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 SUMMARY

 We propose a measure of predictability based on the ratio of the expected loss of a short-run forecast
 to the expected loss of a long-run forecast. This predictability measure can be tailored to the forecast
 horizons of interest, and it allows for general loss functions, univariate or multivariate information sets,
 and covariance stationary or difference stationary processes. We propose a simple estimator, and we
 suggest resampling methods for inference. We then provide several macroeconomic applications. First, we
 illustrate the implementation of predictability measures based on fitted parametric models for several US
 macroeconomic time series. Second, we analyze the internal propagation mechanism of a standard dynamic
 macroeconomic model by comparing the predictability of model inputs and model outputs. Third, we use
 predictability as a metric for assessing the similarity of data simulated from the model and actual data.
 Finally, we outline several non-parametric extensions of our approach. Copyright © 2001 John Wiley &
 Sons, Ltd.

 1. INTRODUCTION

 It is natural and informative to judge forecasts by their accuracy. However, actual and forecasted
 values will differ, even for good forecasts. To take an extreme example, consider a zero-mean
 white-noise process. The optimal linear forecast under quadratic loss in this case is simply zero,
 so the paths of forecasts and realizations will clearly look different. These differences illustrate
 the inherent limits to predictability, even when using optimal forecasts. The extent of a series'
 predictability depends on how much information the past conveys regarding future values of this
 series; as a result, some processes are inherently easy to forecast, and others are more difficult.
 In addition to being of interest to forecasters, predictability measures are potentially useful in
 empirical macroeconomics. Predictability provides a succinct measure of a key aspect of time
 series dynamics and is therefore useful for summarizing the behaviour of economic series, as well
 as for assessing agreement between economic models and data.1

 Remarkably little attention has been paid to methods for measuring predictability. Existing
 methods include those based on canonical correlations between past and future, and those based
 on comparing the innovation variance and unconditional variance of stationary series (see Jewell

 * Correspondence to: Francis X. Diebold, Department of Economics, University of Pennsylvania, 3718 Locust Walk,
 Philadelphia, PA 19104-6297, USA.
 1 We do not advocate comparing models to data purely on the basis of predictability. Rather, predictability simply provides
 an easily digested summary distillation of certain important aspects of dynamics. More complete frameworks for assessing
 agreement between models and data are developed in King and Watson (1996) and Diebold, Ohanian and Berkowitz (1998).

 Copyright © 2001 John Wiley & Sons, Ltd. Received 15 July 1998
 Revised 5 February 2001
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 and Bloomfield, 1983; Hannan and Poskitt, 1988; Granger and Newbold, 1986). Those methods,
 however, are inadequate in light of recent work stressing the possible presence of unit roots, rich
 and high-dimensional information sets, non-quadratic and possibly asymmetric loss, and variations
 in forecast accuracy across horizons (see Stock, 1995; Forni and Reichlin, 1998; Christoffersen
 and Diebold, 1996, 1997; Diebold and Mariano, 1995).

 The lack of methodological development coincides with a lack of substantive exploration. Even
 for the major macroeconomic aggregates, little is known about comparative predictability. At
 first glance, the assertion that we know little about predictability seems exaggerated. We know,
 for example, that for the USA consumption is less volatile than output, and that investment is
 more volatile than output. Such statements, however, concern unconditional variances, whereas
 predictability concerns variances conditional on varying information sets. The concepts are
 fundamentally different.

 In this paper, we contribute to the theory of predictability measurement and apply our results
 in several macroeconomic contexts. In Section 2, we discuss some of the difficulties involved
 in predictability measurement and propose a simple measure of relative predictability based on
 the ratio of the expected loss of a short-run forecast to the expected loss of a long-run forecast.
 Our measure allows for covariance stationary or difference stationary processes, univariate or
 multivariate information sets, general loss functions, and different forecast horizons of interest.
 In Section 3, we propose parametric methods for estimating the predictability of observed series,
 and we suggest using bootstrap methods for inference. We also illustrate the implementation of
 predictability measures based on fitted parametric models for several US macroeconomic time
 series. In Section 4, we illustrate the use of these parametric predictability measures in assessing
 the propagation mechanisms of economic models, and in assessing agreement between economic
 models and data.2 In Section 5 we discuss alternative non-parametric measures of predictability
 and directions for future research.

