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Abstract

Despite powerful advances in yield curve modeling in the last 20 years, comparatively little

attention has been paid to the key practical problem of forecasting the yield curve. In this

paper we do so. We use neither the no-arbitrage approach nor the equilibrium approach.

Instead, we use variations on the Nelson–Siegel exponential components framework to model

the entire yield curve, period-by-period, as a three-dimensional parameter evolving

dynamically. We show that the three time-varying parameters may be interpreted as factors

corresponding to level, slope and curvature, and that they may be estimated with high

efficiency. We propose and estimate autoregressive models for the factors, and we show that

our models are consistent with a variety of stylized facts regarding the yield curve. We use our

models to produce term-structure forecasts at both short and long horizons, with encouraging

results. In particular, our forecasts appear much more accurate at long horizons than various

standard benchmark forecasts.
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1. Introduction

The last 25 years have produced major advances in theoretical models of the term
structure as well as their econometric estimation. Two popular approaches to term
structure modeling are no-arbitrage models and equilibrium models. The no-
arbitrage tradition focuses on perfectly fitting the term structure at a point in time to
ensure that no arbitrage possibilities exist, which is important for pricing derivatives.
The equilibrium tradition focuses on modeling the dynamics of the instantaneous
rate, typically using affine models, after which yields at other maturities can be
derived under various assumptions about the risk premium.1 Prominent contribu-
tions in the no-arbitrage vein include Hull and White (1990) and Heath et al. (1992),
and prominent contributions in the affine equilibrium tradition include Vasicek
(1977), Cox et al. (1985), and Duffie and Kan (1996).

Interest rate point forecasting is crucial for bond portfolio management, and
interest rate density forecasting is important for both derivatives pricing and risk
management.2 Hence one wonders what the modern models have to say about
interest rate forecasting. It turns out that, despite the impressive theoretical advances
in the financial economics of the yield curve, surprisingly little attention has been
paid to the key practical problem of yield curve forecasting. The arbitrage-free term
structure literature has little to say about dynamics or forecasting, as it is concerned
primarily with fitting the term structure at a point in time. The affine equilibrium
term structure literature is concerned with dynamics driven by the short rate, and so
is potentially linked to forecasting, but most papers in that tradition, such as de Jong
(2000) and Dai and Singleton (2000), focus only on in-sample fit as opposed to out-
of-sample forecasting. Moreover, those that do focus on out-of-sample forecasting,
notably Duffee (2002), conclude that the models forecast poorly.

In this paper we take an explicitly out-of-sample forecasting perspective, and we
use neither the no-arbitrage approach nor the equilibrium approach. Instead, we use
the Nelson and Siegel (1987) exponential components framework to distill the entire
yield curve, period-by-period, into a three-dimensional parameter that evolves
dynamically. We show that the three time-varying parameters may be interpreted as
factors. Unlike factor analysis, however, in which one estimates both the unobserved
factors and the factor loadings, the Nelson–Siegel framework imposes structure on
the factor loadings.3 Doing so not only facilitates highly precise estimation of the
factors, but, as we show, it also lets us interpret the factors as level, slope and
curvature. We propose and estimate autoregressive models for the factors, and then
we forecast the yield curve by forecasting the factors. Our results are encouraging; in
1The empirical literature that models yields as a cointegrated system, typically with one underlying

stochastic trend (the short rate) and stationary spreads relative to the short rate, is similar in spirit. See

Diebold and Sharpe (1990), Hall et al. (1992), Shea (1992), Swanson and White (1995), and Pagan et al.

(1996).
2For comparative discussion of point and density forecasting, see Diebold et al. (1998) and Diebold et

al. (1999).
3Classic unrestricted factor analyses include Litterman and Scheinkman (1991) and Knez et al. (1994).
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particular, our models produce one-year-ahead forecasts that are noticeably more
accurate than standard benchmarks.

Related work includes the factor models of Litzenberger et al. (1995), Bliss
(1997a,b), Dai and Singleton (2000), de Jong and Santa-Clara (1999), de Jong (2000),
Brandt and Yaron (2001) and Duffee (2002). Particularly relevant are the three-factor
models of Balduzzi et al. (1996), Chen (1996), and especially the Andersen and Lund
(1997) model with stochastic mean and volatility, whose three factors are interpreted
in terms of level, slope and curvature. We will subsequently discuss related work in
greater detail; for now, suffice it to say that little of it considers forecasting directly,
and that our approach, although related, is indeed very different.

We proceed as follows. In Section 2 we provide a detailed description of our
modeling framework, which interprets and extends earlier work in ways linked to
recent developments in multifactor term structure modeling, and we also show how
it can replicate a variety of stylized facts about the yield curve. In Section 3 we
proceed to an empirical analysis, describing the data, estimating the models, and
examining out-of-sample forecasting performance. In Section 4 we offer interpretive
concluding remarks.

2. Modeling and forecasting the term structure I: methods

Here we introduce the framework that we use for fitting and forecasting the yield
curve. We argue that the well-known Nelson and Siegel (1987) curve is well-suited to
our ultimate forecasting purposes, and we introduce a novel twist of interpretation,
showing that the three coefficients in the Nelson–Siegel curve may be interpreted as
latent level, slope and curvature factors. We also argue that the nature of the factors
and factor loadings implicit in the Nelson–Siegel model facilitate consistency with
various empirical properties of the yield curve that have been cataloged over the
years. Finally, motivated by our interpretation of the Nelson–Siegel model as a
three-factor model of level, slope and curvature, we contrast it to various multi-
factor models that have appeared in the literature.

2.1. Constructing ‘‘Raw’’ yields

Let us first fix ideas and establish notation by introducing three key theoretical
constructs and the relationships among them: the discount curve, the forward curve,
and the yield curve. Let PtðtÞ denote the price of a t-period discount bond, i.e., the
present value at time t of $1 receivable t periods ahead, and let ytðtÞ denote its
continuously compounded zero-coupon nominal yield to maturity. From the yield
curve we obtain the discount curve,

PtðtÞ ¼ e�tytðtÞ,

and from the discount curve we obtain the instantaneous (nominal) forward rate
curve,

f tðtÞ ¼ �P0tðtÞ=PtðtÞ.
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The relationship between the yield to maturity and the forward rate is therefore

ytðtÞ ¼
1

t

Z t

0

f tðuÞdu,

which implies that the zero-coupon yield is an equally-weighed average of forward
rates. Given the yield curve or forward curve, we can price any coupon bond as the
sum of the present values of future coupon and principal payments.

In practice, yield curves, discount curves and forward curves are not observed.
Instead, they must be estimated from observed bond prices. Two popular
approaches to constructing yields proceed by estimating a smooth discount
curve and then converting to yields at the relevant maturities via the above
formulae. The first discount-curve approach to yield construction is due to
McCulloch (1975) and McCulloch and Kwon (1993), who model the discount curve
with a cubic spline. The fitted discount curve, however, diverges at long maturities
instead of converging to zero. Hence such curves provide a poor fit to yield curves
that are flat or have a flat long end, which requires an exponentially decreasing
discount function.

