

o 
(K x (p+l» 

I / 
o 

H 

o 
(p+1) x K) 

4 
(Z'Z/(20 » 

«p+l) x (p+l» 

Now we can construct the LH statistic as: 

and f Z [ftl, a (T x 1) vector.where f t 

This test shares the optimality property of maximum local power with the 

likelihood-ratio and Wald tests. (See, for example, Engle (1982a).) In addition, the 

LM statistic may be calculated by regressing the squ~red residuals (from a regression 

of y on X) on an intercept and p own lags. TR2 from such a regression is then 

asymptotically equivalent to LH, and Diebold and Pauly (1985) show that the power 

characteristics of the two versions of the test are essentially identical for sample 

sizes greater than ISO, both for first order ARCH processes and higher order processes. 

Once the LH test has determined that ARCH effects are operative, maximum-

likelihood estimation should be undertaken. Engle (1982b) has shown that the 

efficiency of MLE relative to LS is very large, and may approach infinity. Due to the 

block diagonality of the information matrix, the KLE's may be calculated by the method 
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of scoring, which involves an iterative sequence of LS regressions on transformed 

variables. This is rather tedious, however, relative to straightforward numerical 

maximization of the log likelihood, which is directly applicable in both the univariate 

and multivariate cases. For this reason full maximum-likelihood estimation is used 

throughout this book. 

2.5} The Asyaptotic Distributions of So.e eo..on Serial Correlation 

Test Statistics in the Presence of ARCH 

2.5.1} Background 

The problem of testing for serial correlation arises constantly in time-series 

econometrics. Sometimes, as with forward premia in efficient markets studies, the time 

series to be tested for serial correlation is directly observed. Sometimes, as with 

residuals from an estimated model, the observed series is only an estimate of the true, 

but unknown, series to be tested for serial correlation. Either way, the presence of 

heteroskedasticity violates the assumptions upon which tests for serial correlation 

rest. 

This observation is particularly crucial in light of the recent realization that 

conditional heteroskedasticity may be commonly present in the time-series context. 

(See, for example, Engle (1982b), Weiss (1984), Domowitz and Hakkio (1985), Diebold and 

Pauly (1986), and Tsay (1987), inter alia.) There are two approaches to resolution.of 

the problem. First, one may attempt to develop tests for serial correlation that are 

robust to heteroskedasticty of unknown fo~. This is the approach taken by Domowitz 

and Hakkio (1983) who combine Godfrey's (1978) Lagrange multiplier test for serial 

correlation with White's (1980) heteroskedasticity-consistent covariance matrix 

estimator. The advantage of such an approach is its generality; the cost is reduced 

power in situations when the form of the heteroskedasticity is known or can be well 

approximated. 

The second approach is to parameterize, or approximate, the form of the 
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heteroskedasticity, and develop serial correlation tests specifically taking it into 

account. This of course has costs and benefits opposite those of the Domowitz-Hakkio 

approach. To the extent that the heteroskedasticity approximation is accurate, the 

test will perform well, and vice versa. 

The model of autoregressive conditional heteroskedasticty (ARCH) due to Engle 

(1982b) has been found to provide a parsimonious and descriptively accurate 

approximation in many contexts (inflation: Engle (1982c), foreign exchange markets: 

Domowitz and Hakkio (1985), Diebold and Pauly (1986), Diebold and Nerlove (1986); stock 

market: Diebold, Lee and 1m (1985); term structure of interest rates: Engle, Lillien 

and Robbins (1987)). In this section we consider the properties of two important model 

specification tools, the sample autocorrelation function and the Box-Pierce (1970) and 

Ljung-Box (1978) "portmanteau" statistics, in the presence of ARCH. The theory of the 

Bartlett standard errors is first developed, and then the portmanteau tests are 

treated. We build upon the results if Milhoj (1985) to show why the presence of ARCH 

renders the usual Bartlett standard error bands overly conservative, relative to the 

nominal 5% test size, and we develop an ARCH-corrected standard error estimate. This 

leads directly to ARCH-corrected confidence intervals under the null of uncorrelated 

white noise. We then treat the Box-Pierce and Box-Ljung serial correlation test 

statistics and show that they do not have the usual X2 limiting null distribution. An 

appropriate normalization is found which does have a limiting X2 distribution, 

however. The results are illustrated with a numerical example. 

2.5.2) Correcting the Bartlett Standard Error Bands 

Consider a zero-mean time series {x T It can be shown (Anderson (1942),t}t21' 

Bartlett (1946)) that, under the null of Gaussian white noise, the sample 

autocorrelation at lag T : 

~( ) =---Y0lp T 
~(O) 



) a lIT 

T - T 

1.96 

IT 

4
IT 

) 0 for all T
4

IT 

(lIT) ( 1 + ---,--­

T (T + 2) 
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(lIT) (l + -~-

consistent estimate of the variance of the sample autocorrelations as: 

the sense that, for example, the true 95% confidence interval is wider than the 

since '( 2(T) -) 0 as T -) ~ , by stationarity and ergodicity of 

2 x 2 
{x }. Because '( 2(T) and IT are easily consistently estimated, we can construct a 

x 

the squared unconditional variance of the x process. (See Hllhoj (1985).) Because: 

computed "95%" confidence interval. Note, however, that:: 

it is clear that Bartlett's standard error is "too small" in the presence of ARCH, in 

2 T 
where '( 2 (T) is the autocovariance at lag T for the squared process {Xt }tal 

X 

Under ARCH,however, the sample autocorrelations are normal with mean 0 and variance: 

variance: 

confidence interval under the null: 

or, as a further approximation, lIT. This result leads to the so-called Bartlett 95% 

where ~(T) ~ lIT E xt xt-T 
is asymptotically normally distributed with mean 0 and 
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which leads to the corrected confidence interval: 

1/2
0.0 ± 1.96 (S( T») • 

To implement the results over, say, the first K autocorrelations, we first obtain: 

l: XtXt- TPx CT) = 2 . T 1 ••• K 

l: x
t 

~4 
= (;2 ) 2 2)2

(1 (lIT l: x t 

~2 ~2 

y 2 CT ) lIT l: ( x 2
- (1 ) (x 2 

- (1 ), T 1 ... K 
t t-,

x 

and then construct the bands via the above formula. 

To illustrate, 500 observations are generated on the process: 

The first 20 autocorrelations of x are calculated, along with the Bartlett 1.96 

standard error bands and the ARCH-corrected Bartlett 1.96 standard error bands. One 

thousand replications are performed for each of ten points in the parameter space: al 

- 0.0, .1, .2, .3, .4, .5, .6, .7, .•8, .9. Without loss of generality, we can 

set ao . 1 - al (Pantula (1985»), which maintains the unconditional variance at 1.0. 

The case of al • 0.0 of course corresponds to independent white noise. The 

realizations are generated via the cannonical form: 

where we set EO = 0 • The same one-thousand sets of 500 innovations {N (0 1)}500 were 
t ' t-I 

used to generste the ARCH realization at each explored point of the sample space; this 

provides powerful variance reduction. The proportions of rejections (in 1000 
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repetitions over 20 autocorrelations) relative to the uncorrected Bartlett 95% 

confidence interval are given in Table 2.t as P, while rejection frequencies relativ 

to the corrected intervals appear as Pc. 

The results are easily interpreted. When ~l : 0, of course, the nominal size ( 

approximately equals the actual size (4.6%). This is also true if the ARCH correcti 

is (needlessly) applied. As ~t rises, however, so too does the empirical size of th 

uncorrected confidence interval, so that, for example, when at : .9, the probability 

a type I error is more than twice the nominal probability of 5%. The ARCH-corrected 

intervals, on the other hand, maintain nominal size. 

The problem of spurious "significance" of sample autocorrelations due to ARCH 

becomes progressively less serious for progressively higher-ordered autocorrelations 

due to the earlier mentioned fact that the "correction factor" tends to unity as T ; 

This is of little value in practice, however, because it is precisely the Ie 

order sutocorrelations which are typically calculated. The calculation of twenty 

sample autocorrelations in the simulations reported above was done with the eventual 

calculation of Box-Pierce statistics in mind; had fewer sample autocorrelstions beer 

calculated, the average deviation from nominal test size would have been substantial 

larger. 

Consider, for example, the ARCH(t) case described above. The reader may verif) 

that: 

so that the standard error is: 

(l + 
IT 

The corrected aod uncorrected confidence intervals are shown in Figure 2.2 

for at .5. Clearly, most of the divergence occurs at the low-order8 

autocorrelations. The deviation from nominal test size is different at each 
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autocorrelation lag, becoming progressively smaller as the lag order gets larger. 

Thus, to repeat for emphasis, the entries in the first row of Table 2.1 are very 

conservative, in the sense that it is not uncommon practice to examine only the first 5 

or 10 autocorrelations, which would lead to much higher rejection proportions. This is 

strongly illustrated in the first row of Table 2.2, which reports rejection proportions 

based on only the first 5 sample autocorrelations. 

It is of interest to note that the probabilities of type I error may be calculated 

analytically, as follows. Under the Bartlett assumption of true independent, 

identically distributed noise, 

In reality, however, 

a 
N (0, ~ 

Thus, the probability that ~X(T) exceeds 1.96 Bartlett standard errors of zero is: 

IC1(T)
 

IC ( T, T)
2

where Z is a N(O,l) random variable. Since (C I C < I, for all T, T, it1(T) 2(T,T)] 

follows that P(.) > .05. If al = .5 and T = 500, for example, the probabilities of 

type I error are .378(T = I), .164(T = 3), .100(T = 5), and .051(T = 10). 
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4 
2.5.3) On the &xistence of EX 

t 

Strictly speaking, the above results require existence of the fourth raw moment 0: 

x , \14' This is because; 

with 
4 

y 2(0) EX4 
- (J

t 
x 

4 
- (J •= \14 

Thus, if ~4 does not exist (i.e., is infinite) then neither does y 2(T)' Milhoj (1985) 
x 

shows that a necessary and sufficient condition for existence of \14 for a ptb-order 

ARCH process is given by: 

where 0.' ~ (a ••• ,a > and 'P is defined by 'P
l, p i j (pxp ) 

where we set ~ = 0 for k ~ 0 and k > p. 

In actual applications, of course, it is not known whether the condition is 

satisfied, and the analyst should proceed under the assumption that it is. Even if the 

true moment of interest has infinite value, the best sample approximation for the 

purposes of correcting the Bartlett standard errors will still be obtained by follOWing 

the procedure outlined above. 

As an example, consider again the ARCH(l) case. Then the existence condition 

for \14 boils down to: 

.577 • 

Thus, in the earlier-tabulated example, the cases of al ~ .6, .7, .8, and .9 all 

correspond to \l4z ~, yet the ARCH correction continues to work well. 
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2.5.4) The Box-Pierce and LjuDg-Box Statistics 

The Box-Pierce (1970) serial correlation test statistic Cto lag K) is given by: 

K A2 
BPCK) = T E pC,).

,=1 x 

A2 
Due to its direct dependence Px' it is also affected by ARCH and must be modified if 

nominal size is to be maintained. Since under the null of independent white noise we 

know that: 

d 
pC,) + NCO,l/T), , = I, 2, 3, "', 

we	 have: 

d
IT pC,) + NCO,l). 

Thus, 

d	 2 
+	 x 

1 

and therefore by asymptotic independence of the sample autocorrelations: 

d	 2 
C,) + x , which is the Box-Pierce result. 

K 

Under ARCH, however, 
y 2 C,) 

d x 
pC,) + N(O, lIT (l + ---»).

4 
a 

Thus, 
y C,)

2 
x liz A d 

{T / (l + ---4----)} pxC,) + NCO,l), 

a 

so: 

{T	 I C1 

a 

and: 

4 
K 

T E (----]
,=1 4 

a + y C,)
2 

x 
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Because the bracketed term is less than or equal to one for all T, each term in the SUI 

involved in the uncorrected Box-Pierce statistic is "too large," leading to larger thaI 

nominal size. 

The empirical sizes of the standard and corrected Box-Pierce statistics are shown 

below in Table 2.1 (K z 20) and Table 2.2 (K - 5); the ARCH-corrected statistics 

perform quite well. It is interesting to note that the very large deviations from 

nominal size (i.e., much larger than the average deviation of the first 20 sample 

autocorrelations reported earlier) of the uncorrected Box-Pierce statistics in the 

presence of ARCH are due to the "cumulation" of errors. This is true regardless of tho 

value of K. Of course, as argued earlier, the problem is made worse as K decreases; 

this is easily seen by comparing the third rows of Tables 2.1 and 2.2. 

Similarly, the Ljung-Box (1978) statistic: 

K -1 2 
LB(K) - T (T+2) E (T-T) P (T),

T-l x 

of which the Box-Pierce statistic is an asymptotic approximation, may be easily' 

corrected for ARCH. 

2.5.5) Conclusions 

In summary, we have shown that the presence of ARCH invalidates the asymptotic 

distributions of the sample autocorrelations and the Box-Pierce and Box-Ljung test 

statistics for serial correlation, when computed in the usual fashion. It was shown, 

both analytically and numerically, that the presence of ARCH renders empirical size 

(i.e., probability of Type I error) larger than nominal size, leading to spuriously 

"significant" sample autocorrelations and portmanteau diagnostics. Appropriate 

correction factors were developed and shown to produce highly satisfactory results, 

with nominal and empirical sizes being approximately equal. 

We have also shown that the error in the Box-Pierce and Box-Ljung statistics, 

calculated through lag K, is progressively more severe for progressively smaller K. 
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This provides yet another reason, in addition to those given in Box and Pierce (p. 

1513) to be wary of test statistics based on small K. 

The analysis in the text focused on the case of observed time series. As is well 

known (Durbin (1970», the results do not generalize directly to the case of testing 

for serial correlation in the residuals of estimated models, because the residual 

autocorrelations are approximately representable as a singular linear transformation of 

the true disturbance autocorrelations. Box and Pierce (1970) have, however, shown that 

the dimension of the singularity is equal to d, the degrees of freedom lost in 

estimating d model parameters. The results remain valid, then, when the statistics are 

2tested against a Xk-d distribution. 

Finally, it should be pointed out that the presence of ARCH makes the Bartlett 

standard errors and the portmanteau tests more conservative; thus, a failure to reject 

the null of no serial correlation using the uncorrected statistics may be trusted. If 

the null is rejected, however, and conditional heteroskedasticity of the autoregressive 

type is suspected, the corrections should be employed. 

2.6) Concluding Re.arks 

In this chapter we introduced a model of autoregressive conditional 

heteroskedasticity (ARCH) which will playa key role in later chapters. We showed that 

ARCH effects, if present, lead to clustering of prediction error variances; in 

particular, the conditional variance may be forecasted. The moment structure was 

studied in detail, and it was shown that all ARCH processes are leptokurtic, and that 

this leptokurtosis is reduced by temporal aggregation. We discussed that maximum 

likelihood parameter estimation and showed that the 1M principle produces convenient 

hypothesis tests. Finally, well-performing ARCH-corrections for serial correlation 

tests were developed and illustrated. 
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Table 2.1
 
K.p~r~c.l S~ze Results, Box-P~erce lests
 ...