 2. POPULATION PREDICTABILITY MEASURES

 The expected loss of an optimal forecast will in general exceed zero, which illustrates the inherent
 limits to predictability, even when using optimal forecasts. Put differently, poor forecast accuracy
 does not necessarily imply that the forecaster failed. The extent of a series' predictability in
 population depends on how much information the past conveys regarding the future; given an
 information set, some processes are inherently easy to forecast, and others are more difficult.

 In measuring predictability it is important to keep three points in mind. First, the question
 of whether a series is predictable or not should be replaced by one of how predictable it is.
 Predictability is always a matter of degree. Second, the question of how predictable a series
 is cannot be answered in general. We have to be clear about the relevant forecast horizon and
 loss function. For example, a series may be highly predictable at short horizons, but not at long
 horizons. Third, to compare the predictability of several series we need a common numeraire.
 It may be tempting to simply compare the expected losses of forecasts for two series to assess

 2 The exercises in Section 4 are similar in spirit to Rotemberg and Woodford (1996). Rotemberg and Woodford's analysis
 of predictability is tightly and appropriately linked to the assumptions of the particular economic model they study. Our
 focus, in contrast, is on general macroeconometric methods of assessing predictability that can be applied in a variety of
 situations, under minimal assumptions.

 Copyright © 2001 John Wiley & Sons, Ltd.
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 MEASURING PREDICTABILITY

 their relative predictability, but that ignores the possibility that the two series may be measured
 on different scales.

 Granger and Newbold (1986) therefore propose a natural measure of the forecastability of
 covariance stationary series under squared-error loss, patterned after the familiar regression R2,
 G = var(t+y,t)/var(yt+) = 1 - var(et+j,t)/var(yt+j), where -+j,t is the optimal (i.e. conditional
 mean) forecast and et+j,t = Yt+j - Yt+j,t. Related work includes Clements and Hendry (1998).

 Our approach to predictability measurement is squarely in the tradition of Granger and Newbold,
 with the important difference that we relax several constraints that limit the broad applicability of
 their methods. Like Granger and Newbold, we assume that structural breaks in the stochastic
 process either have not occurred or have been appropriately modelled. The essence of the
 Granger-Newbold suggestion is that it is natural to base a measure of predictability on the
 difference between the conditionally expected loss of an optimal short-run forecast, E(L(et+j,t)),
 and that of an optimal long-run forecast, E(L(et+k,t)), j < k, where E(.) denotes the mathematical
 expectation conditional on the information set Q2. If E(L(et+j,t)) <« E(L(e+±k,t)), we say that the
 series is highly predictable at horizon j relative to k, and if E(L(et+j,t)) - E(L(et+k,t)), we say
 that the series is nearly unpredictable at horizon j relative to k. Thus, we define a general measure

 of predictability as P(L, Q2, j, k) = 1 - E(L(et+j,t))/E(L(et+k,)), where the information set Q2 can
 be univariate or multivariate, as desired. The Granger-Newbold measure emerges when the series
 is covariance stationary, L(x) = x2 (and hence the optimal forecast is the conditional mean), the
 information set is univariate, and k = oo. The advantages of our generalization include:

 (1) It is valid for both covariance stationary and difference stationary series, so long as k < oo.
 (2) It allows for general loss functions. The loss function L(.) need not be quadratic or even

 symmetric; we only require that L(O) = 0 and that L(-) be strictly monotone on each side of
 the origin. By the restrictions imposed on L(.), we have that for all covariance stationary or
 difference stationary processes P(L(.), Q2, j, k) e [0, 1], with larger values indicating greater
 predictability.

 (3) It allows for univariate or multivariate information sets, and economic theory may suggest
 relevant multivariate information sets.

 (4) It allows for flexibility in the choice of j and k and enables one to tailor the predictability
 measure to the horizons of economic interest.

 Our predictability measure is closely related to Theil's (1966) U statistic, which we define for the
 one-step-ahead horizon as U = E(e2_t1)/E((yt - Yt-1)2). To see this, specialize P to the quadratic,
 univariate, j = 1 case and write it as P(quadratic, univariate,1, k) = 1 - E(et2_)/E(e-_k), or
 1 - P = E(et2_)/E(ett_k). Thus, under certain conditions, 1 - P is similar in spirit to Theil's
 U. The key difference is that Theil's U assesses one-step forecast accuracy relative to that of
 a 'naive' no-change forecast, whereas P assesses one-step accuracy relative to that of a long-
 horizon (k-step) forecast. In the general case, P(L(.), Q2, j, k) = 1 - E(L(ett_y))/E(L(et,t_k)).
 Thus, P(L(.), Q2, j, k) is effectively one minus the ratio of expected losses of two forecasts of
 the same object, Yt. Typically, one forecast, t,t-j, is based on a rich information set, while the
 other forecast, Ytt-k, is based on a sparse information set.