A second discount-curve approach to yield construction is due to Vasicek and
Fong (1982), who fit exponential splines to the discount curve, using a negative
transformation of maturity instead of maturity itself, which ensures that the forward
rates and zero-coupon yields converge to a fixed limit as maturity increases. Hence
the Vasicek–Fong model is more successful at fitting yield curves with flat long ends.
It has problems of its own, however, because its estimation requires iterative
nonlinear optimization, and it can be hard to restrict the implied forward rates to be
positive.

A third and very popular approach to yield construction is due to Fama and Bliss
(1987), who construct yields not via an estimated discount curve, but rather via
estimated forward rates at the observed maturities. Their method sequentially
constructs the forward rates necessary to price successively longer-maturity bonds,
often called an ‘‘unsmoothed Fama–Bliss’’ forward rates, and then constructs
‘‘unsmoothed Fama–Bliss yields’’ by averaging the appropriate unsmoothed
Fama–Bliss forward rates. The unsmoothed Fama–Bliss yields exactly price the
included bonds. Throughout this paper, we model and forecast the unsmoothed
Fama–Bliss yields.

2.2. Modeling yields: the Nelson– Siegel yield curve and its interpretation

At any given time, we have a large set of (Fama–Bliss unsmoothed) yields, to
which we fit a parametric curve for purposes of modeling and forecasting.
Throughout this paper, we use the Nelson and Siegel (1987) functional form, which
is a convenient and parsimonious three-component exponential approximation. In
particular, Nelson and Siegel (1987), as extended by Siegel and Nelson (1988), work
with the forward rate curve,

f tðtÞ ¼ b1t þ b2te
�ltt þ b3tlte

�ltt.
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The Nelson–Siegel forward rate curve can be viewed as a constant plus a Laguerre
function, which is a polynomial times an exponential decay term and is a popular
mathematical approximating function.4 The corresponding yield curve is

ytðtÞ ¼ b1t þ b2t

1� e�ltt

ltt

� �
þ b3t

1� e�ltt

ltt
� e�ltt

� �
.

The Nelson–Siegel yield curve also corresponds to a discount curve that begins at
one at zero maturity and approaches zero at infinite maturity, as appropriate.

Let us now interpret the parameters in the Nelson–Siegel model. The parameter lt

governs the exponential decay rate; small values of lt produce slow decay and can
better fit the curve at long maturities, while large values of lt produce fast decay and
can better fit the curve at short maturities. lt also governs where the loading on b3t

achieves its maximum.5

We interpret b1t, b2t and b3t as three latent dynamic factors. The loading on b1t is
1, a constant that does not decay to zero in the limit; hence it may be viewed as a
long-term factor. The loading on b2t is ð1� e�lttÞ=ltt, a function that starts at 1 but
decays monotonically and quickly to 0; hence it may be viewed as a short-term
factor. The loading on b3t is ðð1� e�lttÞ=lttÞ � e�ltt, which starts at 0 (and is thus
not short-term), increases, and then decays to zero (and thus is not long-term); hence
it may be viewed as a medium-term factor. We plot the three factor loadings in Fig.
1. They are similar to those obtained by Bliss (1997a), who estimated loadings via a
statistical factor analysis.6

An important insight is that the three factors, which following the literature we
have thus far called long-term, short-term and medium-term, may also be interpreted
in terms of level, slope and curvature. The long-term factor b1t, for example, governs
the yield curve level. In particular, one can easily verify that ytð1Þ ¼ b1t.
Alternatively, note that an increase in b1t increases all yields equally, as the loading
is identical at all maturities, thereby changing the level of the yield curve.

The short-term factor b2t is closely related to the yield curve slope, which we
define as the ten-year yield minus the three-month yield. In particular, ytð120Þ
�ytð3Þ ¼ �0:78b2t þ 0:06b3t. Some authors such as Frankel and Lown (1994),
moreover, define the yield curve slope as ytð1Þ � ytð0Þ, which is exactly equal to
�b2t. Alternatively, note that an increase in b2t increases short yields more than long
yields, because the short rates load on b2t more heavily, thereby changing the slope
of the yield curve.

We have seen that b1t governs the level of the yield curve and b2t governs its
slope. It is interesting to note, moreover, that the instantaneous yield depends
on both the level and slope factors, because ytð0Þ ¼ b1t þ b2t. Several other models
have the same implication. In particular, Dai and Singleton (2000) show that the
4See, for example, Courant and Hilbert (1953).
5Throughout this paper, and for reasons that will be discussed subsequently in detail, we set lt ¼ 0:0609

for all t.
6Factors are typically not uniquely identified in factor analysis. Bliss (1997a) rotates the first factor so

that its loading is a vector of ones. In our approach, the unit loading on the first factor is imposed from the

beginning, which potentially enables us to estimate the other factors more efficiently.
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Fig. 1. Factor loadings. We plot the factor loadings in the three-factor model,

ytðtÞ ¼ b1t þ b2t

1� e�ltt

ltt

� �
þ b3t

1� e�ltt

ltt
� e�ltt

� �
,

where the three factors are b1t, b2t, and b3t, the associated loadings are 1, ð1� e�lttÞ=ltt, and

ð1� e�lttÞ=ltt� e�ltt, and t denotes maturity. We fix lt ¼ 0:0609.
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three-factor models of Balduzzi et al. (1996) and Chen (1996) impose the restrictions
that the instantaneous yield is an affine function of only two of the three state
variables, a property shared by the Andersen and Lund (1997) three-factor nonaffine
model.

Finally, the medium-term factor b3t is closely related to the yield curve curvature,
which we define as twice the two-year yield minus the sum of the ten-year and three-
month yields. In particular, 2ytð24Þ � ytð3Þ � ytð120Þ ¼ 0:00053b2t þ 0:37b3t. Alter-
natively, note that an increase in b3t will have little effect on very short or very long
yields, which load minimally on it, but will increase medium-term yields, which load
more heavily on it, thereby increasing yield curve curvature.

Now that we have interpreted Nelson–Siegel as a three-factor of level, slope and
curvature, it is appropriate to contrast it to Litzenberger et al. (1995), which is highly
related yet distinct. First, although Litzenberger et al. model the discount curve PtðtÞ
using exponential components and we model the yield curve ytðtÞ using exponential
components, the yield curve is a log transformation of the discount curve because
ytðtÞ ¼ � log PtðtÞ=t, so the two approaches are equivalent in the one-factor case. In
the multi-factor case, however, a sum of factors in the yield curve will not be a sum in
the discount curve, so there is generally no simple mapping between the approaches.
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Second, both we and Litzenberger et al. provide novel interpretations of the
parameters of fitted curves. Litzenberger et al., however, do not interpret parameters
directly as factors.

In closing this sub-section, it is worth noting that what we have called the
‘‘Nelson–Siegel curve’’ is actually a different factorization than the one originally
advocated by Nelson and Siegel (1987), who used

ytðtÞ ¼ b1t þ b2t

1� e�ltt

ltt
� b3te

�ltt.

