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 Unit-Root Tests Are Useful for Selecting
 Forecasting Models

 Francis X. DIEBOLD

 Department of Finance, Stern School of Business, New York University, New York, NY 10012, Department of
 Economics, University of Pennsylvania, Philadelphia, PA 19104, and National Bureau of Economic Research

 Lutz KILIAN

 Department of Economics, University of Michigan, Ann Arbor, MI 48109-1220, and Centre for Economic Policy
 Research (Ikilian@umich.edu)

 We study the usefulness of unit-root tests as diagnostic tools for selecting forecasting models.
 Difference-stationary and trend-stationary models of economic and financial time series often imply
 very different predictions, so deciding which model to use is tremendously important for applied
 forecasters. We consider three strategies: Always difference the data, never difference, or use a unit-
 root pretest. We characterize the predictive loss of these strategies for the canonical AR(1) process
 with trend, focusing on the effects of sample size, forecast horizon, and degree of persistence.
 We show that pretesting routinely improves forecast accuracy relative to forecasts from models in
 differences, and we give conditions under which pretesting is likely to improve forecast accuracy
 relative to forecasts from models in levels.

 KEY WORDS: Model selection; Prediction; Pretest.

 Difference-stationary and trend-stationary models of the
 same time series may imply very different predictions (e.g.,
 Diebold and Senhadji 1996). Deciding which model to use
 is therefore tremendously important for applied forecasters.
 Rather than employing one or the other model by default,
 one may use a unit-root test as a diagnostic tool to guide
 the decision. In fact, one of the early motivations for unit-
 root tests was precisely to help determine whether to use
 forecasting models in differences or levels in particular ap-
 plications (e.g., Dickey, Bell, and Miller 1986).

 Much of the recent econometric unit-root literature has

 focused on the inability of unit-root tests to distinguish in fi-

 nite samples the unit-root null from nearby stationary alter-
 natives (e.g., Christiano and Eichenbaum 1990; Rudebusch
 1993). But low power against nearby alternatives, which
 are typically the relevant alternatives in econometrics, is
 not necessarily a concern for forecasting. It has long been
 asserted, for example, that the accuracy of forecasts may be
 improved by employing a model in differences rather than a
 model in levels, if the root of the process is close to but less
 than unity (e.g., Box and Jenkins 1976, p. 192). Ultimately,
 the question of interest for forecasting is not whether unit-
 root pretests select the "true" model but whether they select
 models that produce superior forecasts. Surprisingly little is
 known about the efficacy of unit-root tests for this purpose.

 The comparative merits of strategies such as "always dif-
 ference," "never difference," or "sometimes difference, ac-

 cording to the results of a unit-root pretest" will in general
 depend on the degree of persistence of the true process, the
 forecast horizon of interest, the sample size, and the prop-
 erties of the pretest. Hence, the purpose of this article is
 to explore systematically the extent to which pretesting for
 unit roots affects forecast accuracy for a variety of degrees
 of persistence, forecast horizons, and sample sizes.

 We focus on the univariate trending autoregressive case
 with high persistence, which is of particular interest in eco-
 nomics and finance, and we proceed by Monte Carlo simu-
 lation as described in Section 1. The results are sharp and
 intuitive, and we summarize them with compact response
 surfaces in Section 2. In Section 3, we meld the results into

 practical prescriptions for applied work. In Section 4, we
 provide additional discussion: Looking backward, we inter-
 pret our results in the context of earlier literature on which
 they build, and looking forward, we sketch preliminary re-
 sults of extensions that incorporate alternative estimators.
 Finally, in Section 5 we offer concluding remarks and di-
 rections for future research.

 1. EXPERIMENTAL DESIGN

 Here, as always, there is inescapable tension in exper-
 imental design. On the one hand, we want to examine a
 wide enough range of data-generating processes (DGP's)
 that the results will shed light on the behavior of alterna-
 tive methods and on a range of empirically relevant situa-
 tions. Clearly, we will want to examine a range of forecast
 horizons, degrees of persistence, and sample sizes. On the
 other hand, it is crucial that the DGP's examined be simple
 and their range small enough to promote manageable and
 interpretable Monte Carlo analysis.