And Bartlett Standard Errors, Based 00 First 20 Autocorrelatioos 

(l1- 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

P .047 .048 .051 .057 .058 .059 .074 .084 .096 .106 

Pc .048 .048 .048 .051 .046 .046 .049 .048 .047 .044 

BP .053 .052 .063 .074 .095 .121 .215 .280 .378 .429 

BPc .052 .052 .054 .054 .044 .042 .051 .060 .063 .055 

* Based on 1000 repetitions 

P - Rejection Percentage, Bartlett Standard Errors 
Pc - Rejection Percentage, ARCa-Gorrected Bartlett Standard Errors 
BP a Rejection Percentage, Box-Pierce Statistic . 
BPc • Rejection Percentage, ARCa-Gorrected Box-Pierce Statistic 

table 2.2
 
K.pirical Size Results. Box-Pierce Test
 ... 

And Bartlett Staadard Errors. Based 00 F~rst 5 Antocorrelat~oD8 

(l1- 0 • 1 .2 .3 .4 .5 .6 .7 .8 .9 

P .047 .062 .065 .076 .085 .113 .147 .178 .246 .285 

Pc .049 .054 .051 .048 .046 .050 .046 .042 .049 .047 

BP .049 .066 .074 .112 • 151 .213 .299 .366 .523 .610 

BPc .048 .047 .048 .040 .041 .048 .047 .040 .052 .047 

* Based on 1000 repetitions 

P - Rejection Percentage, Bartlett Standard Errors 
Pc - Rejection Percentage, ARCa-Corrected Bartlett Standard Errors 
BP - Rejection Percentage, Box-Pierce Statistic 
BPc - Rejection Percentage, ARCH-Corrected lox-Pierce Statistic 
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Chapter Three: Weekly Univariate No.Inal Exchange Rate Fluctuations 

3.1) Introduction 

The difficulties involved in explaining exchange rate movements during the post­

1973 float with standard purchasing power parity, monetary, or portfolio balance models 

have become increasingly apparent. Meese and Rogoff (1983a, 1983b) systematically 

document the pervasive out-of-sample empirical failure of these models, and they find 

that a simple random walk model predicts the major rates during the floating period as 

well as (or better than) any of the alternative models. 1 These models (both structural 

and nonstructural) include a flexible price monetary model (Frenkel, 1976; Hilson, 

1979), a sticky price monetary model (Dornbusch, 1976; Frankel, 1979), a sticky price 

monetary model with current account effects (Hooper and Morton, 1982), six univariate 

2time series models, a vector autoregressive model, and the forward rate. The failure 

of the structural models is all the more striking in light of the fact that the Meese-

Rogoff predictive comparisons use ex post realizations of exogenous variables. 

Assertions that dollar spot rates under the recent float have followed approximate 

random walks are common, but formal empirical analysis of the time series properties of 

exchange rates is lacking in the literature. 3 In this chapter we attempt to shed light 

on these issues by using a number of time series techniques to study the stochastic 

structure of the seven major dollar spot rates: the Canadian Dollar (CD), the French 

Franc (FF), the Deutschemark (DM), the Italian Lira (LIR), the Japanese Yen (YEN), the 

Swiss Franc (SF), and the British Pound (BP). We find that, in the class of linear 

time series models with white noise innovations, the random walk is a very good 

approximation to the underlying probability structure; clearly, then, we would not 

1 See also Meese and Rogoff (1983b), Cornell (1977), Hussa (1979), and Frenkel (1981).
2 They also investigated a variety of prefiltering and specification techniques, 

including the T/lnT rule (Hannan, 1970), the Akaike (1974) information criterion, 
the Schwarz (1978) information criterion, weighted autoregressions, and frequency 
domain methods. 

3 For work related to the random-walk hypothesis see Meese and Singleton (1982) and 
Callen, Kwan, and Yip (1985). See also the related early work of Poole (1966, 1967) 
concerning the 1950-1962 Canadian float. 
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expect any other linear model to dominate in terms of predictive performance. However, 

when the class of models under consideration is broadened to allow for possible 

nonlinearlties, we find strong evidence of autoregressive conditional 

heteroskedasticity (Engle, 1982b) in the one step ahead prediction errors, so that the 

disturbances in the "random walk" are uncorrelated but not independent. 

The finding of autoregressive conditional heteroskedasticity (ARCH) in all of the 

exchange rates studied is very important. First, ARCH provides a way of formalizing 

the observation that large changes tend to be followed by large changes (of either 

sign), and small by small, leading to contiguous periods of volatility and stability. 

We show later that even a visual inspection of the data indicates ARCH phenomena, and 

the formal hypothesis testing and estimation procedures which are used enable a 

rigorous formulation. Second, the observed ARCH effects are consistent with the 

leptokurtosis in exchange rate changes, which has been well documented by Westerfield 

(1977) and which all of the series display; this is because ARCH processes possess 

"fat-tailed" unconditional densities, even though their conditional densities are 

normal. Thus, the results indicate that an appropriate and descriptively accurate 

stochastic generating process for the logarithm of spot rates is the random walk with 

ARCH innovations. 

Another substantive result of this study is the formulation of statistically and 

economically meaningful measures of exchange rate volatility. The nature, time 

pattern, and economic effects of exchange rate volatility are recurrent topics in the 

literature. Volatility of exchange rates is of importance because of the uncertainty 

it creates for prices of exports and imports, for the value of international reserves 

and for open positions in foreign currency,4 as well as for the domestic currency value 

of debt payments and workers' remittances, which in turn affect domestic wages, prices, 

output, employment, and other variables. 5 Furthermore, the degree of exchange rate 

volatility affects the ability of a country simultaneously to maintain internal and 

external balance, and is also directly related to market efficiency. With respect to 

4 
Forward markets cannot completely eliminate the risk, because of costly coverage 
(i.e., the forward premium) and transaction costs.

5 See Lanyi and Suss (1982). 
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these matters, exchange rate volatility under fixed and floating regimes and the 

changes (if any) in that volatility over time have been widely debated. Issues such as 

the relationship of Federal Reserve operating procedures to exchange rate volatility, 

the effects of exchange rate volatility on the natural rate of unemployment, the 

effects of volatility on the bid/ask spread as well as on the volume and prices of 

internationally traded goods, and so' on, have received attention. 6 Furthermore, under 

risk aversion, risk premia will form a "wedge" in international equilibrium conditions 

such as uncovered interest parity and may therefore influence the determination of spot 

exchange rates. Risk premia depend on the variability of the distribution of future 

spot rates, which (as shown below) is nonconstant. The resulting time-varying risk 

premia have been studied by Domowitz and Hakkio (1985) and Diebold and Pauly (1987). 

A generally acceptable measure of volatility has not been found, however, although 

several have been proposed. Moving variances, moving average absolute deviations, as 

well aa standard error of moving trend regressions and moving autoregressions, have 

been tried, but for reasons discussed below none is really satisfactory. Moreover, the 

many different measures which have been used often make potentially complementary 

studies incomparable. 7 

First, the "moving sample" approach to volatility calculation can lead to 

seriously misleading results. The implicit assumption is that volatility changes over 

time, and the use of a moving sample represents a crude attempt to capture those 

changes. However, if volatility is changing over time, then the moving sample approach 

is always suboptimal because it throws away information; rather, some attempt should be 

made to uncover and model the nature of the time-varying volatility. On the other 

hand, if the volatility is not time varying, then the moving sample approach will 

6 See, for example, Bergstrand (1983), Zis (1983), Akhtar and Hilton (1984), Levich 
(1985), Kennen and Rodrick (1985), Huang (1981). Frenkel and Hussa (1983), Hooper 
and Kohlhagen (1978), Kreinin (1977). and Cushman (1983). To place the work in 
historical perspective, see also the seminal papers by Friedman (1953) and Johnson 
(1969) • 

7 See, for example, Kennen and Rodrick (1985). By "moving" volatility measures, we 
mean that they are calculated on a moving subset of available data, such as the most 
recent v observations. The most common example is a movong variance about a moving 
mean. 
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produce volatility measures that nevertheless appear time varying, sometimes strongly 

so. Second, volatility measures not based on sample second moments are inconsistent 

with mean-variance expected utility analysis. Thus, for example, measures based on 

average absolute deviations are of limited value. Finally, the conditional, rather 

than the unconditional, second moment should be the focus when studying volatility, 

since any uncertainty in exchange rate movements which can be removed by conditioning 

upon other variables or upon the past is economically irrelevant. In this respect, the 

use of the standard error of moving trend regressions or autoregressions is 

appropriate, but the approach remains subject to the same criticisms regarding moving 

samples. 

The problem, of course, is that standard tests and models of unconditional 

heteroskedasticity are irrelevant, while tests for conditional heteroskedasticity are 

difficult to apply, because they require knowledge of the "forcing variables" which 

drive the variance. ARCH models, on the other hand, provide a parsimonious and 

accurate description of an evolving conditional variance. We may view the ARCH model 

as using a set of latent variables (past squared innovations) to drive the conditional 

variance. By estimating an appropriate ARCH model for each exchange rate, we can solve 

for the implied time series of conditional variances, and thus obtain a meaningful 

measure of volatility for that rate. 

Finally, our finding of random walks with ARCH disturbances means that, 

although ~lnSt cannot be forecast, its changing variance can be forecast. 8 Thus, ARCH 

may be exploited to obtain time-varying confidence intervals for point forecasts of 

exchange rate changes (zero for a random-walk model). In periods of high volatility 

these intervals are large, and in less volatile periods they are smaller. This stands 

in marked contrast to the standard constant variance random-walk model, which ignores 

the changing environment in which forecasts are produced and the associated temporal 

movements in forecast error variances. 

Here and throughout, InS t is s generic expression standing for any or all of the log 
exchange rate series. 
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3.2) HOving Sa.ple Moments as Volatility Measures 

Before proceeding further, we pause to illustrate the misleading results that can 

arise when moving sample moments are used as volatility measures. Consider the time 

2series Yt * N(O, 0 ) . In this case, the conditional variance, which happens to be 

equal to the unconditional variance, is not time-varying. A researcher looking at the 

data, however, has no immediate way of knowing that fact and so we consider the 

properties of the usual moving variance calculated about a moving mean. The N-period 

moving variance is given by: 

where Yt is the N-period moving mean given by: 

N 
Yt a (1 / N+l) ~ Y i 

i-O t-

We can rewrite this as: 

N 2 ~ N 
- (1 / N+l) ! Y i + Yt - 2Yt(1 / N+l) ! Y i 

i-O Y- i-O t­

N 2 -2 
-(1 / N+l) ! Yt-i - Yt

i-o 

If we let (Nt(O, I)} be an iid sequence of Gaussian random variables with mean zero 

and variance one such that Y - 0 Nt ,then:t 

N 
2St a (1 / N+l) ! (0 N )2 - Yt

i-O t-i 

2 N 2 -2 
• (0 / N+l) ! Xl -i Y

i-O ' t - t 
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2
where Xl,t is a time-t realization of a chi-square random variable with one degree of 

freedom such that xi.t ~ N~. Because we want to study the time-series properties of 

{St} • it will prove useful to adopt the normalization: 

Then, 

N 2 
i:O Xl, t-i 

1-- ­
A 8 

Part A of this expression is an N-period moving-average process whose innovations 

follow a chi-square distribution with one degree of freedom. Furthermore, it is 

noninvertible for all N, and therefore displays substantial persistence. This is one 

-' 
source of the spurious temporal movements in St The other source is the term 

denoted by 8, which is particularly interesting because of the nonlinearities 

introduced through For example, consider the first-order case N - 1. Then: 

2 2 -2 
= //2 + //2 - YXl,t Xl,t-l t
 

2 2 2 2 2 2
 
- 0 / 2 + 0 / 2 - 1/4 Yt - 1/4 - 1/2 YtYt-lXl,t Xl,t-l Yt-l 

_ 0 2 / 2 2 2 2 2 2(aN )2 - 1/4 -1/2 (0 NtNXl,t + 0 /2 Xl,t-l - 1/4 t (aNt-I) t_ l) 
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The nonlinearity is clearly evident in the N term.tN t_1 

To highlight these effects, we generate 100 pseudorandom normal deviates with zero 

mean and unit variance using IMSL subroutine GGNML, and the time-series of two-period, 

ten-period, and twenty-five-period moving sample variances are computed. They are 

shown in Figures 3.1 and 3.2. While all three series are centered at unity, they 

display substantial time variation. As expected, the amplitude of fluctuations is 

higher for the two-period moving variance, while the persistence is stronger for the 

ten- and twenty-five-period moving variances. Either way, however, the uncritical use 

of moving sample momenta (or residuals from moving regressions) as volatility measures 

may lead to severe data misinterpretation. 

3.3) the Daes 

We atudy weekly spot rates from the first week of July 1973 to the second week of 

August 1985. All data are interbank closing spot prices (bid side), Wednesdays, taken 

from the International Monetary Markets Yearbook. Wednesdays were chosen because very 

few holidays occur on that day, and there is no problem of "weekend effects." 

By "weekend effect" we do not necessarily mean a calendar effect associated with 

the regular occurrence of weekends, although such effects may arise as well. More 

generally, we are referring to the temporal line-up problem of, for example, the 

occurrence of weekends in a daily sample. In the AR(1) representation: 

for example, we have good reason to suspect that the relationahip between Monday (t) 

and Friday (t-1) differa from that of contiguoua business daya, due to the different 

amount of information coming to the market over the weekend. 

In our sample of 632 observations, fewer than eight holidays occur on a Wednesday; 

when they did, the observation for the following Thuraday was uaed. Working (1960) and 

Meese and Rogoff (1983a) argue that point sample data are more desirable than weekly 
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averages, since if the true model follows a random walk on a day to day basis then the 

series of weekly averages exhibits positive serial correlation. Following standard 

convention, all exchange rates except the pound are measured in units of local currency 

per dollar. 

All of the analysis presented below is based on the log spot rate, in order to 

conform with the literature and avoid some technical problems. The log specification 

avoids prediction problems arising from Jensen's inequality {Meese and Rogoff, 1983a) 

and (1 - L)lnS has the convenient interpretation of approximate percentage change. 9 
t 

The data were not seasonally adjusted, due to the spurious serial correlation 

which filters such as X-ll can introduce. (See Grether and Nerlove (1970), Cleveland 

and Tiao (1976) and Nerlove, Grether and Carvalho (1979).) Instead, we chose to use 

time and frequency domain approaches to investigate the presence of seasonality and 

model it if found to occur; this is in the spirit of the new "model-based" approach to 

seasonal adjustment as surveyed in Bell and Hilmer (1984). Of course, temporal 

arbitrage makes pronounced seasonality unlikely in exchange rates, and the data show no 

evidence of it. 

3.4) Model Po~l.tio. 

Plots of the log exchange rates are given in Figures 3.3 through 3.9. The 

appreciation of the dollar which began in 1980 is evident in each of the exchange rates 

studied. Depreciation of the currency is indicated by an exchange rate increase, 

except for the BP, for which the opposite is true. Similarly, the beginnings of the 

recent decline in the dollar are evident in the last few observations of each series. 