Obviously the Nelson–Siegel factorization matches ours with b1t ¼ b1t, b2t ¼ b2tþ

b3t, and b3t ¼ b3t. Ours is preferable, however, for reasons that we are now in a
position to appreciate. First, ð1� e�lttÞ=ltt and e�ltt have similar monotonically
decreasing shape, so if we were to interpret b2 and b3 as factors, then their loadings
would be forced to be very similar, which creates at least two problems. First,
conceptually, it would be hard to provide intuitive interpretations of the factors in
the original Nelson–Siegel framework. Second, operationally, it would be difficult to
estimate the factors precisely, because the high coherence in the factors produces
multicolinearity.

2.3. Stylized facts of the yield curve and the model’s potential ability to replicate them

A good model of yield curve dynamics should be able to reproduce the historical
stylized facts concerning the average shape of the yield curve, the variety of shapes
assumed at different times, the strong persistence of yields and weak persistence of
spreads, and so on. It is not easy for a parsimonious model to accord with all such
facts.

Let us consider some of the most important stylized facts and the ability of our
model to replicate them, in principle:
(1)
 The average yield curve is increasing and concave. In our framework, the average
yield curve is the yield curve corresponding to the average values of b1t, b2t and
b3t. It is certainly possible in principle that it may be increasing and concave.
(2)
 The yield curve assumes a variety of shapes through time, including upward
sloping, downward sloping, humped, and inverted humped. The yield curve in
our framework can assume all of those shapes. Whether and how often it does
depends upon the variation in b1t, b2t and b3t.
(3)
 Yield dynamics are persistent, and spread dynamics are much less persistent.
Persistent yield dynamics would correspond to strong persistence of b1t, and less
persistent spread dynamics would correspond to weaker persistence of b2t.
(4)
 The short end of the yield curve is more volatile than the long end. In our
framework, this is reflected in factor loadings: the short end depends positively
on both b1t and b2t, whereas the long end depends only on b1t.
(5)
 Long rates are more persistent than short rates. In our framework, long rates
depend only on b1t. If b1t is the most persistent factor, then long rates will be
more persistent than short rates.
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Overall, it seems clear that our framework is consistent, at least in principle, with
many of the key stylized facts of yield curve behavior. Whether principle accords
with practice is an empirical matter, to which we now turn.
3. Modeling and forecasting the term structure II: empirics

In this section, we estimate and assess the fit of the three-factor model in a time
series of cross sections, after which we model and forecast the extracted level, slope
and curvature components. We begin by introducing the data.

3.1. The data

We use end-of-month price quotes (bid-ask average) for U.S. Treasuries, from
January 1985 through December 2000, taken from the CRSP government bonds
files. CRSP filters the data, eliminating bonds with option features (callable and
flower bonds), and bonds with special liquidity problems (notes and bonds with less
than one year to maturity, and bills with less than one month to maturity), and then
converts the filtered bond prices to unsmoothed Fama and Bliss (1987) forward
rates. Then, using programs and CRSP data kindly supplied by Rob Bliss, we
convert the unsmoothed Fama–Bliss forward rates into unsmoothed Fama–Bliss
zero yields.

Although most of our analysis does not require the use of fixed maturities, doing
so greatly simplifies our subsequent forecasting exercises. Hence we pool the
data into fixed maturities. Because not every month has the same maturities
available, we linearly interpolate nearby maturities to pool into fixed maturities
of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months, where a
month is defined as 30.4375 days. Although there is no bond with exactly 30.4375
days to maturity, each month there are many bonds with either 30, 31, 32, 33, or 34
days to maturity. Similarly we obtain data for maturities of 3 months, 6 months,
etc.7

The various yields, as well as the yield curve level, slope and curvature defined
above, will play a prominent role in the sequel. Hence we focus on them now in some
detail. In Fig. 2 we provide a three-dimensional plot of our yield curve data. The
large amount of temporal variation in the level is visually apparent. The variation in
slope and curvature is less strong, but nevertheless apparent. In Table 1, we present
descriptive statistics for the yields. It is clear that the typical yield curve is upward
sloping, that the long rates are less volatile and more persistent than short rates,
that the level (120-month yield) is highly persistent but varies only moderately
relative to its mean, that the slope is less persistent than any individual yield but
quite highly variable relative to its mean, and the curvature is the least persistent
of all factors and the most highly variable relative to its mean. It is also worth
7We checked the derived dataset and verified that the difference between it and the original dataset is

only one or two basis points.
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Fig. 2. Yield curves, 1985.01–2000.12. The sample consists of monthly yield data from January 1985 to

December 2000 at maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months.

Table 1

Descriptive statistics, yield curves

Maturity (Months) Mean Std. dev. Minimum Maximum r̂ð1Þ r̂ð12Þ r̂ð30Þ

3 5.630 1.488 2.732 9.131 0.978 0.569 �0.079

6 5.785 1.482 2.891 9.324 0.976 0.555 �0.042

9 5.907 1.492 2.984 9.343 0.973 0.545 �0.005

12 6.067 1.501 3.107 9.683 0.969 0.539 0.021

15 6.225 1.504 3.288 9.988 0.968 0.527 0.060

18 6.308 1.496 3.482 10.188 0.965 0.513 0.089

21 6.375 1.484 3.638 10.274 0.963 0.502 0.115

24 6.401 1.464 3.777 10.413 0.960 0.481 0.133

30 6.550 1.462 4.043 10.748 0.957 0.479 0.190

36 6.644 1.439 4.204 10.787 0.956 0.471 0.226

48 6.838 1.439 4.308 11.269 0.951 0.457 0.294

60 6.928 1.430 4.347 11.313 0.951 0.464 0.336

72 7.082 1.457 4.384 11.653 0.953 0.454 0.372

84 7.142 1.425 4.352 11.841 0.948 0.448 0.391

96 7.226 1.413 4.433 11.512 0.954 0.468 0.417

108 7.270 1.428 4.429 11.664 0.953 0.475 0.426

120 (level) 7.254 1.432 4.443 11.663 0.953 0.467 0.428

Slope 1.624 1.213 �0.752 4.060 0.961 0.405 �0.049

Curvature �0.081 0.648 �1.837 1.602 0.896 0.337 �0.015

Note: We present descriptive statistics for monthly yields at different maturities, and for the yield curve

level, slope and curvature, where we define the level as the 10-year yield, the slope as the difference between

the 10-year and 3-month yields, and the curvature as the twice the 2-year yield minus the sum of the 3-

month and 10-year yields. The last three columns contain sample autocorrelations at displacements of 1,

12, and 30 months. The sample period is 1985:01–2000:12.

F.X. Diebold, C. Li / Journal of Econometrics 130 (2006) 337–364 345
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noting, because it will be relevant for our future modeling choices, that level,
slope and curvature are not highly correlated with each other; all pairwise
correlations are less than 0.40. In Fig. 3 we display the median yield curve together
with pointwise interquartile ranges. The earlier-mentioned upward sloping pattern,
with long rates less volatile than short rates, is apparent. One can also see that
the distributions of yields around their medians tend to be asymmetric, with a long
right tail.

3.2. Fitting yield curves

As discussed above, we fit the yield curve using the three-factor model,

ytðtÞ ¼ b1t þ b2t

1� e�ltt

ltt

� �
þ b3t

1� e�ltt

ltt
� e�ltt

� �
.