 Use of a first-order autoregressive [AR(1)] DGP, with dif-
 fering degrees of persistence corresponding to different au-
 toregressive parameter values, represents an appealing com-
 promise. If, however, the analysis is to provide meaningful
 recommendations for applied work, we view the inclusion
 of a time trend as crucial. Trending behavior is routinely
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 present in economic and financial series and increases the
 amount of bias in the least squares estimator of autoregres-
 sive parameters, which has important implications for the
 performance of the alternative strategies of "always differ-
 encing," "never differencing," or "pretesting."
 Hence, we examine a trending AR(1) process of the form

 (yt - a - bt) = P(yt-1 - a - b(t - 1)) + Et, Et -, N(0, 2a)

 t = 1, 2,..., T. We can rewrite the process as yt = kI +
 k2t + t-1 + Et, where kI = a(1 - p) + pb and k2 = b(1 -
 p). Perhaps more intuitively, we can express the process in
 components form as the sum of a linear trend and an AR(1)
 process, yt = Tt +xt, where Tt = a+bt and xt = pxt-1+et.
 When p = 1, the process is a random walk with drift b,
 and when p < 1, the process is a linear trend with slope b
 buffeted by covariance stationary AR(1) shocks.
 We parameterize the process to be consistent with U.S.

 postwar quarterly real gross national product (GNP) data
 by setting a = 7.3707, b = .0065, and a = .0099. This pa-
 rameterization is likely to be representative for many other
 trending macroeconomic time series as well. We examine p
 E {.5, .9, .97, .99, 1} and T E {25, 30, 40, 50, 60, 70, 80,
 100, 120, 140, 160, 180, 200, 240, 280, 320, 360, 400, 440,
 480, 520, 560, 600, 640, 680, 720, 760, 800, 840, 880, 920,
 960, 1,000}, which includes relevant degrees of persistence
 and sample sizes for annual, quarterly, monthly, weekly, and
 daily data.

 We compare the performance of three forecasting
 models-AR(1) in levels with linear deterministic trend
 (L, for "levels"), random walk with drift (D, for "differ-
 ences"), and the model suggested by Dickey-Fuller unit-
 root pretests using 5% finite-sample critical values (P, for
 "pretest"). For all models, the estimation method is ordi-
 nary least squares (OLS). The common objective is to fore-
 cast the level of the series at horizons h ranging from 1 to
 100 periods ahead. Using common random numbers across
 models, we evaluate the performance of each model by
 its unconditional prediction mean squared error (PMSE) in
 20,000 Monte Carlo trials. For each value of p, we cal-
 culate the ratios PMSE(D)/PMSE(L), PMSE(D)/PMSE(P),
 and PMSE(P)/PMSE(L) for all combinations of h and T.

 2. RESULTS

 In Figures 1-3 we shall show, for various val-
 ues of p, response surfaces for PMSE(D)/PMSE(L),
 PMSE(D)/PMSE(P), and PMSE(P)/PMSE(L), for all com-
 binations of forecast horizon and sample size. In particular,
 for each value of p, we show the relative PMSE as a func-
 tion of h and T. We present unsmoothed response surfaces
 because they are quite smooth already and readily inter-
 pretable without additional smoothing.

 2.1 D Versus L

 Figure 1 makes clear that neither D nor L dominates al-
 ways; the relative forecast accuracy in general depends on
 p, h, and T. Not surprisingly, for p = 1 the D model is
 uniformly more accurate than the L model because in that
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 for fixed forecast horizon h, the ratio PMSE(D)/PMSE(L)
 drops toward 0 as T declines.
 In contrast, for roots smaller than unity, D is false and

 would not be expected to dominate L always. That expec-
 tation is confirmed. For p = .99, for example, for sample
 sizes in excess of 600, forecasts from L are marginally more
 accurate than those from D. The D model forecast is least

 accurate for large h. This is to be expected because the
 error resulting from the false imposition of a unit root is
 compounded with rising h. In contrast, small-sample bias
 is of little concern for such large samples, and L is quite
 accurate. Nevertheless, for smaller sample sizes, forecasts
 from D continue to be more accurate than forecasts on the

 basis of the biased estimator associated with L, especially
 for long forecast horizons.