The pre-1980 period, on the other hand, is characterized by less coherence in the 

exchange rate fluctuations, with the SF, YEN, BP and OM appreciating versus the dollar, 

Jensen's inequality ensures that E ( ~) t E~S)' where S is the exchange rate 

measured in units of foreign currency per unit of local currency. Thus, for 
example, while the OM/S rate is the reciprocal of the $/OM rate, their expected 
values are not reciprocals. 
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while the FF, LIR and CD either held steady or depreciated. 

A visual inspection indicates nonstationarity in each of the series, although its 

form may not be the same for each series. For example, the OM, YEN, SF and BP display 

no apparent trend; instead, they appear to be homogeneous nonstationary processes, 

meaning that they are stationary and invertible after suitable differencing. The CD, 

FF, and LIR, on the other hand, have a prolonged history of depreciation versus the 

dollar, so that a "trend plus irregular" model might be more reasonable, where the 

irregular component could be either stationary or integrated. Thus, because 

homogeneous nonstationarity of order one implies that the local behavior of the series 

is invariant up to level, while homogeneous nonstationarity of order two implies 

invariance up to level and slope,10 the graphs indicate that a first difference is 

almost certainly required to achieve stationarity, and that a second difference may be 

required as well. Differencing must be undertaken with caution, however, because if 

the true model is trend plus a stationary disturbance, then differencing will remove 

the trend but introduce a unit root into the moving-average component of the stationary 

disturbance. Trended and integrated series also have very different properties in 

terms of prediction, as we show below. 

The sample autocorrelation functions are calculated for each series up to lag 40 

and clearly indicate homogeneous nonstationarity, as evidenced by the fact that all are 

positive, fail to damp, and have very smooth, persistent movements. 11 Even the YEN, 

whose autocorrelation function declines the most quickly, has a sample autocorrelation 

of .848 at lag 20. The first twelve sample autocorrelations of each series are given 

in Table 3.1. 

The sample partial autocorrelation functions are also calculated for each of the 

seven exchange rates, and the results are qualitatively the same for each series: each 

has a very large and highly significant value (extremely close to one) at lag I, while 

the values at all other lags are insignificantly different from zero. Specifically, 

the lag 1 sample partial autocorrelations for the CD, FF, OM, LIR, YEN, SF, BP are, 

10 See Box and Jenkins (1976).
11 This is conforms to the results of Wichern (1973) and Granger and Newbold (1977). 
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respectively, .99, 1.00, 1.00, 1.00, 1.00, 1.00 and .99. It is clear that the distinct 

cutoff in the sample partial autocorrelation functions after lag I, the smooth and 

slowly declining behavior of the sample autocorrelation functions, and the values of 

the highly significant first sample partial autocorrelation strongly suggest first 

order homogeneous nonstationarity in general, and the random walk in particular, for 

each series. The first twelve sample partial autocorrelations are given in Table 3.2. 

Estimation of the spectral density functions confirmed these results; each was 

absolutely dominated by a single large low frequency peak, sharply concentrated at the 

origin. 12 

To summarize, then, we have argued that each series is highly nonstationary and 

presented some preliminary evidence indicative of random walk, or at least homogeneous, 

behavior. As pointed out earlier, however, we must be wary of uncritical 

differencing. Four candidate models are therefore considered: 

HI) InS is stationary about a nonzero mean: 

where all roots of t 1 , and 6 1 are outside the unit circle. 

H2) InS is integrated of order one about a nonzero mean: 

where all roots of t 2 and 6 are outside the unit circle.2 

H3) InS has stationary deviations from linear trend: 

where all roots of t and 6 are outside the unit circle.3 3 

H4) InS is integrated about a linear trend: 

The weights were 1/25 ••• 7/25 ••• 1/25. 
12 
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about trend. 

Thus. while overdifferencing leads to noninvertibility, the parameters of the 

series may still be estimated in a consistent and unbiased fashion. Inappropriate 

trend removal, on the other hand, leads to incorrect forecasts and prediction intervals 

at all forecasting horizons. Thus, the reason why in the tests below the null, as 

opposed to the alternative, is that of a unit root is because of the relative 

importance of errors of differencing versus errors of not differencing. As Dickey, 

Sell and Miller (1986) note: 

"Failure to include a differencing operator when it is needed results in bounded 
forecast intervals that must eventually be too narrow, giving unreasonable confidence 
in the forecasts. especially the long term forecasts. This can be especially true if a 
polynomial trend plus stationary error model is used when differencing is needed." 

In order to investigate the possibility of unit roots in the autoregressive lag-

operator polynomials of our exchange rate series, while nevertheless allowing for trend 

or-nonzero mean under the alternative, a number of formal unit root tests are 

performed. In the appendix to this chapter we give a detailed description of all 

testing procedures. 

Solo's (1984) test is a Lagrange multiplier (LH) test for unit roots in general 

ARKA models; since it is an LH test, it requires estimates only under the null of a 

unit root. We therefore begin by differeAcing the series and formulating appropriate 

models. Use of optimal model specification procedures, such as the Schwarz (1978) 

information criterion, as well as the usual diagnost1cs such as the sample 

autocorrelation function. reveal no evidence of a moving average component in any of 

the seven (1 - L)lnSt series, however. 13 The simpler Dickey-Fuller test for unit roots 

13 The Schwarz information criterion (SIC) is a simple modification of the !kaike 
(1974) information criterion. Hannan (1981) has shown that it is a consistent 
identification procedure, in the sense that in large samples it identifies the correct 
model with probability one. This highly desirable property, which does not hold for the 
AIC, makes the SIC a powerful model specification tool. The SIC is given by: 

\ 

SIC - In aML + l~T (p + q) 

and the model which minimizes SIC is selected. 



14 

46 

statistic has been tabulated by Dickey (1976) using Monte-Garlo methods and is reported 

in Fuller (1976) as T (It does not have the t-distribution.) 
r 

The reader may easily verify that in the simpler case in which only a nonzero mean 

1s allowed under the alternative. we have: 

where 
p 

Ki = u (l + Ell) 
j =1 j 

.."'.~ -
and the other parameters are as defined above. The asymptotic distribution of the 

studentized statistic of 8i differs from that of TT and, following Dickey, We denote 

it by Again. the percentiles are given in Fuller's book. 

The results of the Til and T tests are given in Tables 3.3 and 3.4. 
r 

respectively. While it is desirable to allow for trend under the alternative (TT)' 

if. in fact. no trend is present then Til will be a more powerful test; for this 

reason. the results of both tests are reported. The basic message is quite clear: 

each series contains a unit root. regardless of the possible presence of trend. 14 Some 

evidence of such trend is displayed by the CD. FF. and LIR. In addi t Lon , the small 

magnitude and general statistical insignificance of the 8 • j ~ 2••••• P. indicate
j 

very little serial correlation in any of the first-differenced series. 

The Dickey-Fuller tests may be interpreted in several ways: First. they may be 

viewed as tests of a unit root(s) in the autoregressive representations of the seven 

exchange rates. Because we choose a cutoff lag of seven (including the unit root). the 

test is strictly valid only if the true processes followed by the exchange rates are 

AR(p). P "7. Of course. if the underlying models are full ARMA processes. then the 

fitting of a finite AR representation can only be viewed as an approximation. Said and 

Dickey (1985) show. however. that even if the underlying process is a full ARMA. the AR 

approximation is a good one. The only issue is the approprIate degree of the AR 

approximation (p); they show that one should make p = 0p(N-1/ 3). so that the value p ~7 

This is consistent with the results of Meese and Singleton (1982). 
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used here is more than adequate for N = 632. 

Further tests reject conclusively the null of an additional unit root in any of 

the seven series. (See Tables 3.5 and 3.6.) Thus, regardless of the possible presence 

of linear trend, each series is appropriately made stationary by taking a first 

difference. To guard against deviations from nominal test size due to the pretest 

implications of the sequential testing procedure, a formal joint test of the null 

hypothesis of two unit roots is also performed. 

The model (with trend allowed under the alternative) becomes: 

The null of two unit roots	 is given by: 

(B B B B ) 1 2 (0, 0, 1, 1)'
O' l, 2, 3

and the null distribution of the "F" test of this hypothesis has been tabulated by 

Kasza and Fuller (1979). (It does not have the F-distribution.) The results are given 

in Table 3.4, in the column labled "F." As expected, we reject the null for each rate, 

further confirming the result of one, but not two, unit roots in each series. 

To summarize the results thus far, then, a wide range of diagnostic tools in both 

the time and frequency domains indicates that all of the log exchange rates have 

"integrated" time-series representations. Specifically, each rate has one unit root in 

its autoregressive lag operator polynomial. A first difference, then, is sufficient to 

render each series stationary. 

Finally, for later reference it should be pointed out that Pantula (1985) shows 

that the asymptotic distribution of the Dickey-Fuller statistics is invariant to condi­

tional heteroskedasticity of the autoregressive type. This is important, in the sense 

that while our unit root tests are tests for a special type of serial correlation, they 

are robust to autoregressive conditional heteroskedasticity. This is not true of 

standard tests for stationary serial correlation such as the Durbin-Watson test. 

The differenced series appear in Figures 3.10 - 3.16. A visual inspection of 

these tllnS series reveals no .evidence of serial correlation, although there does seem 



48 

to be persistence in the conditional variances, as we discuss in detail below. The 

sample autocorrelations are calculated for each ~lnS series up to lag 40, and in each 

case they strongly indicate white noise. The first twelve sample autocorrelations for 

each series are given in Table 3.7, along with their asymptotic standard errors 

(Bartlett, 1946}.15 For each series, all sample autocorrelations are very small, and 

almost all are within the Bartlett two standard error bands. The sample partial 

autocorrelation functions and sample inverse autocorrelation functions similarly 

indicate white noise. In addition, since the Bartlett "tests" are at the (approximate) 

5% level, we would expect roughly 5% of the sample autocorrelations to appear 

significant, purely on the basis of type I errors. The actual percentage in Table 4 is 

7%, which is in close agreement. 

The Ljung-Box (LB) statistics, which are reported in Table S for lags of 6, 12, 

and IS, also generally indicate the absence of serial correlation, although the results 

are not so conclusive. Note that since no parameters have been estimated, no degrees 

of freedom are lost. Thus, for example, the LB statistic at lag IS has a null 

2
distribution of XIS' With few exceptions, for all series at all lags, the null of 

white noise cannot be rejected at the 1% level. At other levels the results are mixed, 

with some s~ries, such as the SF, not enabling rejection at any reasonable level, and 

others enabling rejection. It must be remembered that due to the large sample size, it 

becomes very easy to reject, so that it is crucial to examine the magnitude and 

importance of any deviations from white noise in addition to their statistical 

significance. (This is in fact the reason for presenting the sample autocorrelations 

in Table 3.7). Indeed, from a decision-theoretic Viewpoint, we should use stringent 

significance levels when working in large samples, in order to achieve very small 

probabilities of both type I and type II errors, rather than arbitrarily fixing P(type 

I) at, say, 5%, and letting P(type II} + O. In fact, if conditional 

heteroskedasticity is present, we would expect to see large values of serial 

correlation test statistics, even if the series displays no serial correlation, as 

15 While Bartlett's standard errors depend upon normality, leptokurtic deviations from 
normality such as exist in the foreign exchange markets will simply make the tests 
more conservative. 
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shown in chapter 2. This view is supported by the Domowitz-Hakkio (1983) 

heteroskedasticity-robust LM test values shown in Table 3.9. 

Spectral analyses also indicate that the first difference of each 6lnS series is 

close to white noise; the estimated spectral density functions display no noticeable 

power concentrations in any particular frequency bands. 16 In addition, Fisher's (1929) 

kappa, reported in Table 3.8, does not enable rejection of the the null at any 

reasonable level. 17 Fisher's kappa is the ratio of the maximum to the average 

periodogram ordinate: 

FK MaxP / (SumP )a 

M-l 

where MaxP is the maximum periodogram ordinate and SumP is the sum of the M - 1 

periodogram ordinates. Under the null hypothesis of independent normally distributed 

observations, 

where k is the largest integer less than g-l. Tables are given in Fuller (1976), inter 

alia. 

There is no indication of seasonality in any of the first differenced series, 

whether analyzed in the frequency or time domain. In fact, taking a seasonal 

L52)lnSdifference to produce the series (1 - L)(l - t introduces (spurious) seasonality 

L52)lnSin all cases. The sample autocorrelation functions of (1 - L)(l - for allt, 

exchange rates, display sharp and significant spikes at lag 52, whereas the earlier 

first differenced series did not. 

Finally, in order to access the distributional properties of the 

61nS series, a wide range of descriptive statistica is also reported in Table 3.8, 

including mean, variance, standard deviation, coefficient of variation, skewness, 

kurtosis, Kolmogorov's 0 statistic for the null hypothesis of normality, the Kiefer­

16 A simple triangular lag window was used, with weights 1/25, 2/25, ••• , 7/25, 6/25, 
••• , 1/25.

17 The only exception is the CO, for which we do reject at the 2% level. In light of 
our time domain results, this is quite anomolous, and we ascribe it to a type I 
error. 
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Salmon (l983) Lagrange multiplier normality test, and a wide range of order 

statistics. As expected, we cannot reject the null of a zero mean, except for those 

series which appear to contain a linear trend in nondifferenced form (CD, FF, LIR). It 

is important to note also that in each case the hypothesis of normality is rejected, 

whether an interquartile range test, Kolmogorov's D, or the Kiefer-Salmon test is 

used. Evidence on the nature of deviations from normality may be gleaned from the 

sample skewness and kurtosis measures. While skewness of each series is always very 

close to zero, the kurtosis (shifted so that zero kurtosis corresponds to normality) is 

very large, ranging from 1.23 for the OM to 8.09 for the LIR. Normal probability plots 

were also generated for each series and further confirmed this finding. In additIon, 

the Kiefer-Salmon Lagrange multiplier statistic: 

N 
KS 

6 

2
distributed as X under the null of normality, may be decomposed into two

2 
2

asymptotically independent Xl variates, the first being an LM test for normal skewness 

and the second, an LM test for normal kurtosis. The sample moments which enter 

the KS statistic must be calculated from residuals standardized by u the maximumHL' 

likelihood estimate of the innovation variance. The test statistics reported in Table 

J.8 show the clear nonnormality of each series, most of which is due to 

leptokurtosis. For a fairly large fraction of the series we also reject the null of 

zero skewness, but as shown above the skewness is in fact negligibly small, the 

statistical rejection being due to large sample size. 

In Table 3.10 the same test statistics are presented for the residuals from a 

third-order autoregression inclUding a constant term. The results are similar, except 

that, as expected, the LB statistics fail to reject the null of uncorrelated dis­

turbances for each series. We conclude that, while "61nS 1s close to white noise for 

each series, any slight serial correlation present is well captured by an AR(J) model. 
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In conclusion, we have shown that a wide variety of techniques leads to the same 

result: the evolution of the conditional mean of the stochastic structures of the seven 

exchange rates studied are such that ~lnS is close (in the class of linear time series 

models) to a random walk. ~e now proceed to investigate further the properties of 

these "random walks." 