We could estimate the parameters yt ¼ fb1t;b2t;b3t; ltg by nonlinear least squares,
for each month t. Following standard practice tracing to Nelson and Siegel (1987),
however, we instead fix lt at a prespecified value, which lets us compute the values of
the two regressors (factor loadings) and use ordinary least squares to estimate the
betas (factors), for each month t. Doing so enhances not only simplicity and
convenience, but also numerical trustworthiness, by enabling us to replace hundreds
of potentially challenging numerical optimizations with trivial least-squares
regressions. The question arises, of course, as to an appropriate value for lt. Recall
that lt determines the maturity at which the loading on the medium-term, or
curvature, factor achieves it maximum. Two- or three-year maturities are commonly
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used in that regard, so we simply picked the average, 30 months. The lt value that
maximizes the loading on the medium-term factor at exactly 30 months is
lt ¼ 0:0609.

Applying ordinary least squares to the yield data for each month gives us a time
series of estimates of fb̂1t; b̂2t; b̂3tg and a corresponding panel of residuals, or pricing
errors. Note that, because the maturities are not equally spaced, we implicitly weight
the most ‘‘active’’ region of the yield curve most heavily when fitting the model.8

There are many aspects to a full assessment of the ‘‘fit’’ of our model. In Fig. 4 we
plot the implied average fitted yield curve against the average actual yield curve. The
two agree quite closely. In Fig. 5 we dig deeper by plotting the raw yield curve
and the three-factor fitted yield curve for some selected dates. Clearly the three-
factor model is capable of replicating a variety of yield curve shapes: upward
sloping, downward sloping, humped, and inverted humped. It does, however,
have difficulties at some dates, especially when yields are dispersed, with multi-
ple interior minima and maxima. Overall, however, the residual plot in Fig. 6
indicates a good fit.

In Table 2 we present statistics that describe the in-sample fit. The residual sample
autocorrelations indicate that pricing errors are persistent. As noted in Bliss (1997b),
regardless of the term structure estimation method used, there is a persistent
8Other weightings and loss functions have been explored by Bliss (1997b), Soderlind and Svensson

(1997), and Bates (1999).
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Fig. 5. Selected fitted (model-based) yield curves. We plot fitted yield curves for selected dates, together

with actual yields. See text for details.
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discrepancy between actual bond prices and prices estimated from term structure
models. Presumably these discrepancies arise from persistent tax and/or
liquidity effects.9 However, because they persist, they should vanish from fitted
yield changes.

In Fig. 7 we plot fb̂1t; b̂2t; b̂3tg along with the empirical level, slope and curvature
defined earlier. The figure confirms our assertion that the three factors in our model
correspond to level, slope and curvature. The correlations between the estimated
factors and the empirical level, slope, and curvature are rðb̂1t; I tÞ ¼ 0:97,
rðb̂2t; stÞ ¼ �0:99, and rðb̂3t; ctÞ ¼ 0:99, where ðlt; st; ctÞ are the empirical level, slope
and curvature of the yield curve. In Table 3 and Fig. 8 (left column) we present
descriptive statistics for the estimated factors. From the autocorrelations of the three
factors, we can see that the first factor is the most persistent, and that the second
9Although, as discussed earlier, we attempted to remove illiquid bonds, complete elimination is not

possible.
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Fig. 6. Yield curve residuals, 1985.01–2000.12. We plot residuals from Nelson–Siegel yield curves fitted

month-by-month. See text for details.

Table 2

Descriptive statistics, yield curve residuals

Maturity (Months) Mean Std. Dev. Min. Max. MAE RMSE r̂ð1Þ r̂ð12Þ r̂ð30Þ

3 �0.018 0.080 �0.332 0.156 0.061 0.082 0.777 0.157 �0.360
6 �0.013 0.042 �0.141 0.218 0.032 0.044 0.291 0.257 �0.046
9 �0.026 0.062 �0.200 0.218 0.052 0.067 0.704 0.216 �0.247

12 0.013 0.080 �0.160 0.267 0.064 0.081 0.563 0.322 �0.266
15 0.063 0.050 �0.063 0.243 0.067 0.080 0.650 0.139 �0.070
18 0.048 0.035 �0.048 0.165 0.052 0.059 0.496 0.183 �0.139
21 0.026 0.030 �0.091 0.101 0.033 0.040 0.370 �0.044 �0.011
24 �0.027 0.045 �0.190 0.082 0.037 0.052 0.667 0.212 0.056
30 �0.020 0.036 �0.200 0.098 0.029 0.041 0.398 0.072 �0.058
36 �0.037 0.046 �0.203 0.128 0.047 0.059 0.597 0.053 �0.017
48 �0.018 0.065 �0.204 0.230 0.052 0.067 0.754 0.239 �0.321
60 �0.053 0.058 �0.199 0.186 0.066 0.079 0.758 �0.021 �0.175
72 0.010 0.080 �0.133 0.399 0.056 0.081 0.904 0.278 �0.163
84 0.001 0.062 �0.259 0.263 0.044 0.062 0.589 0.019 0.000
96 0.032 0.045 �0.202 0.111 0.045 0.055 0.697 0.120 �0.144

108 0.033 0.046 �0.161 0.132 0.047 0.057 0.669 0.081 �0.176
120 �0.016 0.071 �0.256 0.164 0.057 0.073 0.623 0.252 �0.070

Note: We fit the three-factor model,

ytðtÞ ¼ b1t þ b2t

1� e�ltt

ltt

� �
þ b3t

1� e�ltt

ltt
� e�ltt

� �
,

using monthly yield data 1985:01–2000:12, with lt fixed at 0.0609, and we present descriptive statistics for

the corresponding residuals at various maturities. The last three columns contain residual sample

autocorrelations at displacements of 1, 12, and 30 months.
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month yields, and the curvature as the twice the 2-year yield minus the sum of the 3-month and 10-year yields.
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factor is more persistent than the third. Augmented Dickey–Fuller tests suggest that
b̂1 and b̂2 may have a unit roots, and that b̂3 does not.10Finally, the pairwise
correlations between the estimated factors are not large.
10We use SIC to choose the lags in the augmented Dickey–Fuller unit-root test. The MacKinnon critical

values for rejection of hypothesis of a unit root are �3:4518 at the one percent level, �2:8704 at the five

percent level, and �2:5714 at the ten percent level.
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Table 3

Descriptive statistics, estimated factors

Factor Mean Std. Dev. Minimum Maximum r̂ð1Þ r̂ð12Þ r̂ð30Þ ADF

b̂1t
7.579 1.524 4.427 12.088 0.957 0.511 0.454 �2.410

b̂2t
�2.098 1.608 �5.616 0.919 0.969 0.452 �0.082 �1.205

b̂3t
�0.162 1.687 �5.249 4.234 0.901 0.353 �0.006 �3.516

Note: We fit the three-factor Nelson–Siegel model using monthly yield data 1985:01–2000:12, with lt fixed

at 0.0609, and we present descriptive statistics for the three estimated factors b̂1t, b̂2t, and b̂3t. The last

column contains augmented Dickey–Fuller (ADF) unit root test statistics, and the three columns to its left

contain sample autocorrelations at displacements of 1, 12, and 30 months.
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3.3. Modeling and forecasting yield curve level, slope and curvature