 The formula for P(L(.), Q2, j, k) also makes clear that the concept of predictability is related to,
 but distinct from, the concept of persistence of a series. Suppose, for example, that the series Yt is
 a random walk. Then P(e2, univariate, j, k) = 1 - j/k, as will be shown later. The corresponding

 659
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 j-step variance ratio, a common persistence measure, is Vj = var(yt - yt_j)/var(yt - Yt-i) = j.
 It is clear, however, that although P(e2, univariate, j, k) and Vj are deterministically related in the
 random walk case (P = 1 - V/k), they are not deterministically related in more general cases.

 3. SAMPLE PREDICTABILITY MEASURES

 Predictability is a population property of a series, not of any particular sample path, but
 predictability can be estimated from a sample path. We proceed by fitting a parametric model
 and then transforming estimates of the parameters into an estimate of P. To keep the discussion
 tractable, and in keeping with the empirical analysis of subsequent sections, we postulate a
 quadratic loss function L(e) = e2 for estimation, prediction, model selection, and construction
 of predictability measures.

 It is clear that parametric measures of predictability in general will depend on the specification
 of the parametric model. Here we focus on univariate autoregressive models, although one could
 easily generalize the discussion to other parametric models, such as vector ARMA models. We
 construct P by simply reading off the appropriate diagonal elements of the forecast MSE matrices
 for forecast horizons j and k. To build intuition, consider a univariate AR(1) population process
 with innovation variance 53: Yt = A yt _ + ut. Then for Al = 0 the model reduces to white
 noise, and short-run forecasts are just as accurate as long-run forecasts. As a result, relative
 predictability is zero: P(j, k) = 1 - ES/ ES = 0 for all j. In contrast, for AI = 1 the model becomes
 a random walk, and relative predictability steadily declines as the forecast horizon increases:
 P(j, k) = 1 -(jE1)/(kE31) = 1 - j/k.

 Forecast errors from consistently estimated processes and processes with known parameters
 are asymptotically equivalent. In practice, we estimate P by replacing the underlying unknown
 parameters by their least squares estimates. The legitimacy of this predictability measure is
 invariant to the possible presence of unit roots in the autoregressive lag order polynomial. To
 determine the autoregressive lag order we use the Akaike Information Criterion (AIC) with a
 suitable upper bound on the admissible lag orders. The AIC is less likely to underestimate the
 lag order in small samples than alternative criteria. The latter property is crucial in preserving the
 higher-order dynamics implicit in P (see Kilian, 2001). Throughout this paper, inference is based
 on the bias-corrected bootstrap method proposed by Kilian (1998a,b). We account for lag order
 uncertainty along the lines suggested by Kilian (1998c). Recent theoretical results by Inoue and
 Kilian (2000a) suggest that-with few exceptions (such as most random walk processes)-the
 method of bootstrap inference we propose is asymptotically valid both for stationary and for
 unit root processes. Some Monte Carlo evidence of the small-sample accuracy of the proposed
 bootstrap method can be found in Diebold and Kilian (1999).

 We now turn to an illustrative example. Figure 1 shows point and interval estimates for the
 predictability of several post-war quarterly US investment series. For expository purposes, we use
 univariate information sets and fix L(e) = e2 and k = 40, as we vary the near-term forecast horizon
 j. Note that the univariate autoregressive representation of the series may be interpreted without
 loss of generality as a marginalized reduced form of a more general vector autoregressive model.
 We plot P (in per cent) against near-term forecast horizons j = 1, .. ., 20. Higher values of P
 indicate greater predictability. All data are in logs and seasonally adjusted. We model the data as
 level autoregressions and, with the exception of the inventory series, allow for a linear time trend.