3.5) E.pirical Results 

The results of the LM test (TR2 version) for ARCH in the ~lnS series (both raw 

variables and AR(3) residuals) are given in Table 3.11; the existence of a strong ARCH 

effect in all series, with the possible exception of the FF, is clear. (The nulls of 

no first. second, third. fourth, and eighth order ARCH are rejected at the 1% level for 

each series except the FF.) Unfortunately, these tests are of little use in specifying 

the appropriate order of the ARCH processes, since they test the joint null 

that a 1 - ••• - a p = O. Thus, while they almost always reject, that does not mean 

that all the ai's are necessarily nonzero. Likelihood ratio tests. on the other hand, 

enable us to test subset restrictions such as, for example. - a - - 0 in ana 8 9 a 10 

ARCH(10) model. For this reason, high order (ARCH(12» models are estimated by maximum 

likelihood for each series, and likelihood-ratio tests are then used to test a wide 

range of exclusion restrictions. The ARCH(12) results for the seven currencies are 

given in Table 3.12. The Davidon-Fletcher-Powell algorithm is used to maximize the 

likelihoods; square roots, rather than the levels, of all ARCH parameters are estimated 

in order to ensure that a O > 0 and a i ~ O. for all i-I, •••• p. By the invariance 

property of the maximum likelihood estimator, the squared values of these estimates are 

the HLE's of the parameter levels. 

The log likelihood was stated earlier as: 

T 
InL(B. a; AlnS, X) - const - ~ Incr - 1/2 

t-1 t 

This is of course conditional on {AlnS X }O since. for example,
t, t t - .,,+1 
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'(;I the exact likelihood function would require knowledge of the uncondi­

H~~sity function of the ARCH process, a closed-form expression for which is not 

(see Pantula (198S).) However, the particular initial conditions used will 

be asymptotically inconsequential. We therefore follow standard practice and condition 

on the first p observations. The point log likelihoods are therefore summed from t = 

p+l to T. 

Table 3.12 shows the estimated square root parameter values (with their associated 

t-statistics), iterations to convergence, log likelihoods, the sums of the ~i ' and the 
p 

unconditional variances, aO I (1 - L a A wide range of ARCH (p.), p. < 12, subset
i).i=1 

models is estimated, and likelihood-ratio tests are performed to test the exclusion re­

strictions. All currencies have significant ARCH effects at lag 10 or higher, and, in 

fact, the CD, OM, and BP have significant twelfth order ARCH Effects. Although we can 

not reject the null of all ~ al2 = 0 for the FF, LIR, and YEN, and we can not reject 

the null of al2 = 0 for the SF, the twelfth order specification is retained in order to 

maintain conformity among the models since the large number of degrees of freedom 

enables us to maintain the twelfth order model at little cost. Similarly, an intercept 

term to pick up trend and three lags of ~lnS to pick up any serial correlation present 

in any of the series are included. Although our earlier results show little, if any, 

serial correlation, it is important that it be modeled, if present, in order to avoid 

confusion with ARCH effects. Again, there is little cost in terms of lost degrees of 

freedom. Thus, the models which were estimated are all third order AR representations 

(With allowance for a nonzero mean) with twelfth-order ARCH disturbances: 
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As expected, the intercept and AR parameters are often insignificant and always 

very small, while many of the ARCH parameters are highly significant and of substantial 

magnitude. The intercept term is insignificant for all exchange rates; the CD, FF and 

LIR, which had significant means according to the t-tests presented in Table 3, now do 

not. This difference is due to the fact that we have now modeled the conditional 

heteroskedasticity, as well as the slight serial correlation, that appears in each of 

those series. All but one of the twenty-one autoregressive lag coefficients for the 

seven currencies are positive, all are very small, and most are insignificant, as 

~xpected. The currencies with significant autoregressive terms are the CD, LIR and 

YEN, each of which has two significant lags. 

All of the laO coefficients are highly significant for each series, and they are 

substantially smaller then the sample standard deviations shown in Table 4, or the 

standard errors of the innovations from classical AR(3) models. This is because the 

lagged squared innovations make a large contribution to the conditional variance, as 

indicated by the large number of significant 

lai coefficients, and the resulting ARCH effects also booat the unconditional variance. 

Convergence is obtained for each exchange rate in no more than thirty iterations, 

where the initial conditions for maximum likelihood iteration are given by the least 

squares estimates. Furthermore, the log likelihood was noticeably single-peaked, 

leading to the same parameter estimates regardless of initial conditions. It is of 

interest to note the substantial number of significant ARCH coefficients for the FF 

(and their sum of .7), in spite of the fact that the earlier 1M test indicated little 

ARCH. Also, the LIR ARCH parameters sum to 1.258, indicating nonexistence of 

unconditional second moment. 18 

Engle (1982b) and Engle, Lilien,and Robins (1987) argue on a priori grounds that 

the ai' i - 1, "" P should be monotonically decreasing. This follows from the basic 

intuition of the ARCH model, which is that high volatility "today" tends to be followed 

It should be noted that most of the implied unconditional moments are somewhat 
larger than their counterparts from Table 3. This may be due to the overpara 
meterized nature of the modela, which can only increase the implied unconditional 
variance, since all ARCH parameters are constrained to be positive. 
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by similar volatility "tomorrow," and vice versa. In this spirit, it is unreasonable 

to let a squared innovation from the distant past have a greater effect on current 

conditional variance than a squared innovation from the recent past. This intuition 

may be enforced by restricting the n i • l ••• p to be monotonically decreasing. Both
i• 

"Fisher lags" (linearly declining weights) and geometric lags are explored, Note that 

both of these are two parameter models, as follows: 

Linear 

Geometric 

21 + 8£2 + 
(1 £ 1"· e • "ot t- t-p t-l 

The estimates of the linearly constrained ARCH models are given in Table 3.13. 

Use of the maximized log likelihoods of the linearly constrained and unconstrained 

2
models to construct formal likelihood-ratio tests statistics (distributed XII under the 

null that the linearly restricted model holds) shows that the data generally do not 

strongly reject the restriction. This stands in marked contrast to the geometrically 

constrained model, which is decisively rejected for all exchange rates, The geometric 

weights simply decrease too quickly, while the linear weights allow a slower decline. 

Inspection of Table 8 reveals that the estimates and significance of 

p, PI' P2, and P3 are little changed, and. as before. the estimates of laO are highly 

significant. In addition, all 16 estimates are highly significant and range from .08 

to .12. Furthermore, for each exchange rate, the sum of the implied lag weights, given 

by 78 6 , is slightly smaller than the corresponding figure for the unconstrained 

model, leading to a smaller unconditional innovation variance. This occurs because the 

linearly decreasing lag weights remove the influence of occasional large 

unconstrained n estimates at high lags.i 
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The estimated conditional variances are easily obtained. We begin with the 

estimated disturbances: 

j = CD, FF, OM, LIR, YEN,SF, -BP. 

The estimated conditional variance is then given by: 

12 
~2 '2 
(J sa + E a e 
jt OJ ij j ,t-i 

j - CD, FF, OM, LIR, YEN,SF, BP. 

The time series of estimated conditional variances from the constrained ARCH(12) 

model are graphed below in Figures 3.17 - 3.23. 

While there are substantial "own country" effects in the movements of the 

conditional variance of each rate, similarities in the qualitative conditional variance 

movements are apparent. There is a tendency toward high conditional variance in the 

very early part of the float, due largely to the uncertainty created by the 70% 

increase in the posted price of Arabian crude oil of October 16, 1973, and the 

additional 100% increase of December 24. As we progress to the middle of the 1970's we 

see generally smaller conditional variances as the gloomy economic news translated into 

relatively smooth dollar depreciation, culminating in the historic lows achieved 

against the OM, YEN and other major currencies on December 29, 1977. The year 1978, 

particularly the latter part, brings a return of higher volatility, as large 

intervention efforts by the Federal Reserve and the Treasury begin to turn the dollar 

around. The further OPEC three-stage 14.5% crude oil price boost increases economic 

uncertainty, and the year ends with widespread ression forcasts in spite of a still 

(relatively) vigorous economy. Another period of very high conditional variances 

arises in mid-1981, as interest rates in the 20% range bring the dollar to new highs 

against the major European currencies. The CD also reaches a post-1931 low on July 31, 

closing at 80.9 U.S. cents. As inflation subsides, so too does exchange rate 
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volatility, but it does begin to grow again toward the end of the sample. 

The ARCH-based prediction intervals clearly capture and exploit these movements in 

conditional variance. As an example, the ~lnSDM series is plotted in figure 3.24, 

along with its ARCH-based Za and its classical 2cr l-step ahead prediction
t 

intervals. The classical 2cr bands are basically time-invariant and horizontal at 

± 3%. Some high-frequency movement in the classical bands occurs, of course, due to 

the slight serial correlation which produces slightly changing l-step ahead point 

forecasts. Movements in the ARCH-based prediction intervals are more systematic. being 

much tighter in tranquil times and wider in more volatile periods. 

3.6) Conclusions 

We show that the percentage changes of nominal dollar spot exchange rates under 

the recent floating rate regime have approximate random-walk conditional mean behavior 

but contain substantial nonlinearities which .anifest themselves in the form of ARCH 

effects in the conditional variance. This leads to economically and statistically 

meaningful measures of exchange rate volatility, explains the leptOkurtosis which has 

previously been found in the distribution of exchange rate changes. and enables the 

construction of superior prediction intervals. 
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Table 3.1
 
Weekly Nomnal Dollar Spot Rates
 
SallPle Autocorrelations For InS
 

Lag CD FF OM LIR YEN SF BP 

1 .99 1.00 .99 .99 .99 1.00 .99 
2 .99 .99 .99 .99 .99 .99 .99 
3 .98 .99 .98 .98 .98 .98 .98 
4 .98 .98 .97 .98 .97 .98 .98 
5 .97 .97 .97 .97 .97 .97 .97 
6 .97 .97 .96 .97 .96 .97 .96 
7 .96 .96 .95 .96 .95 .96 .96 
8 .96 .96 .95 .96 .94 .95 .95 
9 .95 .95 .94 .95 .93 .95 .94 
10 .95 .94 .93 .95 .93 .94 .93 
11 .94 .94 .92 .94 .92 .93 .92 
12 .94 .94 .92 .93 .91 .92 .92 

Table 3.2 
Weeltly Nomnal Dollar Spot Rates 

SallPle Partial Autocorrelations For InS 

Lag CD FF OM LIR YEN SF BP 

1 .99 1.00 .99 .99 .99 1.00 .99 
2 -.02 .04 -.03 .01 -.08 -.07 .05 
3 -.02 -.08 -.10 -.05 -.10 -.01 -.02 
4 .01 .00 -.02 .03 -.06 -.03 .00 
5 .01 -.02 -.03 -.02 -.03 -.06 -.06 
6 -.00 -.03 -.05 -.03 .00 -.04 -.06 
7 -.00 .04 .06 .00 .02 -.04 .01 
8 .01 .01 -.00 -.03 -.00 .02 -.02 
9 -.01 -.03 -.06 -.02 .03 -.02 -.06 
10 .01 -.01 -.02_ -.00 -.01 -.01 .03 
11 -.02 -.02 -.03 -.01 .06 -.04 .01 
12 .01 -.01 -.03 -.01 .01 .01 -.02 



Table 3.3 
. Weekly Motinal Dollar Spot latea 

Teat 'or Unit Root in InS, Mouero Mean AlIOlled Under the AlternaUye 

t.lnS const InS(-1) HnS(-l) t.lnS(-2) HnS(-3) HnS(-4) t.lnS(-5) HnS(-6) 

CD .00047 
0.40) 

-.00008 
(-.04)'" 

.11020 
(2.73)"""'" 

.07363 
(1.82)'" 

-.93947 
(-.34) 

-.08294 
(-2.05)""" 

-.00044 
(-.01) 

-.03537 
(-.88) 

FF .00001 
(.00) 

.00061 
(.30)""" 

.04886 
0.22) 

.10077 
(2.52)"''''''' 

.05169 
0.28)'" 

.00120 
(.03) 

-.073743 
(-1.84)'" 

-.06666 
(-1.67)'" 

OM 

LIR 

.0286 
(.94) 

.00095 
( .10) 

-.00312 
(-.89) 

.00011 
(.08)'" 

.07045 
0.77)'" 

.01961 
(.49) 

.06419 
0.60)'" 

.07926 
(1.97)""" 

.03954 
(.98) 

.09217 
(2.25)""" 

.01077 
(.27) 

.01109 
(.27) 

-.00179 
(-.04) 

-.07886 
(-1.93)'" 

-.07191 
(-1.81)'" 

-.02507 
(-.61) 

Iii 

YEN .03504 
(1. 60) 

-.00637 
(-1.61) 

.06043 
0.50) 

.10695 
(2.66)*** 

.05718 
0.41) 

.05221 
0.28 ) 

-.00315 
(-.08) 

-.02854 
(-.70) 

SF .00427 
( 1. 60) 

-.00589 
(-1.79) 

.05805 
0.45) 

.02279 
(.56) 

.04091 
0.00) 

.04124 
(1.01 ) 

.02275 
( • 56) 

-.02140 
(-.53) 

BP .00034 
( • 19) 

-.00191 
(-.71) 

.03027 
(.74) 

.02500 
(.61 ) 

.04710 
(1.16) 

.10210 
(2.52)"""'" 

-.00627 
(-.15) 

-.05500 
(-1.33) 

* Significant at the 10% level 
"'* Significant at the 5% level 
"''''''' Significant at the 2% level 



TABLE 3.4 
Weekly No_oal Dollar Spot Bates 

rest lor 1JQit loot io laS, Tread Allowed Under the Alternative 

Aln5 Const t In5(-I) AlnS( -1) Aln5(-2) 11lnS(-3) 11lnS(-4) 11lnS(-5) 11ln5(-6) F 

CD -.00075 .00001 -.02084 .11783 .08271 -.00459 -.07391 .00822 -.02566 31.40*** 
(-1.37) (2.84)*** (-2.74) (2.93)*** (2.05)** (-.11 ) (-1.83)* (.20) (-.64) 

FF .00485 .00001 -.00383 .04921 .10116 .05292 .00274 -.07274 -.06526 30.90*** 
(1.08) (1.71)* (-1.16) (1.23 ) (2.53)*** (1.32 ) (.07) (-1. 81)* (-1.64)* 

OK .00225 
(.73) 

.00000 
(1. 39) 

-.00399 
(-1.12) 

.06911 .06280 
(1.73)* (1.56) 

.03898 
(.97 ) 

.00972 
(.24) 

-.00383 
(-.10) 

-,07355 
(-1.85)* 

28.34*** 

LIR .04200 .00001 -.00648 .02216 .08162 .09472 .01442 -.07538 -.02162 26.71*** 
(J'1 
co 

(1.52) (1.58) (-1.47) (.55) (2.03)** (2.32)** (.35) (-1.84)* (-.53) 

YEN .04974 -.00000 -.00885 .06129 .10792 .05832 .05379 -.00111 -.02641 22.84*** 
(1.85)* (-.95) (-1.86) (1.52 ) (2.68)*** (1.44 ) (1.32) (-.03) (-.65) 

5F .00215 .00000 -.00458 .05642 .02065 .03899 .03881 .01988 -.02416 24.49*** 
(.59) (.86) (-1.26) (1.40) (.51) (.96) (.95) (.48) (-.59) 