We model and forecast the Nelson–Siegel factors as univariate AR(1) processes.
The AR(1) models can be viewed as natural benchmarks determined a priori: the
simplest great workhorse autoregressive models. The yield forecasts based on
underlying univariate AR(1) factor specifications are:

ŷtþh=tðtÞ ¼ b̂1;tþh=t þ b̂2;tþh=t

1� e�lt

lt

� �
þ b̂3;tþh=t

1� e�lt

lt
� e�lt

� �
,

where

b̂1;tþh=t ¼ ĉi þ ĝib̂it; i ¼ 1; 2; 3,

and ĉi and ĝi are obtained by regressing b̂it on an intercept and b̂i;t�h.
11

For comparison, we also produce yield forecasts based on an underlying
multivariate VAR(1) specification, as

ŷtþh=tðtÞ ¼ b̂1;tþh=t þ b̂2;tþh=t

1� e�lt

lt

� �
þ b̂3;tþh=t

1� e�lt

lt
� e�lt

� �
,

where

b̂tþh=t ¼ ĉþ Ĝb̂t.

We include the VAR forecasts for completeness, although one might expect them to
be inferior to the AR forecasts for at least two reasons. First, as is well-known from
the macroeconomics literature, unrestricted VARs tend to produce poor forecasts of
economic variables even when there is important cross-variable interaction, due to
the large number of included parameters and the resulting potential for in-sample
11Note that we directly regress factors at tþ h on factors at t, which is a standard method of coaxing

least squares into optimizing the relevant loss function, h-month-ahead RMSE, as opposed to the usual l-

month-ahead RMSE. We estimate all competitor models in the same way, as described below.
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Fig. 8. Autocorrelations and residual autocorrelations of level, slope and curvature factors. We plot the

sample autocorrelations of the three estimated factors, b̂1t, b̂2t, and b̂3t, as well as the sample

autocorrelations of AR(1) models fit to the three estimated factors, along with Barlett’s approximate 95%

confidence bands.
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overfitting.12 Second, our factors indeed display little cross-factor interaction and are
not highly correlated, so that an appropriate multivariate model is likely close to a
stacked set of univariate models.
12That, of course, is the reason for the ubiquitous use of Bayesian analysis, featuring strong priors on

the VAR coefficients, for VAR forecasting, as pioneered by Doan et al. (1984).
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In Fig. 8 (right column) we provide some evidence on the goodness of fit of the
AR(1) models fit to the estimated level, slope and curvature factors, showing residual
autocorrelation functions. The autocorrelations are very small, indicating that the
models accurately describe the conditional means of level, slope and curvature.
3.4. Out-of-sample forecasting performance of the three-factor model

A good approximation to yield-curve dynamics should not only fit well in-sample,
but also forecast well out-of-sample. Because the yield curve depends only on
fb̂1t; b̂2t; b̂3tg, forecasting the yield curve is equivalent to forecasting fb̂1t; b̂2t; b̂3tg. In
this section we undertake just such a forecasting exercise. We estimate and forecast
recursively, using data from 1985:1 to the time that the forecast is made, beginning in
1994:1 and extending through 2000:12.

In Tables 4–6 we compare h-month-ahead out-of sample forecasting results from
Nelson–Siegel models to those of several natural competitors, for maturities of 3, 12,
Table 4

Out-of-sample 1-month-ahead forecasting results

Maturity ðtÞ Mean Std. Dev. RMSE r̂ð1Þ r̂ð12Þ

Nelson–Siegel with AR(1) factor dynamics

3 months �0.045 0.170 0.176 0.247 0.017

1 year 0.023 0.235 0.236 0.425 �0.213

3 years �0.056 0.273 0.279 0.332 �0.117

5 years �0.091 0.277 0.292 0.333 �0.116

10 years �0.062 0.252 0.260 0.259 �0.115

Random walk

3 months 0.033 0.176 0.179 0.220 0.053

1 year 0.021 0.240 0.241 0.340 �0.153

3 years 0.007 0.279 0.279 0.341 �0.133

5 years �0.003 0.276 0.276 0.275 �0.131

10 years �0.011 0.254 0.254 0.215 �0.145

Slope regression

3 months NA NA NA NA NA

1 year 0.048 0.242 0.247 0.328 �0.145

3 years 0.032 0.286 0.288 0.373 �0.146

5 years 0.019 0.284 0.285 0.318 �0.150

10 years 0.013 0.260 0.260 0.245 �0.159

Fama–Bliss forward rate regression

3 months 0.066 0.159 0.172 0.178 0.036

1 year 0.066 0.233 0.242 0.313 �0.148

3 years 0.024 0.286 0.287 0.380 �0.157

5 years 0.038 0.277 0.280 0.273 �0.125

10 years 0.041 0.251 0.254 0.200 �0.159
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Table 4 (continued )

Maturity ðtÞ Mean Std. Dev. RMSE r̂ð1Þ r̂ð12Þ

Cochrane–Piazzesi forward curve regression

3 months NA NA NA NA NA

1 year �0.038 0.238 0.241 0.282 �0.088

3 years �0.034 0.287 0.289 0.377 �0.108

5 years �0.068 0.292 0.300 0.364 �0.084

10 years �0.113 0.257 0.281 0.271 �0.097

Univariate AR(1)s on yield levels

3 months 0.042 0.177 0.182 0.229 0.060

1 year 0.025 0.238 0.239 0.341 �0.147

3 years �0.005 0.276 0.276 0.345 �0.125

5 years �0.030 0.274 0.276 0.280 �0.127

10 years �0.054 0.252 0.258 0.224 �0.144

VAR(1) on yield levels

3 months �0.013 0.176 0.176 0.229 0.128

1 year �0.026 0.262 0.263 0.447 �0.162

3 years �0.041 0.302 0.305 0.437 �0.154

5 years �0.064 0.303 0.310 0.429 �0.133

10 years �0.090 0.274 0.288 0.310 �0.123

VAR(1) on yield changes

3 months 0.043 0.176 0.181 �0.019 0.156

1 year 0.029 0.230 0.232 0.157 �0.149

3 years 0.026 0.276 0.277 0.077 �0.049

5 years 0.021 0.276 0.277 0.010 �0.002

10 years 0.020 0.263 0.264 �0.017 �0.030

Note: We present the results of out-of-sample 1-month-ahead forecasting using eight models, as described

in detail in the text. We estimate all models recursively from 1985:1 to the time that the forecast is made,

beginning in 1994:1 and extending through 2000:12. We define forecast errors at tþ 1 as ytþ1ðtÞ � ŷtþ1=tðtÞ,
and we report the mean, standard deviation and root mean squared errors of the forecast errors, as well as

their first and 12th sample autocorrelation coefficients.