 Private investment spending is one of the least predictable components of real expenditures.
 Although predictability is close to 80% at a horizon of one quarter, it drops sharply at higher

 Copyright © 2001 John Wiley & Sons, Ltd.
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 Figure 1. Predictability estimates with 90% confidence intervals. Notes: All data are from Citibase. The
 sample period is 1947.II-1994.III. For a description of the methodology see text. The plots are based on

 k =40and j = 1, ..., 20

 horizons. Our estimates suggest that its one-year predictability is just 20%. Beyond a horizon of
 two years it is essentially zero. Broken down by component, changes in inventories of nonfarm
 businesses are least predictable, followed by residential and non-residential investment, in that
 order. Within non-residential investment spending, however, structures are much more predictable
 than producer durables. This example highlights the fact that there are important differences
 in predictability across expenditure components that are potentially useful for macroeconomic
 modelling. For example, changes in inventories are virtually unpredictable for horizons in excess
 of one year. In contrast, the predictability of investment in structures remains in excess of 20%
 even after five years.

 We also show the corresponding nominal 90% bootstrap confidence intervals. The confidence
 intervals often are wide, reflecting the limited information available in macroeconomic data, but not
 so wide as to render the exercise futile. Moreover, the degree of sampling uncertainty may differ
 across investment components. For example, the predictability of structures is rather uncertain,
 whereas that of inventories is more precisely estimated.

 4. EVALUATING MACROECONOMIC MODELS BASED ON PREDICTABILITY

 Predictability measures are potentially useful for assessing the internal propagation mechanisms of
 economic models, and for assessing agreement between models and quarterly data. We illustrate
 both uses with the indivisible labour model of Hansen (1985), in which a representative agent

 Copyright © 2001 John Wiley & Sons, Ltd.
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 F. X. DIEBOLD AND L. KILIAN

 chooses labour input, ht, and next period's capital stock, kt+l, to maximize expected lifetime utility,

 Eo Et0o ft(log ct + B(1 - ht)), subject to the constraints ct + it < ztk°oh-0, kt+l = (1 - )kt + it,
 and zt+l = (1 - y) + yzt + t+l, where ko and zo are given, 0 < , < 1, 0 < S < 1, and et
 N(0, U2). We parameterize the model as in Hansen (1985) and solve for the associated linear
 decision rules for ht and kt+l in terms of the current period states kt and Zt. The data source is
 Hansen (1985).

 To assess the internal propagation mechanism of Hansen' s model, we first compare the
 predictability of the model input (the exogenous technology shock) and the model outputs (the
 endogenous model variables). A weak propagation mechanism, assessed in terms of predictability,
 is associated with nearly identical input and output predictability. We calculate the predictability
 of the technology shock analytically, based on population parameter values, and we calculate the
 predictability of the model outputs numerically. The predictability of the model outputs can be
 calculated to any desired degree of accuracy by simulating a long enough realization from the
 model (the 'model data') and then estimating predictability by fitting a univariate autoregressive
 model and using our substitution estimator. We compute the predictability of the model data
 on output, consumption, investment, productivity, capital stock, and hours using a simulated
 realization of length 10,000.

 The results appear in Figure 2(a), in which we show the comparative predictability of the
 technology shock and the model outputs. We again fix L(e) = e2 and set k = 40, as we vary the
 near-term forecast horizon j = 1,..., 20. Figure 2(a) makes clear that many of the model outputs
 have predictability patterns very different from the model input. Model real GNP is about as
 predictable as the technology shock. In contrast, model investment and hours are less predictable
 than the technology shock, and model consumption, productivity and the capital stock are more
 predictable than the technology shock. Figure 2(a) indicates that the indivisible labour model has
 a strong internal propagation mechanism, in the sense that the predictabilities of model outputs
 are distinctly different from that of the technology shock and different from one another. Some
 model series are more predictable than the technology shock, some are less predictable, and the
 differences arise endogenously from the model's internal propagation mechanism. This result is
 surprising, insofar as other studies using other criteria have concluded that models such as Hansen's
 have weak internal propagation mechanisms (e.g. Cogley and Nason, 1995a).

 Thus far, neither the model input nor the model outputs have been logged or filtered, which
 effectively amounts to population linear detrending of both the input and output series, because
 no trends are operative. In our judgement that is the right way to proceed if we are interested
 in assessing the propagation mechanism of the model. In many applications, however, the focus
 is on how well the dynamics in simulated model data match those of the cyclical component of
 the actual data (expressed in percent deviations from a smooth trend). A common approach is to
 log and HP-filter the model outputs. We show the results of doing so in Figure 2(b). All model
 outputs are now much less predictable than the technology shock, which is not surprising, because
 the HP filtering removes highly predictable low-frequency components. Thus it is nonsensical to
 compare model input and output predictabilities when only the outputs have been HP filtered.
 We can, however, still compare the predictability of the various model outputs: with the possible
 exception of the capital stock, all become strikingly similar after HP filtering. To an unsuspecting
 observer this finding may seem to suggest that the technology shock imparts a common pattern
 of predictability.