BP .00404 -.00001 -.00522 .03156 .02635 .04873 .10393 -.00441 -.05311 23.70*** 
(1.11) (-1.17) (-1.33) (.77) (.65) (1.20) (2.56)*** (-.11) (-1.28) 

* significant at 10% level 
** significant at 5% level 

*** significant at 2% level 



Table 3.5 
Weekly 110111_1 Dollar Spot lates 

Test Por Uuit root 1D t>lnS 

li.2l nS li.lnS(-l) li.2I nS(-2) s 2I nS(-3) li. 2InS(-3) li. 2InS(-4) li.2I nS(-5) t;2I nS(-b) 

CD -.95671 
(-10.18)*** 

.07267 
(.84 ) 

.15302 
(1.94)* 

.14020 .06178 
(1.98)**. (.98) 

.07139 
(1.33 ) 

.04929 
(1. 22) 

FF -.88617 
(~9.61)*** 

-.05256 
(-.62) 

.05338 
(.68) 

.11287 
(1.57) 

.12016 
(1.85)* 

.04211 
( •75) 

-.00583 
(-.14) 

OM 

LIR 

-.85727 
(-9.18)*** 

-.69468 
(-7.91)*** 

-.07012 .00016 
(-.81) (.00) 

-.26714 -.16358 
(-3.25)*** (-2.15)** 

.04216 
(.57) 

-.06268 
(-.88) 

.05316 
( .81) 

.05401 
(-.84 ) 

.04725 
(.85) 

-.13957 
(-2.52)*** 

-.03847 
(-.94) 

-.15352 
(-3.79)*** 

'" 0 

YEN -.77272 
(-8.74)*** 

-.16876 
(-2.03)** 

-.06393 
(-.82 ) 

-.00975 
(-.13) 

.03917 
(.60) 

.03204 
(.58) 

-.00059 
(-.01 ) 

SF -.85506 
(-8.97)*** 

-.08768 
(-.98) 

-.06225 
(-.74) 

-.02072 
(-.27) 

.02083 
(.31) 

.04295 
(. 76) 

.01654 
(.40) 

BP -.78678 
(-8.28)*** 

-.17572 
(-1.96)** 

-.14812 
(-1.76)* 

-.11010 
(-1.40) 

-.00969 
(-.14) 

-.01411 
(-.24) 

-.07008 
(-1.69)* 

* Significant ant the 10% level 
** Significant at the 5% level 
*** Significant at the 2% level 



Table 3.6 
Weekly Mollinal Dollar Spot lates 

lest Por Uuit Root iD ~ln5. 

Mouaero HeaD Allowed UDder the Alternative 

~ 21n5 c 61n5(-1) 6 21n5(-1) 6 21n5(-2) 621n5(-3) ~21nS(-4) 621nS(-5) 
621nS(-6) 

CD .00049 -1.00360 .11176 .18546 .16668 .08275 .08621 .05727 
(2.28)** (10.46)*** (1.27) (2.32)** (2.34)*** (1.31) (1. 60) (1.42)'" 

FF .00106 -.92034 -.02409 .07663 .13233 .13579 .05331 -.00001 
(1.92)* (-9.82)*** (-.28) (.97) (1.82)* (2.07)** (.95) (-.00012 ) 

OM .00021 -.85890 -.06870 .00137 .04322 .05402 .04783 -.03817 
(.38) (-9.18)*** (-.79) (.02) (.59) (.82) (.66) (-.93) ~ 

LIR .00156 -.78415 -.19316 -.10441 -.01465 -.01583 -.11245 -.13979 
(2.98)*** (-8.50)*** (-2.27)** (-1.34) (-.20) (-.24) (-2.02)** (-3.45)**· 

YEN -.00013 -.77329 -.16831 -.06358 -.00950 .03935 .03218 -.00052 
(-.25) (-8.74).** (-2.02)** (-.81) ( -.lJ) (.60) (.56) (-.01) 

SF -.00034 -.85773 -.08558 -.06056 -.01949 .02171 .04356 .01687 
(-.53) (-8.98)*** (-.95) ~ -.72) (-.25) (.32) (.77) (.41) 

BP -.00081 -.81026 -.15550 -.13084 -.09561 .00155 -.00642 -.06613 
(-1.47) (-8.41)*** (-1. 72)* (-1.54) (l.21) (.02) (-.11) (-1. 59). 

* Significant at the 10% level 
** Significant at the 5% level 
•• * Significant at the 2% level 
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TABU 3.7
 
Weekly lIo_nal Dollar Spot Kates
 

Sa.,le Autocorrelationa And Bartlett's Standard Errors. AlnS
 

LAG CD FP' OM LIR YEN SF BP 

.119'" 
(.040) 

.048 
(.040) 

.068 
(.040) 

.019 
(.040) 

.075 
(.040) 

.054 
(.040) 

.035 
(.040) 

2 .081* 
(.040) 

.108* 
(.040) 

.065 
(.040) 

.079 
(.040) 

.116'" 
(.040) 

.033 
(.040) 

.022 
(.040) 

3 -.006 
(.041 ) 

.067 
(.040) 

.047 
(.040) 

.087'" 
(.040) 

.070 
(.040) 

.049 
(.040) 

.049 
(.040) 

4 -.082 
(.041) 

-.005 
(.041) 

.003 
(.041) 

.012 
(.041) 

.064 
(.041) 

.034 
(.041 ) 

.101 
(.041) 

5 -.025 
(.041 ) 

-.044 
(.041) 

.010 
(.041 ) 

-.058 
(.041) 

.012 
(.041) 

.040 
( .041) 

.001 
(.041) 

6 -.050 
(.041 ) 

-.066 
(.041) 

-.069 
( .041) 

-.018 
(.041) 

-.016 
( .041) 

-.016 
( .041) 

-.046 
(.041) 

7 -.065 
(.041) 

-.019 
( • 041) 

.018 
( .041) 

.117'" 
(.041) 

.005 
(.041 ) 

-.014 
( .041) 

.069 
(.041 ) 

8 .002 
(.041) 

.021 
(.041) 

.021 
(.041) 

-.034 
(.041) 

.032 
(.041) 

.029 
(.041) 

.077 
(.041) 

9 -.045 
(.041 ) 

.012 
(.041) 

.029 
(.041 ) 

-.020 
(.041) 

-.005 
(.041 ) 

.030 
( .041) 

-.053 
(.041) 

10 -.008 
(.041 ) 

.076 
(.041) 

.037 
(.041) 

.054 
( .041) 

-.071 
(.041 ) 

.053 
(.041 ) 

.005 
(.041) 

11 .023 
(.041 ) 

.028 
(.041 ) 

.024 
(.041) 

.035 
(.041) 

-.026 
(.041) 

-.009 
(.041) 

.006 
(.041 ) 

12 .019 
( .041) 

.050 
(.041) 

.051 
(.041 ) 

.002 
(.041) 

.016 
(.041 ) 

.042 
(.041 ) 

.• 067 
(.041 ) 

", Exceeds two standard errors. 



TDLI 3.8
 
WeeU, ~_aal Dolln Spot latea
 

Ten SCat1aUea. AlnS
 

STATISTIC CO FF 1»1 LlR YEN SF BP 

LI(6) 19.47*** 15.80** 10.11 11.52* 18.00*" 5.99 10.52 
LI(l2) 24.13** 22.28"* 13.86 23.98** 22.53** 10.23 22.08" 
LI(l8)
"-1 
"uP 

26.44* 
315 
.001 

24.83 
315 
.002 

21.20 
315 
.002 

34.30*** 
315 
.002 

35.13"* 
315 
.002 

15.95 
315 
.002 

31.10** 
315 
.002 

Su.P .017 .122 .120 .100 .103 .169 .117 
FIt 12.175*** 4.888 5.172 4.797 6.589 4.358 5.643 
Mean .00049 .00126 .00034 .00189 -.00017 -.00024 -.00104 
t ( ~-O ) 2.35** 2.28** .61 3.77*" -.33 -.37 -1.92· 
Yariance .00003 .00019 .00019 • 00016 .00016 .00027 .00018 
Std. Dev. .00526 .01390 .01381 •01260 .01276 .01640 .01360 
CY 1068.27 1100.66 4078.43 666.63 -7532.13 -6848.97 -1310.93 
Skewness .56098 .26069 -.08594 .44196 -.21592 -.1072 .34407 
""rtosis 
o 

4.70565 
.070*** 

2.53659 
.07121*** 

1.23452 
.056*** 

8.08811 
.093*" 

3.26364 
.10769"* 

1.495 
.0554**· 

3.2979 
.072*·· '" w 

KS 633.61*** 178.99*** 38.97*** 1667.12*" 280.55*** 58.74*** 268.34"* 
ItS 1 31.90*** 6.86*** .77 18.54"* 4.88** 1.20 12.24*" 
1tS2 601.71*** 172.13*** 38.20*** 1648.58*" 275.67"* 57.54"· 256.1··* 
Haxi.u. .03754 .07478 .05776 • 09679 .06980 .06616 • 07246 
Q3 
Median 

.00309 

.00067 
.00788 
.00070 

.00826 

.00050 
.00725 
.00061 

.00641 

.00030 
.00892 
.00039 

.00543 
-.00058 

Q1 -.00240 -.00545 -.00732 -.00373 -.00520 -.00872 -.00839 
"ini.u. -.01762 -.04583 -.04839 -.07490 -.05671 -.05421 -.05322 
Hode o o o o o o o 
Sll 10.49*** 8.68*** 7.69*** 13.63*** 9.91*** 7.34**· 9.24*·· 

NOTES: LB(N) - Ljung-Box statistic at lag N 
"-I - number of independent periodograa ordinates 
HaxP - ..ximua periodogra. ordinate, HinP - ainimua periodogram ordinate 
SumP - su. of perioclogra. ordinates 
FK - Fisher's kappa 
CY - coefficient of variation 
o - Kolmogorov's 0 for the null hypothesis of normality 
KS - Kiefer-Salmon normality test, deco.posed into KSI (skewness test) and KS2 (kurtosis test) 
SR - Studenti&ed Range 
Significance levels: • - 10%, •• - 5% •••• - 1% 



Table 3.9 
Weekly Noll1nal Dollar Spot Rates 

Domowitz-Hakkio Heteroskedasticity-Robust Serial Correlstion Tests, 6lnS 

Order CD FF OM LIR YEN SF SP 

One 
Three 
E.ight 
Twelve 

4.44· 
7.00· 
12. &0 
13.20 

1.11 
8.5&·· 
15.51·· 
19.44· 

2.11 
3.84 
8.79 
11.31 

.09 
5.99 
10.76 
15.01 

2.46 
8.38·· 
12.08 
14.28 

1.39 
2.38 
4.85 
7.08 

.40 
1.68 
7.12 
10.11 

~ 

• Significant at 10% level 
•• Significant at 5% level 
••• Significant at 1% Level 



GERMANY 

Weekly Hollinal Dollar Spot Rates 
Test Statistics, !llnS AR(3) Ilesiduals 

Statistic CD FF OM LIR YEN SF BP 

LB6 5. :)5* 6.84" 4.61* 5.15* 1.86 1. 55 7. 73*. 
LB12 9.62 11.82 7.72 18.79** 7.06 5.40 19.22·* 
LB18 11.61 14.79 16.11 28.99" 21.11* 12.30 28.30·* 
M-1 313 313 313 313 313 313 313 
MaxP .001 .002 .003 .002 .002 .003 .002 
SumP .017 .116 .115 .097 .100 .165 .115 
FK 11.50*** 4.98 7.20 5.16 6.68 5.02 4.97 
Variance .00003 .00018 .00018 .00016 .00016 .00026 .00018 
Std. Dev. .00523 .01359 .01356 .01245 .01265 .01624 .01359 
Skewness .38285 .18860 -.09304 .35371 -.17610 -.04691 .30513 
Kurtosis 4.03491 2.49136 1.38697 8.26591 3.67942 1. 63186 3.19811 
KS 432.63*" 162.32"* 49.76*** 1768.62*" 350.06*** 68.00·** 271.53*** 
KS1 15.27"* 3.71* .90 13.03*** 3.23* .23 9.70*·* c» 
KS2 417.36*** 158.61"* 48.86"* 1755.59**· 346.83*" 67.77*** 261.83"* "" 
D .06806"* .06986*" .05830"* • 09548*** .09519**· • 05496"* .07293*" 
SR 10.143"* 8.618 8.035*" 13.659*" 10.274*** 7.405*" 9.205**· 
Max .03516 .07164 .06168 .09245 .06969 .06831 .07185 
Q3 .00275 .00649 .00748 .00536 .00625 .00866 .00663 
lied .00003 -.00031 .00002 -.00126 .00057 .00059 .00029 
Q1 -.00275 .00673 -.06995 -.00542 -.00545 -.00867 -.00693 
Min -.01789 -.04548 -.04727 -.07760 -.06028 -.05194 -.05325 
Mode -.00375 -.00892 -.00989 -.01922 .00158 -.00077 -.00866 

2
NOTES:	 LB(N) - Ljung-Box statistic at lag N (distributed X (N-4) under the null) 

M-1 - number of independent periodogram ordinates 
MaxP - maximum periodogram ordinate, MinP - minimum periodogram ordinate 
SumP - sum of periodogram ordinates 
FK - Fisher's kappa 
CV - coefficient of variation 
D - KOlmogorov's D for the null hypothesis of normality 
KS " Kiefer-Salmon normality test, decomposed into KS1 (s kevne s s test) and KS2 (kurtosis test) 
Significance levels: * - 10%, ** " 5%, .** " 1% 



Table 3.11 
Weekly Nollinal Dollar Spot Rates 

ARCH Test Statistics. fllnS 

CD FF OM LIR YEN SF BP 

Observed Time Series 

ARcH(l ) 
ARCH ( 2) 
ARCH(3) 
ARCH(4) 
ARCH(8) 
ARCH(12) 

21.67*** 
21.97*** 
21.94*** 
19.98*** 
23.55*** 
25.57*** 

3.67* 
2.82 
5.53 
3.29 
12.34 
14.35 

9.81*** 
12.84*** 
22.66*** 
21.49*** 
38.12*** 
46.16*** 

20. 17*** 
20.05*** 
24.36*** 
24.85*** 
110.82*** 
120.94*** 

4.41*** 
9.85*** 
10.19** 
14.32*** 
23.06*** 
26.51*** 

8.bO*** 
15.91*** 
32.14*** 
41.11*** 
73.40*** 
83.80*** 

22.96*** 
22.94*** 
36.69*** 
27.43*** 
73.36*** 
89.06*** 

a> 
a> 

AR(3) Residuals 

ARCH(l ) 
ARCH ( 2) 
ARCH(3) 
ARCH(4) 
ARCH(8) 
ARCH(12) 

35.13*** 
35.39*** 
35.33*** 
36.00*** 
36.56*** 
38.40*** 

2.28* 
2.49 
4.19 
5.66 
13.40 
15.34 

5.98*** 
10.62*** 
15.93*** 
19.00*** 
35.98*** 
44.48*** 

23.59*** 
23.56*** 
26.45*** 
26.77*** 
118.55*** 
129.50*** 

3.12* 
6.94** 
7.25* 
9.54** 
16.53** 
21.47** 

9.41*** 
16.48*** 
31.92*** 
57.95*** 
76.37*** 
88.25*** 

26.30*** 
26.42*** 
37.17*** 
64.39*** 
74.22*** 
88.50*** 

* Significant at 10% level 
** Significant at 5% level 
*** Significant at 1% level 
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Table ~.11 