Table 5

Out-of-sample 6-month-ahead forecasting results

Maturity ðtÞ Mean Std. Dev. RMSE r̂ ð6Þ r̂ ð18Þ

Nelson–Siegel with AR(1) factor dynamics
3 months 0.083 0.510 0.517 0.301 �0.190
1 year 0.131 0.656 0.669 0.168 �0.174
3 years �0.052 0.748 0.750 0.049 �0.189
5 years �0.173 0.758 0.777 0.069 �0.273
10 years �0.251 0.676 0.721 0.058 �0.288

Random walk
3 months 0.220 0.564 0.605 0.381 �0.214
1 year 0.181 0.758 0.779 0.139 �0.150

F.X. Diebold, C. Li / Journal of Econometrics 130 (2006) 337–364354
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Table 5 (continued )

Maturity ðtÞ Mean Std. Dev. RMSE r̂ ð6Þ r̂ ð18Þ

3 years 0.099 0.873 0.879 0.018 �0.211
5 years 0.048 0.860 0.861 0.008 �0.249
10 years �0.020 0.758 0.758 0.019 �0.271

Slope regression
3 months NA NA NA NA NA
1 year 0.422 0.811 0.914 0.109 �0.113
3 years 0.281 0.944 0.985 0.116 �0.198
5 years 0.209 0.939 0.962 0.103 �0.235
10 years 0.145 0.832 0.845 0.096 �0.256

Fama–Bliss forward rate regression
3 months 0.494 0.549 0.739 0.208 �0.072
1 year 0.373 0.821 0.902 0.194 �0.150
3 years 0.255 0.964 0.997 0.092 �0.211
5 years 0.220 0.932 0.958 0.050 �0.248
10 years 0.223 0.794 0.825 0.038 �0.268

Cochrane–Piazzesi forward curve regression
3 months NA NA NA NA NA
1 year �0.155 0.845 0.859 0.220 �0.110
3 years �0.210 0.910 0.934 0.179 �0.218
5 years �0.224 0.910 0.937 0.193 �0.270
10 years �0.345 0.837 0.905 0.192 �0.287

Univariate AR(1)s on yield levels
3 months 0.224 0.539 0.584 0.405 �0.210
1 year 0.160 0.707 0.725 0.193 �0.155
3 years �0.030 0.800 0.801 0.075 �0.211
5 years �0.144 0.789 0.802 0.061 �0.253
10 years �0.286 0.699 0.755 0.073 �0.278

VAR(1) on yield levels
3 months �0.138 0.659 0.673 0.289 �0.160
1 year �0.195 0.880 0.901 0.133 �0.169
3 years �0.218 0.926 0.951 0.122 �0.240
5 years �0.258 0.919 0.955 0.140 �0.273
10 years �0.406 0.811 0.907 0.137 �0.293

VAR(1) on yield changes
3 months 0.312 0.661 0.731 0.319 �0.256
1 year 0.310 0.845 0.900 0.172 �0.181
3 years 0.276 0.941 0.981 0.059 �0.210
5 years 0.246 0.917 0.949 0.048 �0.242
10 years 0.192 0.809 0.831 0.043 �0.259

Note: We present the results of out-of-sample 6-month-ahead forecasting using eight models, as described

in detail in the text. We estimate all models recursively from 1985:1 to the time that the forecast is made,

beginning in 1994:1 and extending through 2000:12. We define forecast errors at tþ 6 as ytþ6ðtÞ � ŷtþ6=tðtÞ,
and we report the mean, standard deviation and root mean squared errors of the forecast errors, as well as

their sixth and eighteenth sample autocorrelation coefficients.
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Table 6

Out-of-sample 12-month-ahead forecasting results

Maturity ðtÞ Mean Std. Dev. RMSE r̂ ð12Þ r̂ ð24Þ

Nelson–Siegel with AR(1) factor dynamics

3 months 0.150 0.724 0.739 �0.288 0.001

1 year 0.173 0.823 0.841 �0.332 �0.004

3 years �0.123 0.910 0.918 �0.408 0.015

5 years �0.337 0.918 0.978 �0.412 0.003

10 years �0.531 0.825 0.981 �0.433 �0.003

Nelson–Siegel with VAR(1) factor dynamics

3 months �0.463 1.000 1.102 �0.163 �0.111

1 year �0.416 1.224 1.293 �0.265 �0.065

3 years �0.576 1.268 1.393 �0.317 �0.036

5 years �0.673 1.210 1.385 �0.315 �0.039

10 years �0.721 1.056 1.279 �0.299 �0.037

Random walk

3 months 0.416 0.930 1.019 �0.118 �0.109

1 year 0.388 1.132 1.197 �0.268 �0.019

3 years 0.236 1.214 1.237 �0.419 0.060

5 years 0.130 1.184 1.191 �0.481 0.072

10 years �0.033 1.051 1.052 �0.508 0.069

Slope regression

3 months NA NA NA NA NA

1 year 0.896 1.235 1.526 �0.187 �0.024

3 years 0.641 1.316 1.464 �0.212 0.024

5 years 0.515 1.305 1.403 �0.255 0.035

10 years 0.362 1.208 1.261 �0.268 0.042

Fama–Bliss forward rate regression

3 months 0.942 1.010 1.381 �0.046 �0.096

1 year 0.875 1.276 1.547 �0.142 �0.039

3 years 0.746 1.378 1.567 �0.291 0.035

5 years 0.587 1.363 1.484 �0.352 0.040

10 years 0.547 1.198 1.317 �0.403 0.062

Cochrane–Piazzesi forward curve regression

3 months NA NA NA NA NA

1 year �0.162 1.275 1.285 �0.179 �0.079

3 years �0.377 1.275 1.330 �0.274 �0.028

5 years �0.529 1.225 1.334 �0.301 �0.021

10 years �0.760 1.088 1.327 �0.307 �0.020

Univariate AR(1)s on yield levels

3 months 0.246 0.808 0.845 �0.213 �0.073

1 year 0.182 0.953 0.970 �0.271 �0.004

F.X. Diebold, C. Li / Journal of Econometrics 130 (2006) 337–364356
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Table 6 (continued )

Maturity ðtÞ Mean Std. Dev. RMSE r̂ ð12Þ r̂ ð24Þ

3 years �0.113 0.996 1.002 �0.380 0.061

5 years �0.301 0.961 1.007 �0.433 0.058

10 years �0.603 0.835 1.030 �0.431 0.020

VAR(1) on yield levels

3 months �0.276 1.006 1.043 �0.219 �0.099

1 year �0.390 1.204 1.266 �0.322 �0.058

3 years �0.467 1.240 1.325 �0.345 �0.015

5 years �0.540 1.201 1.317 �0.348 �0.012

10 years �0.744 1.060 1.295 �0.328 �0.010

VAR(1) on yield changes

3 months 0.717 1.072 1.290 �0.068 �0.127

1 year 0.704 1.240 1.426 �0.223 �0.041

3 years 0.627 1.341 1.480 �0.399 0.051

5 years 0.559 1.281 1.398 �0.459 0.070

10 years 0.408 1.136 1.207 �0.491 0.072

ECM(1) with one common trend

3 months 0.738 0.982 1.228 �0.163 �0.123

1 year 0.767 1.143 1.376 �0.239 �0.072

3 years 0.546 1.203 1.321 �0.278 �0.013

5 years 0.379 1.191 1.250 �0.278 �0.003

10 years 0.169 1.095 1.108 �0.224 0.009

ECM(1) with two common trends

3 months 0.778 1.037 1.296 �0.175 �0.129

1 year 0.868 1.247 1.519 �0.286 �0.033

3 years 0.586 1.186 1.323 �0.288 �0.034

5 years 0.425 1.155 1.231 �0.304 �0.014

10 years 0.220 1.035 1.058 �0.274 0.015

Direct regression on three AR(1) principal components

3 months 0.162 0.785 0.802 �0.298 �0.020

1 year 0.416 0.979 1.064 �0.305 0.042

3 years �0.127 1.014 1.022 �0.372 0.054

5 years �0.393 1.013 1.087 �0.335 0.038

10 years �0.394 0.929 1.009 �0.284 0.066

Note: We present the results of out-of-sample 12-month-ahead forecasting using twelve models, as