 A natural conjecture, however, is that common predictability pattern of HP-filtered model outputs
 is an artifact of HP filtering. A number of earlier studies have documented such effects, from

 Copyright © 2001 John Wiley & Sons, Ltd.
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 Figure 2. The propagation mechanism of the Hansen (1985) model. Model input (dashed line), model
 output (solid line). (a) Predictability in levels without filtering. (b) Predictability after logging and

 HP-filtering the model output data. Notes: For a description of the model and data see text. The plots are
 based on k = 40 and j = 1, ..., 20
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 664 F. X. DIEBOLD AND L. KILIAN

 perspectives different from predictability (e.g. King, Plosser and Rebelo, 1988; Singleton, 1988;
 Harvey and Jaeger, 1993; Cogley and Nason, 1995b). To explore that conjecture, we compute
 the predictability of the logged and HP-filtered technology shock, whose dynamics, of course,
 cannot have anything to do with the model's propagation mechanism. For illustrative purposes
 we consider six alternative values for the persistence of the technology shock, including the value
 of y = 0.95 used in Hansen (1985). The result appears in Figure 3: For all realistic values of y,
 the predictability of the HP-filtered technology shock looks the same as the predictability of the
 typical HP-filtered model output! We conclude that HP filtering tends to make predictabilities look
 similar, and thereby masks the strong propagation mechanism in Hansen's model that is revealed
 in unfiltered data.

 We now compare the predictability of model data to that estimated using actual US data,
 1955:111-1984:1. Computation of the predictability of the model data is not subject to sampling
 error, while the estimation of predictability of the real data is; thus, we compute interval estimates
 only for the latter. We consider the model to be consistent with the data if the model measure of
 predictability is contained in the confidence bands estimated from the U.S. data.

 The real business cycle school favours logging and HP filtering both the model data and the real
 data, so we begin with that strategy. In Figure 4(a) we show the predictability of model data and
 actual data, where both have been HP filtered and logged. Disregarding some minor discrepancies,
 the model data and real data predictabilities generally agree. Only at very short time horizons
 the model data are not contained in the confidence bands for the US data. Of course, the relative
 success of the model may simply reflect the small sample size of the US data and the large degree
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 Figure 3. Predictability of the AR(1) technology shock raw data (dashed line), HP-filtered data (solid line):
 alternative degrees of persistence. Notes: For a description of the model see text. The plots are based on

 k=40 and j = 1, ..., 20
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 of sampling uncertainty. Furthermore, note that although the predictabilities of model data and
 actual data generally agree, they always have the same humped shape that the HP filter tends to
 impart, as we showed earlier. Thus we are naturally suspicious that the results may be an artifact
 of HP filtering. To address this possibility, we continue to treat the model data and real data
 symmetrically by using identical detrending procedures, but we use standard linear detrending
 instead of HP filtering.

 In Figure 4(b) we show estimates of the predictability of model data and US data based on log-
 linear detrending. The predictabilities of model data and actual data summarized in Figure 4(b)
 show a pronounced divergence: only model output, investment, consumption, and capital stock
 match the data; hours worked in the model are not nearly predictable enough, whereas productivity
 in the model is too predictable for the first three years. This result is robust to whether a trend
 is fitted to the model data, or the population trend of zero is imposed. We conclude that the HP
 filter is a likely source of spurious fits between model data and actual data.

 5. CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH

 We have proposed operational methods for measuring predictability and put them to work in
 several contexts-measuring the predictability of a variety of US macroeconomic series, assessing
 the internal propagation mechanism of a simple macroeconomic model, and assessing agreement
 between the model and the data. Our main intent is the introduction and illustration of an

 approach to predictability measurement, not the provision of a complete evaluation of a particular
 macroeconomic model. Nevertheless, our results reveal some successes and some failures of the
 model.