Monthly leal (CPI-Baaed) DoUar Spot "tea 
AICIl Teata, AlnR 

t 

ARCH 

2 

3 

4 

8 

12 

CD 

1.00 

1.07 

1.27 

1.66 

2.77 

9.08 

FF 

1.64 

2.23 

2.86 

3.15 

3.61 

3.60 

OM 

3.74 

5.48* 

5.43 

5.88 

7.24 

7.95 

LIR 

.57 

2.27 

3.69 

3.88 

5.63 

13.22 

YEN 

2.83 

3.27 

3.26 

8.32* 

14.05* 

14.80 

SF 

.86 

.99 

.98 

1.22 

2.04 

5.39 

BP 

.01 

1.03 

1.32 

10.61*" 

10.63 

10.91 

Significance levels: * - 10%. ** - 5%, *** • 1% 

Table ~.12 

.athly leal (VPI-lased) Dollar Spot latea 
ARCH Teats, AlnR 

t 

ARCH 

2 

3 

4 

8 

12 

CD 

2.02 

2.22 

2.52 

2.65 

4.85 

8.01 

FF DM 

2.58 3.58* 

2.90 3.36 

4.19 5.18 

4.57 5.52 

4.32 5.97 

4.15 6.48 

Significance levels: 

LIR YEN 

2.36 2.47 

2.38 2.47 

2.54 2.46 

2.62 5.05 

4.58 15.76** 

9.97 17.01 

* - 10%, ** - 5%, *** 

SF 

.48 

.61 

.56 

.90 

1.91 

5.13 

• 1% 

BP 

.29 

.54 

1.51 

9.64** 

10.32 

11.38 

'I 

i 
I 
t 

i 
I, 

1 

I 





Table 5.9 
Mouthly leal (CPI-"aed) Dollar spot late. 

nescriptive Statistica. 6lnR 

CD FF Ili'l LIR YEN SF SP 

LB(6) 
LB(l2) 
LB(l8) 
M-l 
HaxP 
SumP 
FK 
Mean 
t (\1-0) 
Variance 
Std. Dev. 
CV 
Skewness 
Kurtosis 
D 
lCS 
KSI 
KS2 
Maximum 
Q3 
Median 
Ql 
Minimum 
Sil 

10.98* 
3.84*" 
38.58"* 
72 
.003 
.028 
7.3050** 
.00151 
1.29 
.00020 
.01401 
930.12 
.88442 
2.80292 
.11024*** 
71.21*** 
17.78*** 
53.43*** 
.06207 
.00806 
.00103 
-.00676 
-.03069 
6.62170** 

4.97 
5.82 
8.28 
72 
.008 
.160 
3.5551 
.03331 
1.03 
.00111 
.03331 
1167.59 
.15027 
1.4733 
.08856*** 
12.56*** 
.51 
12.05*** 
.11672 
.02181 
.00365 
-.01298 
-.09409 
6.32829* 

2.66 
5.43 
9.35 
72 
.008 
.161 
3.5581 
.00381 
1.37 
.00112 
.03347 
878.831 
-.00082 
1.39539 
.06734 
9.78*** 
.00 
9.78*** 
.10502 
.02261 
.00391 
-.01514 
-.10192 
6.18309* 

3.00 
4.34 
5.67 
72 
.006 
.127 
3.2525 
.00218 
.89 
.00088 
.02968 
1360.17 
.38071 
1.29123 
.09816*** 
13.62*** 
3.36** 
10.26*** 
.09402 
.01445 
-.00100 
-.01312 
-.08210 
5.93364 

4.60 
8.68 
17.30 
72 
.008 
.154 
3.8217 
.00019 
.07 
.00107 
.03270 
17030.1 
-.01231 
1.52199 
.07107* 
12.33*** 
.00 
12.33·** 
.13133 
.01726 
.00233 
-.01813 
-.08201 
6.52371" 

2.62 
4.40 
10.96 
72 
.009 
.207 
3.0592 
.00122 
.39 
.00144 
.03789 
3112.28 
.25700 
2.02176 
.08608*** 
24.31*** 
1.56 
22.75*** 
.15820 
.01995 
.00374 
-.01783 
-.11326 
7.16378*** 

2.70 
6.28 
17.11 
72 
.011 
.167 
4.5681 
.00059 
.21 
.00116 
.03401 
5805.18 
-.59929 
1.32193 
.06173 
17.11*** 
8.49*** 
8.61*** 
.08087 
.02413 
.00190 
-.01884 
-.13538 
6.35764* 

c.l 
0 

NOTES: LB(N) - Ljung-Box statistie at lag N 
M-l - number of independent periodogram ordinates 
HaxP - maximum periodogr811 ordinat.e. HinP - minimum periodogram ordinate 
SumP - sum of periodogram ordinates 
FK - Fisher's kappa 
CV - coefficient of variation 
D • Kolmogorov's D for the null hypothesis of normality 
KS - Kiefer-Salmon normality test, decomposed into ItSI (skewness test) and KS2 
SR - Studentized Range 
Significance levels: *. 10%, *. - 5%. *** • 1% 

(kurtosis test) 



1', 

(.l(H • 

~{j¥O" • 

U@:.' 
tt!tO.!'.1 . 

t~£i .­
"Ml.l 

U.i).­
($80.) 

~l{}. 

(OO!l.) 

ItO. 
(UfO.) 

IJl4i. 
(~$O.) 

i ~{~(. 

(8~Q. j. 

'{fO. 
{uo,.) 

{~~O -, 
(¥"(~f,h > 

r~,).,. 

( HlQ:.) 

~la. 

{f.i6. ~ 

~;". 
f(#s9 ~~ 

~t() . 
{ll:ij(j ., 

8(tO. 
(*~'il.) 

I: I 1 ..-,'" 
(a~u. ) 

~Nj(j .. 
(~Sl).) 

~@ . 
{.()tW. ) 

~S~.­
(~t) .} 

:!tfi .~ 

(~O 
,.i 

fOO .....­
(~,,) ;, 

".0 ...,. 
(?W.) 

t~~.·· 

!('(SiS. ) 

, I 

·U:Q.­
(Q'~~. ) 

SH,\. 
(~'L:I 

~Hi. 

·H;~t', ) 

ilioi~) ," o!8ii.·­
(;~(!I(i:.. :; rr-tri:l.)· 

M&.­
(~.) 

.;.';.(} .:, 
(l)l;>i\.) 

too. If!ZlJ. 
f'~1).) (@>$\).) 

i l!L­ ,t~o. 

{~_.) «('SO.) 

t-~G ;l>''''' b,t~ t­ ,"'""/> 

(l~".) (MO.)' 

r,;o. 'tH)."; 
(~,) <fI._,) 

lilt••-· £f:O... 
t~"'.} .(t60.) 

<':'J.­ U·¢I.­
{S@. ; t~"'f} 

fUJI. a-~. 
(~).} r.af;1.) 

1'00. 
1,\$0.)" , 

" 

Hi. 
«('1).' 

.:ie,). 
(l)'f'!; ) 

l.ltQ .-' 
(01(1},1 

~ t(l. 
\~8(l.} 

" 
( t\lt()~) 

it!.) .'" 
(,~~.) 

,f\:ft. 
(1:141),) 

(>14).,'; 
(>'eel.) 

~~. »J~.,g. , 
~M;,"i#I! ;i._4~_ '''l!!lIII-.nilJ) b;~ "'m:it~ 

.tn;~.:<.~""""'~ $;tUh... ~•. ~J:~:H!!lI:t~.~ 
l 
I 

12 H$t .u ~ 'f'1l 

t:",o~.. 
'~.) 

"'<;0.­
;(,,~(l.} 

5:..,..,.­ It.lil>r 
:HiL)." (MO.) 

UO.­
':O!?(l. ) 

.UG. 
...~.} 

l1'ec", 
'\1#1) ~.). 

UO.~ 

,:PO,) 

OSf/.-· 
, ~I.~. 

tjil~ 

(t!'ttl . 1 

; n -..'":~ 

,a.f..!~) 

~,.. •. 
(~&4f. :; 

~tL­
(t;1.fI,1') 

.,HI . 
(l~.) } 

SOl) 
i,llla·) ) 

f~,tr') , 

tlli ) ~ , 
{i',lI» ) 

l~;l\t) ~ .." 

c~~n 
, 

A 

! ,... . 
(11.a~ ) 

teG- j­

tOft' ! 

QSi).': 

(0l';1}, ) 

'l'1,,~ . 
(;}.~~. ) 

?'1'f.~ ..",­

(l~e 

~...~ 
/ 

I 
jQ 

~­

<: 

it 

't 

fl 

e 

ili 

1% 

:; ? 

) 

\ 
J 

\ 



128 

Table 5.7
 
Monthly leal (ePI-Based) Dollar Spot "tes
 

s..ple Autoeorrelations and Bartlett Standard Errors, AlnR
 

LAG CD FF OM LlR YEN SF BP 

-.126 
(.083) 

-.069 
(.083) 

-.033 
(.083) 

-.050 
(.083) 

.076 
(.083) 

.013 
(.083) 

.037 
(.083) 

2 -.169 
(.084) 

.072 
(.084) 

.066 
(.084) 

.039 
(.084) 

-.049 
(.084 ) 

.076 
(.084) 

.070 
(.084) 

3 .116 .030 .005 .056 .121 .035 -.051 
(.087) (.087) (.087) (.087) (.087) (.087) ( .087) 

4 -.008 .076 -.042 -.075 .015 -.018 .041 
(.088) (.088) (.088) (.088) (.088) (.088) (.088) 

5 .089 
(.088) 

.058 
(.088) 

-.017 
(.088) 

.073 
(.088) 

.045 
(.088) 

-.020 
(.088) 

.078 
(.088) 

6 -.086 
(.088) 

-.113 
(.088) 

-.100 
(.088) 

-.043 
(.088) 

-.075 
(.088) 

-.097 
(.088) 

-.035 
(.088) 

7 -.042 -.009 .027 .003 -.022 .011 .016 
(.089) (.089) (.089) (.089) (.089) (.089) (.089) 

8 .121 .006 .042 -.011 .021 -.059 -.092 
(.089) (.089) (.089) (.089) (.089) (.089) (.089) 

9 -.053 -.024 -.033 -.051 -.030 -.013 .055 
(.090) (.090) (.090) (.090) (.090) (.090) (.090 ) 

10 -.026 -.011 .072 -.026 -.055 -.042 .027 
(.090) (.090) (.090) (.090) (.090) (.090) (.090) 

11 .238* -.005 .036 -.026 .036 .073 .100 
(.090) (.090) (.090) (.090) (.090) (.090) (.090) 

12 -.259* -.067 -.086 -.066 .139 -.024 -.015 
(.095) (.095) (.095) (.095) (.095) (.095) (.095) 

.. Exceeds two standard errors 
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rable 5.5 
Monthly leal (VPI-Baaed) Dollar Spot Rates 

r.at: For Unit loot ill lulle. IIollZero Hean AllOlfed Under the Alternative 

d1nR canst lnR_ 1 
dlnR_1 d1nR_2 d1nR_3 

d1nR_4 61nR_5 
CD .00191 -.03744 -.12247 -.16963 .03467 .02161 .12575 

(1. 51) (-1. 86) (-1.43) (-1.96)** (.40) (.25) (1.49) 

FF .00278 -.01125 -.13082 .03256 .03134 .04235 .03834 f, 
(.98) (-.80) (-1.52) (.37) (.35) (.47) (.44) 

I»t •00244 -.01063 -.01595 .07641 -.04845 -.09204 -.01532 
(..83) (-.60) (-.18) (.85) (-.55) (-1.04) (-.17 ) 

~ 
LIR .00184 -.01537 -.06602 .03703 .02924 -.06722 .07244 0> 

(.71) (-.80 ) (-.76) (.42) (.33) (-.77) (.83) 

YEN .00131 -. OS 778 .04856 -.06198 .14280 .0557l .04163 
(.48) (-1.98) (.56) (-.72) (1.65)* (.64) (.48) 

SF .00359 -.02257 .02074 .07924 .00939 -.06068 -.03149 
(.90) (1. 04) (.24) (.88) (.10) (-.67) (-.35) 

BP -.00075 -.03964 .06283 • 11192 -.10614 .02626 • 11627 
(-.25) (-1.87) (.73) (1.26) (-1.20) (.30) (1.32) 

* Significant at 10% Level 
** Significant at 5% Level 

*** Significant at 2% Level 
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Table 5.3 
Monthly lIe.i (CPI-laaed) Dollar Spot lates 

Test For Unit loot in lnllt. CPl. No_ero Mean AlIQllfed Under !he Alternative 

AlnR 

CO 

FF 

DM 

LIR 

YEN 

SF 

BP 

canst 

.00183 
(1.47) 

.00113 
(.40) 

.00299 
(1. 01) 

.00159 
(.62) 

-.00019 
(-.07) 

.00425 
(.97) 

.00023 
(.07) 

InR_1 

-.01127 
(-.72) 

-.01249 
(-.83) 

.00208 
(-.14) 

-.01762 
(-.91) 

-.04312 
(-1.98) 

-.02719 
(-1.33) 

-.03151 
(-1.62) 

!>lnR_1 

-.12697 
(-1.46) 

-.09445 
(-1.10) 

-.04052 
(-.46) 

-.03303 
(-.39) 

.11711 
(1.36) 

.02537 
(.29) 

.05308 
(.61 ) 

!>lnR_2 !>lnR-3 !llnR_ 4 

-.18165 .10102 .01218 
(-2.07)**(1.13)(.13) 

.06763 .05431 .09827 
(.77) (.62) (1.11) 

.07073 -.00952 -.05815 
(.78) (-.11) (-.65) 

.02827 .07248 -.04597 
(.33) (.85) (-.53) 

-.05951 .15053 .01735 
(-.68) (1.75)* (.20) 

.09938 .05309 -.00612 
(1.10) (.58) (-.07) 

.10147 -.05778 .05998 
(1.14) (-.65) (.67) 

lllnR-5 

.13702 
(1.57 ) 

.06070 
(.69) 

-.03003 
(-.34 ) 

.09460 
(1. 10) 

.08470 
(.98) 

-.00880 
(-. 10) 

.11412 
(1.28) 

~ .... 

* Significant at 10% Level 
** Significant at 5% Level 

*** Significant at 2% Level 

I 

J 
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serial correlation, IIlLIch as for the nominal rates. (Even the two "significant" CD 

sample autocorrelations at lags 11 and 12 are greatly reduced when the WPI is used.) 

The lack of serial correlation is further confirmed by the distributional statistics il 

Tables 5.9 and 5.10, which again are very similar to those for monthly nominal rates. 

In particular, they indicate absence of serial correlation, with symmetric leptokurtic 

unconditional behavior. Again, the leptokurtosis is greatly reduced relative to those 

of weekly nominal rates, but roughly identical to that found in monthly nominal rates. 