described in detail in the text. We estimate all models recursively from 1985:1 to the time that the forecast

is made, beginning in 1994:1 and extending through 2000:12. We define forecast errors at tþ 12 as

ytþ12ðtÞ � ŷtþ12=tðtÞ, and we report the mean, standard deviation and root mean squared errors of the

forecast errors, as well as their 12th and 24th sample autocorrelation coefficients.
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36, 60 and 120 months, and forecast horizons of h ¼ 1; 6 and 12 months. Let us now
describe the competitors in terms of how their forecasts are generated.
(1)
13Note

of the Co
Random walk:

ŷtþh=tðtÞ ¼ ytðtÞ.

The forecast is always ‘‘no change.’’

(2)
 Slope regression:

ŷtþh=tðtÞ � ytðtÞ ¼ ĉðtÞ þ ĝðtÞðytðtÞ � ytð3ÞÞ.

The forecasted yield change is obtained from a regression of historical yield
changes on yield curve slopes.
(3)
 Fama–Bliss forward rate regression:

ŷtþh=tðtÞ � ytðtÞ ¼ ĉðtÞ þ ĝðtÞðf h
t ðtÞ � ytðtÞÞ,

where f h
t ðtÞ is the forward rate contracted at time t for loans from time tþ h to

time tþ hþ t. Hence the forecasted yield change is obtained from a regression
of historical yield changes on forward spreads. Note that, because the forward
rate is proportional to the derivative of the discount function, the information
used to forecast future yields in forward rate regressions is very similar to that
in slope regressions.
(4)
 Cochrane and Piazzesi (2002) forward curve regression:

ŷtþh=tðtÞ � ytðtÞ ¼ ĉðtÞ þ ĝ0ðtÞytð12Þ þ
X9
k¼1

ĝkðtÞf
12k
t ð12Þ.

Note that the Fama–Bliss forward regression is a special case of the
Cochrane–Piazzesi forward regression.13
(5)
 AR(1) on yield levels:

ŷtþh=tðtÞ ¼ ĉðtÞ þ ĝytðtÞ.
(6)
 VAR(l) on yield levels:

ŷtþh=t ¼ ĉþ Ĝyt,

where yt ¼ ½ytð3Þ; ytð12Þ; ytð36Þ; ytð60Þ; ytð120Þ�
0.
(7)
 VAR(l) on yield changes:

ẑtþh=t ¼ ĉþ Ĝzt,

where zt�½ytð3Þ�yt�1ð3Þ; ytð12Þ�yt�1ð12Þ; ytð36Þ�yt�1ð36Þ; ytð60Þ � yt�1ð60Þ;
ytð120Þ � yt�1ð120Þ�

0.
that this is an unrestricted version of the model estimated by Cochrane and Piazzesi. Imposition

chrane–Piazzesi restrictions produced qualitatively identical results.
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(8)
 ECM(1) with one common trend:

ẑtþh=t ¼ ĉþ Ĝzt,

where zt�½ytð3Þ�yt�1ð3Þ; ytð12Þ� ytð3Þ; ytð36Þ � ytð3Þ; ytð60Þ � ytð3Þ; ytð120Þ�
ytð3Þ�

0.

(9)
 ECM(1) with two common trends:

ẑtþh=t ¼ ĉþ Ĝzt,

where zt�½ytð3Þ�yt�1ð3Þ; ytð12Þ�yt�1ð12Þ; ytð36Þ�ytð3Þ; ytð60Þ�ytð3Þ; ytð120Þ
�ytð3Þ�

0.

(10)
 Direct regression on three AR(1) principal components

We first perform a principal components analysis on the full set of seventeen
yields yt, effectively decomposing the yield covariance matrix as QLQT,
where the diagonal elements of L are the eigenvalues and the columns of Q

are the associated eigenvectors. Denote the largest three eigenvalues by l1,
l2, and l3, and denote the associated eigenvectors by q1, q2, and q3. The first
three principal components xt ¼ ½x1t; x2t; x3t� are then defined by xit ¼ q0iyt,
i ¼ 1; 2; 3. We then use a univariate AR(1) model to produce h-step-ahead
forecasts of the principal components:

x̂i;tþh=t ¼ ĉi þ ĝixit; i ¼ 1; 2; 3,

and we produce forecasts for yields yt � ½ytð3Þ; ytð12Þ; ytð36Þ; ytð60Þ; ytð120Þ�
0 as

ŷtþh=tðtÞ ¼ q1ðtÞx̂1;tþh=t þ q2ðtÞx̂2;tþh=t þ q3ðtÞx̂3;tþh=t,

where qiðtÞ is the element in the eigenvector qi that corresponds to maturity t.
We define forecast errors at tþ h as ytþhðtÞ � ŷtþh=tðtÞ. Note well that, in each case,
the object being forecast ðytþhðtÞÞ is a future yield, not a future Nelson–Siegel fitted
yield. We will examine a number of descriptive statistics for the forecast errors,
including mean, standard deviation, root mean squared error (RMSE), and
autocorrelations at various displacements.

Our model’s 1-month-ahead forecasting results, reported in Table 4, are in certain
respects humbling. In absolute terms, the forecasts appear suboptimal: the forecast
errors appear serially correlated. In relative terms, RMSE comparison at various
maturities reveals that our forecasts, although slightly better than the random walk
and slope regression forecasts, are indeed only very slightly better. Finally, the
Diebold and Mariano (1995) statistics reported in Table 7 indicate universal
insignificance of the RMSE differences between our 1-month-ahead forecasts and
those from random walks or Fama–Bliss regressions.