 There are many useful directions for future research. Some are obvious, but nevertheless
 important, variations on the applications reported here. To take one example, in our applications
 we estimate predictability on the basis of univariate information sets, whereas the theory allows for
 multivariate information sets. Empirical predictability measurement on the basis of multivariate
 information sets, and comparison of the univariate estimates to various multivariate estimates,
 will be of interest. To take a second example, although deterministic linear trends often compare
 favorably to competitors in forecasting and macroeconometric studies (see DeJong and Whiteman,
 1994; Diebold and Senhadji, 1996), it will be of interest to explore models with non-linear
 deterministic trends and models that allow for stochastic trends only. Other directions for future
 research are more wide-ranging and fundamental. We shall briefly discuss three.

 5.1. Nonparametric Predictability Estimation

 We presented our autoregressive modelling approach as a parametric method. This convention
 facilitated the exposition and allowed us to draw on established results for bootstrap inference.
 However, in general, we need not assume that the fitted autoregression is the true data-generating
 process; rather, it may be considered an approximation, the order of which can grow with sample
 size. Thus the autoregressive model can be viewed as a sieve in the sense of Grenander (1981),
 so our approach actually is nonparametric. For the stationary case, the asymptotic validity of
 bootstrapping predictability measures based on the sieve approximation follows from Inoue and
 Kilian (2000b).
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 Nevertheless, the sieve approach has a parametric flavour. For any fixed sample size, we assess
 predictability through the lens of a particular autoregressive model. In the future, it may be of
 interest to develop an approach with a more thoroughly non-parametric flavour by exploiting
 Kolmogorov's well-known spectral formula for the univariate innovation variance,

 a2 = exp - J l In27rf ()dw)

 where f is the spectral density function. Kolmogorov's result has been extended to univariate h-
 step-ahead forecast error variances by Bhansali (1992), and to multivariate h-step-ahead forecast
 error variances by Mohanty and Pourahmadi (1996). Several technical problems remain, however,
 before we can operationalize those methods in our context.

 5.2. Predictability of Financial Asset Returns and Volatilities

 We have focused on the application of predictability measurement to macroeconomics. Predictabil-
 ity statistics should also prove useful in finance, in which the predictability of asset returns at
 various horizons is a central concern. In fact, if non-predictability was arguably the central con-
 cern of the 1960s and 1970s literature (e.g. Fama, 1970), precisely the opposite is true of the
 more recent literature (e.g. Fama, 1991). We have reserved application to finance for a separate
 paper, in order to devote the necessary attention to multivariate information sets, long-horizon
 predictability, conditional heteroscedasticity, and possibly non-quadratic loss functions.3

 Of equal, and perhaps even greater, importance is measuring the predictability of asset return
 volatility across various horizons. Tracking and forecasting time-varying volatility is central
 to financial risk management. Little attention, however, has been given to assessing volatility
 predictability patterns, and in particular the speed and pattern with which volatility predictability
 decays as the horizon grows.

 5.3. Survey-based Predictability Estimation

 We have taken a model-based approach to predictability measurement. Conditional upon a
 particular fitted model, we make inferences about predictability. Alternatively, we could take
 a survey-based approach, based on the predictions of competitive professional forecasters.
 Conditional upon the assumption that the reported forecasts are optimal, those data can be used for
 inferences about predictability. The survey-based approach is of interest because the information
 sets used by actual forecasters are likely much richer than simple univariate histories. They are
 surely multivariate, for example, and they also contain hard-to-quantify subjective information. The
 survey-based approach does rely on a crucial and disputable assumption (optimality of reported
 forecasts), but so too does the model-based approach (adequacy of the fitted model). The key
 point is that the assumptions made by the two approaches are different, and that the approaches
 therefore naturally complement one another.

 A number of relevant surveys exist, including the former NBER-ASA Quarterly Economic
 Outlook Survey dating back to 1968 (and continued as the Survey of Professional Forecasters

 3 Mean absolute error (MAE), for example, may be more useful for measuring the accuracy of forecasts of financial series.
 In high-frequency financial data, for example, fat-tailed distributions are common, in which case MSE may be infinite
 but MAE often remains finite.
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 by the Federal Reserve Bank of Philadelphia) and the Blue Chip Indicators available from the
 early 1980s onward (see Croushore, 1993). These surveys focus on the major macroeconomic
 aggregates, such as real GDP growth. An interesting extension of this paper will be to use these
 forecasts to compute survey-based estimates of predictability, and to compare the survey-based
 and model-based estimates.
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