The ARCH tests, reported in Tables 5.11 and 5.12, are roughly identical to those 

of the monthly nominal rates, with one exception: the conditioning on relative prices 

has removed the ARCH effects for the LIR. Three remaining major rates (OM, YEN, BP), 

show significant ARCH effects, however. This means that the serial correlation tests 

are in fact overly conservative, yet we still can detect no serial correlation. 

5.6) CoBclusloDB 

We show that monthly real dollar spot exchange rates, like the monthly nominal 

rates upon which they are based, evolve as approximate random walks and display weak 

ARCH effects. Thus, deviations from absolute PPP tend to persist, while deviations 

from relative PPP are approximately uncorrelated noise. The implications of our 

failure to reject relative PPP for the validity of other parity conditions are 

discussed; in particular, if we fail to reject one of the other remaining parity 

conditions, we should fail to reject the third. 
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because it enables us to exploit the stochastic structure of absolute PPP deviations to 

directly characterize the nature of relative PPP deviations. 

5.5) E.pirical Analysis 

We work with the bilateral dollar exchange rates of the major industrial 

countries: Canada, France, Germany, Italy, Japan, Switzerland and the United 

Kingdom. Both the consumer price index (CPI) and the wholesale price index (WPI) were 

used in calculating the inflation rates for PPP testing. Some authors argue that the 

WPI is more likely to represent tradeable prices and hence is the preferred price 

series; however, since both indexes have been used in the literature and arguments have 

been made in favor of both of them, we prefer to remain agnostic on this point. 

In fact, following Frenkel (1981), we may use both price indexes to gain some 

preliminary insight into the likelihood of PPP. In order for PPP to hold, it must be 

(at least approximately) true that the price of tradeables (PT) relative to the price 

of nontradeable (PN) is constant. If the CPI reflects more nontradeable goods prices 

and the WPI reflects more tradeable prices, then we can get a rough feel for PN/PT by 

examining the CPI/WPI ratios. Such an analysis indicated near relative price stability 

for Canada, Germany, Italy, Britain, and the United States. France displayed some 

relative price movements in the turbulent early years of the float, while Japan and 

Switzerland showed some movement throughout the period. On the basis of this 

preliminary analysis, we might expect to see less evidence of PPP, or at least more 

prolonged deviations from PPP. in the French, Japanese and Swiss cases. 

First, it should be noted that the two versions (CPI and WPI) of the log real 

exchange rate are very similar, the only difference being that the WPI-based series are 

perhaps slightly more volatile, due to greater volatility in wholessle prices. 4 Second, 

the movements in real exchange rates closely mimic those of the corresponding nominal 

The sample period is again July 1973 through August 1985. The other data details 
are the same as in Chapter 4, with one exception: for conformity the BP is now in 
Local/$. 
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This has implications for research strategy in international economics. Although 

the rigorous testing of each parity condition requires sophisticated (and different) 

econometric tools, direct testing of EARIP is perhaps the most difficult. This 

suggests, as a first step in research strategy, testing only EAUIP and EAPPP. If those 

two conditions hold. then EARIP must hold as well. 

5.4) on The Stochastic Behavior of Deviations Fro. PPP 

In this section we test the validity of absolute and relative PPP by examining the 

stochastic properties of deviations from absolute PPP. The approach has several 

advantages relative to least-squares estimation of (5.2.4) and (5.2.7). First, as we 

show belOW, the conditional heteroskedasticity found in nominal exchange rates is also 

present in real rates. due largely to the fact that movements in real rates are 

dominated by nominal rate movements. This means that tests of (5.2.4) and (5.2.7) will 

be biased, unless the heteroskedasticity in {E } is controlled for. While this is not
t 

difficult, being a direct application of the previously developed ARCH model, it does 

not allow for direct examination of the temporal pattern of deviations from PPP. 

Put differently. the "short run" and "long run" behavior of deviations from PPP 

may be quite different.) In fact, many economists believe that in the long run, PPP is 

valid and therefore serves as a useful benchmark. Most modern exchange rate models, 

such as the Dornbusch (1976) overshooting model, and recent attempts to model 

deviations from PPP (in terms of costly pricing decisions, degree of substitutability 

of domestic and foreign goods, and exchange rate volatility for a market characterized 

by monopolistic competition) continue to take long run PPP as the reference point. If 

this is correct, we have both a "benchmark model" with which to discuss current over-

We use the terms "long run" and "short run" in the sense of impulse response 
analysis of a dynamic system. A parity condition is said to hold (s tochast Lca l Iy) 
in the short run if deviations from it are unc~rrelated noise. A parity condition 
is said to hold (stochastically) in the long run if deviations from it are serially 
correlated (but stationary) about a zero mean. A parity condition is said to hold 
neither in the short run nor the long run if deviations from it are either 
nonstationary (implying permanent drift) or stationary about a nonzero mean­
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(5.3.1) 

apart from second order terms. 

Ex-ante relative purchasing power parity (EAPPP) equates expected k-period 

inflation rate differentials to expected k-period nominal exchange rate depreciation: 

es" - St p - Ptt+k t+k(5.3.2) 

Ex-ante real interest rate parity (EARIP) is stated as: 

(5.3.3) 

where 

(5.3.4) 

Under rational expectations, of course, the "expectations" in the above for1ll.llae are 

replaced by ~thematical expectations conditional on the time-t information set n • 
t 

Although all of the results below hold under rational expectations, rationality is in 

no way required. 

It Will prove useful to rewrite (5.3.3) as: 

) .(5.3.3') 

The following proposition is then immediate: 

Propo8itioa: 

If any two of (5.3.1). (5.3.2), and (5.3.3) is true, then the third is also 

true. Conversely, if anyone of (5.3.1), (5.3.2). and (5.3.3) is false, then one or 

both of the remaining two ia false as well. 
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p* 
(5.2.6) 61nS = llln(r) . t 

t 

The hypothesis is tested as (6 = (0,1) in the regression:
0,6 1) 

(5~2.7) 

Alternatively, lllnR may be viewed as the deviation from relative PPP and testedt 

as zero-mean white noise. Again. many factors such as asymmetric changes in transport 

costs, commercial policies and nontariff barriers, the weights used for aggregate 

indexes, and systematic differences in rates of change of productivity in the traded 

and non-traded good sectors can impair the validity of the theory. 

Relative PPP is particularly important because, together with uncovered interest 

parity and real interest parity, it is one of the three key parity conditions of 

international economics. We show below that any two of these three conditions implies 

the third. In par t LcuLar , relative PPP and uncovered interest parity imply real 

interest rate parity. If real interest rate parity "holds, then small-country monetary 

policy is rendered impotent in terms of its ability to affect the real rate of 

interest. and hence saving and investment decisions. In the absence of uncovered 

interest parity and/or relative PPP. on the other hand, systematic real interest 

differentials can persist. 

5.3) The Relationship Bet_n the Three Parity Conditions 

5.3••} Background 

We digress temporarily to characterize the relationship between the three key 

parity conditions of international economics: uncovered interest rate parity. 

purchasing power parity, and real interest rate parity. Numerous papers in the 

literature attempt to independently test these hypotheses; some recent examples are 
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<l1apter Five: Ileal Exrhange Ilate Kove.entB 

5.1) Introdurtion 

The recent float has led to renewed theoretical and empirical interest in the 

purchasing power parity (PPP) doctrine. In this chapter we examine the validity of 

various versions of PPP, in light of the random-walk conditional mean behavior, and 

ARCH conditional variance behavior, which was documented in earlier chapters for 

nominal exchange rates. We begin by motivating the absolute and relative versions of 

the PPP hypothesis in terms of their implications for the behavior of real, as opposed 

to nominal, exchange rates. In section 5.2 we show that the two PPP hypotheses are 

intimately related, and argue that many phenomena which may lead directly to failure of 

absolute PPP need not impare the validity of relative PPP. In section 5.3, the 

relationship between three key international parity conditions (relative PPP, uncovered 

interest parity, and real interest parity) is explicitly characterized, and the 

resulting implications for empirical testing are developed. In section 5.4, the study 

of deviations from both absolute and relative PPP is motivated in terms of impulse 

response characteristics of a dynamic system. This sets the stage for the empirical 

analysis of section 5.5, in which both CPI-bssed and WPI-based real exchange rate 

movements are considered. Section 5.6 concludes. 

5.2) FOXWl of Purchasing Power Parity 

The arbitrage-based "law of one price", extended to aggr~gate price levelS, is the 

underlying motivation of aggregate purchasing power parity. Costless instantaneous 

arbitrage assures uniform pricing (in terms of the same currency) of a common goods 

basket. Thus, the real exchange rate, given by: 

(5.2.1) 
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Figure 4.1 
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Table 4.6 
MoDtbly 110....1 Dollar Spot latea 

teat Statiatica, ~lnS 

CD FF OK LIR YEN SF liP 

L.B(6) 9.85 5.70 2.03 3.17 3.88 3.16 4.52 
LB(12) 27.68*** 6.47 5.15 4.69 7.25 4.36 8.05 
LB(l8) 34.90** 8.88 8.26 5.85 17.02 9.81 19.55 
K-l 72 72 72 72 72 72 72 
MaxP .003 .006 .008 .006 .008 .008 .010 
SuaP .025 .155 .159 .124 .147 .207 .150 
FIt 7.6731** 2.9794 3.5676 3.3169 3.8604 2.9444 4.8123 
Hesn .00214 .00498 .00116 .00801 -.00072 -.00157 -.00403 
t(l/aO) 1.96** 1.83* .41900 3.28*** -.27 -.50 -1.50 
Vsriance .00017 .00107 .00111 .00086 .00102 .00143 .00104 
Std. 
CV 

Dev•• 01317 
614.816 

.032.78 
658.063 

.03327 
2873.9 

.02933 
366.314 

.03196 
-4416.68 

.03788 
-2410.93 

.032)2 
-801.094 

SlteVllellS .92183 .08977 -.09614 .46747 -.29676 .13758 .69625 
Kurtosis 3.52449 1.35460 1.37567 1.10453 1.50095 1.86460 1.80866 
D .12414*" .08386** .07643** .09759*** .12505"* .07866** .06414 
ItS 103.40*** 9.76*** 9.98"* 13.93*** 14.50*** 18.55*** 21.58*** 
KSI 18.23*** .15 .22 3.46** 2.08 .45 11.08"* 
KS2 85.17*** 9.61*** 9.76*** 10.47*** 12.42*** 18.11*** 10.50*** 
Haximua .<16260 .11117 .10211 .09424 .11525 .15475 .13135 
Q3 .00766 .02356 .02184 .02223 .01648 .02084 .01267 
Hedian .00166 .00344 .00087 .00487 .00184 -.00029 -.00498 
Ql -.00592 -.01076 -.01510 -.00677 -.01180 -.02230 -.02435 
Kini_ -.02943 -.09183 -.10998 -.06721 -.09132 -.11642 -.07912 
sa 6.98785***6.19216* 6.37481** 5.50460 6.46339** 7.15866*** 6.51207** 

NOTES:	 ta(N). Ljuna-Box atatiatic at lag N 
K-l • nuaber of iDdependeDt periodolr.. ordi...tea 
HaxP a ..xi_ periodogr.. ordinate, KinP • alni_ periodogr.. ordinate 
SuaP • aua of periodogra. ordinatea 
FIt • Fisher's kappa 
CV • coefficient of variation 
D • Kolaogorov'a D for the null hypotheaia of no~lity 

KS a Kiefer-BalaoD teat, decoapoaed into 1S1 (akevneaa) and 1S2 (kurtoaia)
sa • StudeDticed cRan.. 
Significanca le..la: *. 10%, ** • 5%, ..* • 1% 



Table 4.4 
Honthly Nomnal Dollar Spot Rates 

Test Por Unit lIoot in InS, Trend Allowed Under The Alternative 

t.1nS const t 1nS_l t.1nS_1 t.1nS_2 t.lnS_3 t.1nS_4 t.lnS_5 

CO -.00768 .00033 
(-1.98)** (3.06)*** 

-.13479 
(-3.04) 

-.04344 
(-.49) 

-.11136 
(-1.28) 

.16746 
(1.91)* 

.08815 
(1.02) 

.14244 
(1.66)* 

FF .04012 
(1.77)* 

.00024 
(2.11)** 

-.03376 
(-1. 96) 

-.09263 
(-1.09) 

.11056 
(1.26 ) 

.07197 
(.82) 

.12539 
(1.42) 

.09964 
(1.14) 

DM .01341 
(.80) 

.00012 
(1. (6)* 

-.02716 
(-1.41) 

-.03770 
(-.44) 

.09725 
(1.11) 

-.01232 
(-.14) 

-.04937 
(-.56) 

-.00633 
(-.07) 

LlR .24657 
(1.75)* 

.00034 
(1.76)* 

-.03876 
(-1.71) 

-.00215 
(-.02) 

.13052 
(1.51) 

.05947 
(.68) 

-.06731 
(-.77) 

.07403 
(.85) 

~ 

0 
OJ 

YEN .31883 
(2.12)** 

-.00008 
(-1.01) 

-.05674 
(-2.14) 

.07646 
(.89) 

-.03652 
(-.42) 

.15095 
(1. 75)* 

.06214 
(.71 ) 

.06926 
(.79) 

SF .01519 
(.78) 

.00008 
(.82) 

-.03071 
(-1.63) 

.02308 
(.27) 

.09575 
(1.07) 

.01489 
(.17 ) 

-.02455 
(-.27) 

-.02025 
(-.23) 

-SP .03215 
(1.64)* 

-.00013 
(-1.38) 

-.03744 
(-1.83) 

.04692 
(.55) 

.13916 
(1.57) 

-.06069 
(-.68) 

.07134 
(.80) 

.14691 
(1. (4)* 

* Significant at 10% Level 
** Significant at 5% Level 
*** Significant at 2% Level 
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Table 4.1
 
!bathly Nold.aal Dollar Spot lates
 
Sa~le Autocorrelatione of laS
 

Lag CD FF OM LIR YEN SF RP 

'.
2 
3 
4 
5 

.975 

.953 

.933 

.909 

.884 

.978 

.961 

.937 

.911 

.884 

.973 

.947 

.913 

.878 

.844 

.979 

.956 

.930 

.904 

.878 

.969 

.934 

.903 

.866 

.825 

.975 

.946 

.912 

.877 

.840 

.973 

.947 

.914 

.881 

.847 
6 
7 
8 
9 

10 
11 
12 

.858 

.830 

.807 

.782 

.757 

.733 

.704 

.857 

.830 

.803 

.776 

.749 

.722 

.695 

.812 

.779 

.746 

.711 

.679 

.643 

.607 

.854 

.829 

.805 

.779 

.754 

.729 

.703 

.782 

.742 

.704 

.662 

.622 

.586 

.547 

.803 

.768 

.734 

.705 

.677 

.649 

.618 

.810 

.769 

.727 

.685 

.643 

.600 

.556 

Table 4.2 
!bathl}' Nold.nel Dollar Spot lates 

Sa~le Partial Autoeorrelationa of laS 

Lag CD FF OM LIR YEN SF RP 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

.975 

.042 

.031 
-.096 
-.024 
-.054 
-.034 
.066 
-.029 
-.018 
-.016 
-.075 

.980 

.038 
-.160 
-.064 
-.019 
.004 

-.024 
-.013 
-.022 
.002 

-.007 
-.031 

.973 

.007 
-.169 
-.030 
.030 

-.007 
-.035 
-.014 
-.051 
.014 

-.054 
-.061 

.979 
-.042 
-.072 
-.027 
.027 

-.033 
-.006 
.002 

-.051 
-.007 
.003 

-.019 

.969 
-.068 
.052 

-.134 
-.066 
-.057 
.038 

-.005 
-.068 
.019 
.011 

-.069 

.975 
-.099 
-.099 
-.051 
-.032 
-.010 
.025 
.010 
.046 
.002 

-.041 
-.082 

.973 

.004 
-.143 
-.031 
-.020 
-.066 
-.114 
-.016 
.001 

-.042 
-.031 
-.049 
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completely nonexistent. 5 Second, the symmetric stable family is actually quite 

restrictive in the sense that there is only one member (the normal distribution, 

corresponding to a ~ 2) which has finite variance. All other members (0 < a < 2) have 

infinite variance. Third, a substantial amount of recent evidence, such as Martin and 

Klemosky (1975), Bey and Pinches (1980), Giacotto and Ali (1982,1985), Barone-Adesi and 

Talwar (1983), and Diebold, Lee and 1m (1985), indicates that the iid assumption may be 

seriously violated due to the systematic presence of heteroskedasticity. Thus, more 

general central limit theorems are needed. Finally, the fact that asset price or 

return data approach normality when aggregated (from daily to weekly to monthly, for 

example) contradicts the stable Paretian models. The standard response to this problem 

has been to ignore it, using data sufficiently aggregated such that the assumption of 

normality is roughly justified. 