The 1-month-ahead forecast defects likely come from a variety of sources, some of
which could be eliminated. First, for example, pricing errors due to illiquidity may be
highly persistent and could be reduced by including variables that may explain
mispricing. It is worth noting, moreover, that related papers such as Bliss (1997b)
and de Jong (2000) also find serially correlated forecast errors, often with persistence
much stronger than ours.
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Table 7

Out-of-sample forecast accuracy comparisons

Maturity ðtÞ 1-Month horizon 12-Month horizon

Against RW Against FB Against RW Against FB

3 months �0.27 0.18 �1.65� �2.43�

1 year �0.64 �0.56 �2.04� �2.31�

3 years �0.02 �0.58 �2.11� �2.18�

5 years 0.97 0.57 �1.61 �1.90�

10 years 0.49 0.34 �0.63 �1.35

Note: We present Diebold–Mariano forecast accuracy comparison tests of our three-factor model forecasts

(using univariate AR(1) factor dynamics) against those of the random walk model (RW) and the

Fama–Bliss forward rate regression model (FB). The null hypothesis is that the two forecasts have the

same mean squared error. Negative values indicate superiority of our three-factor model forecasts, and

asterisks denote significance relative to the asymptotic null distribution at the 10 percent level.
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Matters improve radically, however, as the forecast horizon lengthens. Our
model’s 6-month-ahead forecasting results, reported in Table 5, are noticeably
improved, and our model’s 12-month-ahead forecasting results, reported in Table 6,
are much improved. In particular, our model’s 12-month ahead forecasts outperform
those of all competitors at all maturities, often by a wide margin in both relative and
absolute terms. Seven of the 10 Diebold–Mariano statistics in Table 7 indicate
significant 12-month-ahead RMSE superiority of our forecasts at the five percent
level. The strong yield curve forecastability at the 12-month-ahead horizon is, for
example, very attractive from the vantage point of active bond trading and the
vantage point of credit portfolio risk management.14 Moreover, our 12-month-ahead
forecasts, like their 1- and 6-month-ahead counterparts, could be improved upon,
because the forecast errors remain serially correlated.15

It is worth noting that Duffee (2002) finds that even the simplest random walk
forecasts dominate those from the Dai and Singleton (2000) affine model, which
therefore appears largely useless for forecasting. Hence Duffee proposes a less-
restrictive ‘‘essentially affine’’ model and shows that it forecasts better than the
random walk in most cases, which is appropriately viewed as a victory. A
comparison of our results and Duffee’s, however, reveals that our three-factor model
14Note that Nelson–Siegel loadings imply a very smooth yield curve, which in turn suggests that our

model, although not arbitrage-free, would not likely generate extreme portfolio positions. Competitors

such as regression on principal components, in contrast, have no smooth cross-sectional restrictions and

may well generate extreme portfolio positions in practice. This is one important way in which our

approach is superior to directs regression on principal components, despite the fact that our estimated

factors are close to the first three principal components. (Four more are given below.)
15We report 12-month-ahead forecast error serial correlation coefficients at displacements of 12 and 24

months, in contrast to those at displacements of 1 and 12 months reported for the 1-month-ahead forecast

errors, because the 12-month-ahead errors would naturally have moving-average structure even if the

forecasts were fully optimal, due to the overlap.
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produces larger percentage reductions in out-of-sample RMSE relative to the
random walk than does Duffee’s best essentially affine model. Our forecasting
success is particularly notable in light of the fact that Duffee forecasts only the
smoothed yield curve, whereas we forecast the actual yield curve.16

Finally, we note that although our approach is closely related to direct principal
components regression, neither our approach nor our results are identical.
Interestingly, there is reason to prefer our approach on both empirical and
theoretical grounds. Empirically, our results indicate that our approach has superior
forecasting performance on our sample of yields. Theoretically, other methods,
including regression on principal components and regression on ad hoc empirical
level, slope and curvature, often have unappealing features, including:
(1)
16

sam
17
they cannot be used to produce yields at maturities other than those observed in
the data,
(2)
 they do not guarantee a smooth yield curve and forward curve,

(3)
 they do not guarantee positive forward rates at all horizons, and

(4)
 they do not guarantee that the discount function starts at 1 and approaches 0 as

maturity approaches infinity.
4. Concluding remarks

We have re-interpreted the Nelson–Siegel yield curve as a dynamic model that
achieves dimensionality reduction via factor structure (level, slope and curvature),
and we have explored the model’s performance in out-of-sample yield curve
forecasting. Although the 1-month-ahead forecasting results are no better than those
of random walk and other leading competitors, the 1-year-ahead results are much
superior.

A number of authors have proposed extensions to Nelson–Siegel to enhance
flexibility, including Bliss (1997b), Soderlind and Svensson (1997), Björk and
Christensen (1999), Filipovic (1999, 2000), Björk (2000), Björk and Landén (2000)
and Björk and Svensson (2001). From the perspective of interest rate forecasting
accuracy, however, the desirability of the above generalizations of Nelson–Siegel is
not obvious, which is why we did not pursue them here. For example, although the
Bliss and Soderlind–Svensson extensions can have in-sample fit no worse than that
of Nelson–Siegel, because they include Nelson–Siegel as a special case, there is no
guarantee of better out-of-sample forecasting performance. Indeed, accumulated
experience suggest that parsimonious models are often more successful for out-of-
sample forecasting.17

Some of the extensions alluded to above are designed to make Nelson–Siegel
consistent with no-arbitrage pricing. It is not obvious to us, however, that use of
We note, however, that our enthusiasm must be tempered by the fact that our in-sample and out-of-

ple periods are not identical to Duffee’s, so definitive comparisons cannot be made.

See Diebold (2004).
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arbitrage-free models is necessary or desirable for producing good forecasts.18

Indeed we have shown that our model, which is not arbitrage-free, can produces
good forecasts.

In closing, we would like to elaborate on the likely reason for the forecasting
success of our approach, which relies heavily on a broad interpretation of the
shrinkage principle. The essence of our approach is intentionally to impose
substantial a priori structure, motivated by simplicity, parsimony, and theory, in
an explicit attempt to avoid data mining and hence enhance out-of-sample
forecasting ability. This includes our use of a tightly parametric model that places
strict structure on factor loadings in accordance with simple theoretical desiderata
for the discount function, our decision to fix l, our emphasis on simple univariate
modeling of the factors based upon our theoretically derived interpretation of the
model as one of approximately orthogonal level, slope and curvature factors, and
our emphasis on the simplest possible AR(1) factor dynamics. All of this is in
keeping with a broad interpretation of the ‘‘shrinkage principle,’’ which has a firm
foundation in Bayes–Stein theory, in empirical intuition, and in an accumulated
track record of good performance (e.g., Garcia-Ferrer et al., 1987; Zellner and Hong,
1989; Zellner and Min, 1993). Here we interpret the shrinkage principle as the insight
that imposition of restrictions, which will of course degrade in-sample fit, may
nevertheless be helpful for out-of-sample forecasting, even if the restrictions are false.
The fact that the shrinkage principle works in the yield-curve context, as it does in so
many other contexts, is precisely what theory and empirical experience would lead
one to expect. This is not to say, of course, that our specification is in any sense
uniquely best, and we make no claims to that effect. Rather, the broad lesson of the
paper is to show in the yield-curve context that the shrinkage perspective, which
tends to produce seemingly naive but truly sophisticatedly simple models (of which
ours is one example), may be very appealing when the goal is forecasting. Put
differently, the paper emphasizes in the yield curve context Zellner’s (1992) ‘‘KISS
principle’’ of forecasting —‘‘Keep it sophisticatedly simple.’’
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