The ARCH model, together with the limiting results of chapter 2, represents a 

powerful alternative to the stable Paretian models. While stock returns are not the 

subject of this monograph, the analysis of foreign exchange "returns" is analogous. In 

fact, a common stochastic representation for nominal log spot exchange rate changes, as 

pioneered by Westerfield (1977), is stable Paretian. Westerfield studies five weekly 

exchange rates over the fixed rate period 1962-1971, and the very early part of the 

float, 1973-1975. She finds that the normal distribution is generally rejected in 

favor of a Paretian distribution with characteristic exponent less than 2.0, and that 

exchange rate "volatility" is greater under the float. The ARCH model allows us to 

5 In fact, only two explicit densities of the (uncountably infinitely) many members of 
the aymmetric stable family have been obtained. The family is therefore defined in 
terms of its characteristic function ~(t). A random variable X is said to be 
symmetric stable if: 

11a iswhere a is the origin, c a scale parameter, and a is the characteristic 
exponent. 

If (a, a, c) - (2, 0, 1/2 0 
2 ) , we have a normal distribution, and if 

(a, a, c) ~ (I, 0, 1) , we get the Cauchy distribution. No other symmetric stable 
distribution has a known elementary form. See Kendall and Stuart (1977), p. 122-123. 
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increased, with an average increase of .26, probably due to sampling fluctuations. 

Overall, the average kurtosis reduction is a healthy 1.73. It should be noted, 

however, that while the monthly data are substantially closer to normality than the 

weekly data, we have still not obtained complete convergence to normality. Average 

monthly kurtosis is 1.7B, as opposed to an average weekly kurtosis of 3.52. 

The remaining nonnormality is clearly indicated in the reported values of the 

Kolmogorov 0, Kiefer-Salmon, and studentized range statistics. While the values of the 

test statistics are typically much smaller than those of their weekly counterparts, we 

nevertheless tend to reject normality for most series at most significance levels. The 

bulk of the nonnormality is due to leptokurtosis, as evidenced by the KS2 statistics, 

all of which lead to rejection at the 1% level. 

The sample variances of Table 4.6 are of independent interest. It was.mentioned 

earlier that temporal aggregation of a random walk process leads to another random walk 

process with larger innovation variance: 

2 2 
cr•• n a 

Comparison of Tables 4.6 and 3.B reveals that the monthly innovation variance is indeed 

substantially larger for the monthly series. The ratio of monthly to weekly innovation 

variances for the CD, FF, OM, LIR, YEN, SF and SP are, respectively, 5.67, 5.63, 5.84, 

5.38, 6.38, 8.94, and 3.B5. It is of interest to note that most of the variance 

ratios are greater than five. This is somewhat larger than expected, because the 

monthly/weekly variance ratio for a pure random walk should be between four and five. 

The results of the Lagrange multiplier test for autoregressive conditional 

heteroskedasticity are contained in Table 4.7, in which we see that there is 

substantial evidence of ARCH, but not to the same extent as in the weekly case. Again, 

this is consistent with our theoretical results on temporal aggregation of ARCH 

processes, which indicate convergence to normality, and hence no ARCH. The CD, FF, and 

SF now display little evidence of ARCH, while the other series display smaller ARCH 

effects than in the weekly case. Even for those series which still display significant 
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calculation require controlling for it. In this sense the study of monthly nominal 

spot rates is a necessary prerequisite to the study of real exchange rates and 

purchasing power parity in Chapter 5. 

4.2) &.pirical Analysis 

We use end-of-month nominal spot rate data for the same period as in the weekly 

analysis, July 1973 through August 1985, which yields 146 observations. As before, all 

exchange rates are measured in local currency units per dollar, with the exception of 

the BP, for which the opposite is true. Strong nonstationarity in all rates is once 

again evident. The sample autocorrelations and partial autocorrelations, shown in 

Tables 4.1 and 4.2 respectively, again indicate conditional mean behavior very close to 

that of a random walk. This is formally verified by the unit root tests allowing for 

nonzero mean and trend reported in Tables 4.3 and 4.4. In no case can we reject the 

null of one unit root at any reasonable significance level; joint tests, however, 

sharply reject the null of two unit roots. As before, it should be kept in mind that 

the tests are robust to conditional heteroskedasticity. 

The finding of approximate random walk conditional mean behavior at the monthly 

frequency is to be expected, due to the well-known result that n-period temporal 

aggregation of a random walk process with unconditional innovation variance a 
2 yields 

2• 1another random walk process with innovation variance n a More generally, temporal 

aggregation of an ARMA process with d unit roots yields another ARMA process with d 

unit roots. 2 

The first-differenced series contain a number of interesting features. First, the 

amplitude of 6lnS is substantially larger in the case of monthly observations. This is 

due to the earlier-mentioned increase of innovation variance due to temporal 

aggregation. Second, although there does appear to be some volatility clustering, it 

1 This restriction will be examined in detail subsequently.
2 See Brewer (1973) and AmeRdya and Wu (1972). 
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Figure A.3.4 
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Table AJ.2 
~irical Power of Unit Root Tests. 2000 Replications. One-Sided Al.temative 

N = 250 

p T T 
U 

1.00 .05 .05 
.99 .14 .08 
.97 .53 .21 
.95 .90 .43 
.90 1.00 .97 
.80 1. 00 1.00 
.50 1.00 1.00 

N = 400 

1.00 .05 .05 
.99 .23 .10 
.97 .87 .40 
.95 1.00 .85 
.90 1.00 1.00 
.80 1.00 1.00 
.50 1.00 1.00 

N = 650 

1.00 .05 .05 
.99 .43 .16 
.97 1.00 .83 
.95 1.00 1.00 
.90 1.00 1.00 
.80 1.00 l.00 
.50 1.00 1.00 

Zero-ffean no> Kadel 

T 
T 

.05 
• 06 
.13 
.26 
.83 
1.00 
1.00 

.05 

.07 

.24 

.61 
1.00 
1.00 
1.00 

.05 

.10 

.58 

.98 
1. 00 
l.00 
1. 00 
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where: 

d(U) 

Define the partitioned vector 8 - (~ I a' I d'). Then the null hypothesis is 

that ~ ~ 1 and that there exists a "true" parameter vector 8 such that:0 

Given a sample (lnSl ••• lnST)' Solo derives the 1M test of this hypothesis. Just as 

Fuller's T statistic is shown not to possess a limiting normal distribution, Solo's LM 

2statistic does not possess the usual X limiting distribution. Rather, LM should have 

the same limiting distribution as ;2, and Solo's proofs confirm this. 

The LM test procedure amounts to the following. First, fit an ARKA(p,q) model 

to (Yt)' and save the residuals (e ) . Next, we generate the regressors:t 

Finally, we regress e on r and obtain 1M as T R2• 
t "t-l 
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&3.3) General ARHA Bepre8en~a~ion8 

Said and Dickey (1984) extend the unit root test to the general ARMA(p,q) case by 

approximating the ARMA model as a finite autoregression. OLS can be used to estimate 

the coefficients, and this procedure produces test statistics whose limit distributions 

are the same as T, T , and T 
u T 

Let us begin with a simple case with normal disturbances. Later we will extend 

the results to the general ARMA(p,q) case. Suppose: 

t ~ 1,2, ••• 

t z ••• -2, -1, 0, 1, 2, .,. 

la\, Is! ( 1, InS O ~ 0, e - NID • 
t 

If Ipl ( 1 , then InSt is stationary except for transitory startup effects. (It is an 

ARMA(2,l).) On the other hand, if p - 1 , then it is ARIHA(l,l,l). The reader should 

note the following facts at the outset: 

We can use the above results to write: 

Under the null Yt - ~lnSt' so we write: 
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As an example, consider the AR(2) process: 

Then, 

As claimed above: 

P 
61 - - 1: (lj. -( a + (12)1j-l 

and: 

6 ­2 

To see that 61 • 1 corresponds to the case of a unit root, consider: 

which is obtained by setting 61 • 1. Rearrangement yields: 

Thus, the first difference is AR(I), which means that the original series is ARIHA{I, 

I, 0). which is equivalent to an AR(2) with a unit root • 

. 
Fuller (1976) considered the distribution of 6 under the null of 61 - 1 and 1 

showed that for any particular process there exists a scalar c such that N c{ e - 1)
1 

has the same asymptotic distribution as ~ : N{; - 1), the statistic for the first 

order case. He also shows that the studentized statistic for 6 • 1 has the same 
1 

asymptotic distribution as T. This powerful result shows that the-results for the 

AR{l) process ,generalize in a straightforward manner to higher order processes. The 
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lnSo' Furthermore, White (1959) has shown that the limit distributions do not depend 

on the normality assumption. The finite sample distributions, however, will in general 

depend on lnSO' as shown by Evans and Savin (1981). 

Substantial attention has been paid to the small-sample power of the 

T, TV' and TT statistics in Dickey (1984) and Dickey, Bell and Miller (1986). Clearly, 

inappropriate use of TV when only T is needed, or use of TT when only T or T is
V 

needed, will lead to reduced power due to the extra parameters which must be 

estimated. On the other hand, since we do not know whether, for example, trend might 

be present under the alternative, it is clearly desirable to allow for it so as not to 

bias the test results. 

The possibility immediately arises that the large number of observations on our 

exchange rate series will afford us the convenience of routinely allowing for trend 

while simultaneously achieving high power, due to the consistency of the tests. The 

above-mentioned work has, however, focused only on small to medium sized samples (T 2 

25, 50, 100) and found substantial power differences. Consider, for example, the 

powers reported in Table A3.1, reprinted in modified form from Dickey, Bell and Miller 

(1986). The data were generated from a zero-mean AR(l) model, with cr2 _ 1 and initial 
E 

condition Yo O. The tests were at the 5% level against the one-sided alternative2 

lpl < 1 , and 2000 replications were performed. 

Under the null (p - 1) , the power must equal the size (.05), which is the case 

in the table. The typical power problem in unit root tests arises from the fact that 

realistic alternatives like p •• 7, .8, .9 are very close to the null, making it 

difficult to discriminate between null and alternative. Even for N 2 100 and p - .9 , 

for example, the power of T is a healthy .78, while the power of TT is only .19. 

It is therefore clearly desirable to know how quickly the power of our tests 

increases with sample size, and in particular, how quickly the power of T relative to 
V 

TT approaches unity, when in fact there is no need to control for trend. We therefore 

extend the power study to sample sizes of N - 250, 400 and 650. The details of the 

Monte-Carlo procedure are exactly the same, and the results are reported in Table A3.2. 

The results are of immediate interest. First, for N 2 650, which is approximately 
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it follows that the appropriate quantity for which percentage points should be 

calculated under the null is N(~ - 1) • 

Note that we can also make use of the usual "Student's t" for testing p 1: 

p -
T 

where: 

• 2 N 2 N 2 
a = [1/(N-2)] 1: ;t [1/(N-2») 1: (lnS - p lnSt t_1) 

t=2 t=2 

Under the null, T = 0 (1) , but it does not have the "t" distribution. Note that T may
p 

easily be obtained as output from a standard regression package. We have: 

N 
( 1: 
t=2 

or 

Thus T is the usual t statistic in a regression of the first difference of lnSt on the 

first lag of lnSt• 

Dickey and Fuller (1979) show that \ is a monotone function of the likelihood 

ratio for the null of p = 1 versus the alternative of p # 1. However, for more 

specific alternatives, like the stationary model with random initial condition, T is 

not necessarily the likelihood ratio test. Recall that the only alternative entertained 

thus far is: 

t.l,2, ..... 

P # 1 • 

We could, however, refine the model to alternatives such as 
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Figure 3.& 

CONSTRAINED CONDITIONAL VARIANCE, DM 
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Figure 3.4 

LOG DM/DOLL.AR RATE, YIRST DIfFERENCE 
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Table 3.13
 
Weekly Monnal Dollar Spot Rates
 

Conatrained ARCH Models
 

CD FF Jl{ LIR YEN SF BP 

)l .00029 .00077 -.00016 .00065 -.00021 -.00023 -.00088 
(1.48) (1.61) (-.33) (2.10)'" (-.46) (-.42) (-1.81)'" 

PI .12436 
(2.81)"'** 

.06323 
(1. 48) 

.09167 
(2.20)** 

.06318 
(1.49) 

.05542 
(1. 22) 

.06323 
(1. 49) 

.05452 
(1.24 ) 

P2 .07845 .09044 .07200 .06785 .07959 .03115 .03981 
(1.81)* (2.11 )** (1. 71)* (1.52 ) (1. 77)'" (.72) (.90) 

P3 -.02651 
(-.60) 

.05090 
(1.21) 

-.00239 
(-.06) 

.06138 
(1. 38) 

.08140 
(1.78)* 

.02060 
(.48) 

.04679 
(1.06) 

&l 

,laO .00364 .00797 .00731 .00367 .00803 .00761 .00800 
(11.90)*** (10.12)*** (8.69)*** (6.27)*** (13.72)*** (7.20)***(13.65)*** 

,Ia .08372 .09664 .09912 .12287 .09184 .10505 .09430 
(10.00)*** (12.97)*** (13.72)*** (20.37)*** (13.89)*"'* (14.96)*"'*(15.74)**'" 

iter 12 12 11 12 11 11 11 
-lnL 2945.092 2368.180 1374.931 2489.467 2409.401 2278.446 2384.038 

Ea .547 .728 .766 1.178 .658 .861 .694 
aO'1-Eai .000029 .000234 .000228 NA .000189 .000417 .000209 

Significance levels: * 10%. **5%. ***1% 