 The trade-offs between the use of D and L become more

 pronounced as the persistence of the process declines. For
 p = .97, the ratio PMSE(D)/PMSE(L) exceeds 1 over much
 of the parameter space and is highest when both T and h
 are large. For small T and large h, however, the ratio still
 tends to approach 0. The poor relative performance of the
 L model for small T and large h is not only due to small-
 sample bias. In addition, the PMSE of L is inflated by oc-
 casional explosive estimates, resulting in absurd forecasts,
 especially at long forecast horizons. In contrast, the con-
 straint implicit in D renders its forecasts more consistently
 reasonable, even when D is incorrect.

 The problem with the L forecast is that for processes with
 large roots there is a nonnegligible probability in small sam-
 ples of drawing an explosive estimate. As a result, using L,
 we occasionally encounter predictions based on "outlier"
 explosive models, which have extremely large prediction
 errors and dominate the PMSE. Typically in such cases the
 forecast dives toward minus infinity due to a slightly neg-
 ative estimated trend coefficient and an estimated root in

 excess of unity. As a result, the PMSE does not improve at
 long horizons as the process reverts back to its mean, as one
 might have expected, because the effect of explosive fore-
 casts on the PMSE obviously worsens for longer horizons.
 The problem does not arise in D because of the imposi-
 tion of a unit root. Although the PMSE of D worsens for
 longer forecast horizons, as one would expect, the extent to
 which its PMSE deteriorates is dwarfed by the PMSE of L,
 which is inflated by the occasional explosive outliers. The
 net result is a ratio of PMSE(D)/PMSE(L) that approaches
 0. In light of these phenomena, we also experimented with
 a mixed strategy (M), in which we used the L forecast un-
 less the L forecast was explosive, in which case we replaced
 the L forecast with the D forecast. As expected, the small-
 sample forecast accuracy of M was much better than that
 of L, but, interestingly, the modification did not affect our
 qualitative results.

 We also find that for small T, the ratio PMSE(D)/
 PMSE(L) decreases in h, whereas for large T it increases in
 h. This reversal makes sense. For small T, the loss in fore-
 cast accuracy from poor estimates of L is much greater than
 the loss from inappropriately using the model in differences,
 and the trade-off worsens as h increases. In contrast, for

 large T, the forecast from L is increasingly more accurate
 (because the least squares estimator is consistent), whereas

 using the model in differences (.and thereby imposing a unit
 root) introduces a systematic distortion in forecasting, the
 effects of which are amplified with h.

 The results for p = .9 are similar but even more pro-
 nounced. Differencing continues to improve forecast accu-
 racy for small and moderate sample sizes, but as the per-
 sistence of the process declines, the gains are limited to in-
 creasingly smaller sample sizes. At the same time, for larger
 sample sizes, L becomes increasingly more accurate than
 the model in differences, especially as the forecast horizon
 increases.

 It is interesting to note that in the case of p = .9, as
 well as several cases discussed later, for large T the ra-
 tio PMSE(D)/PMSE(L) (and later PMSE(D)/PMSE(P)) ap-
 proaches 2 as h grows. This phenomenon occurs when T
 is large enough so that the parameters of the L model are
 estimated precisely (or, equivalently, for T large enough so
 that the unit-root null hypothesis tends to be rejected cor-
 rectly, and the resulting trend-stationary model is estimated
 precisely). The explanation is simple: In population, when
 p < 1, the long-horizon forecast error from L is approxi-
 mately the unconditional variance of the process, var(yt),
 whereas the long-horizon forecast error from the model in
 differences is approximately var(yt+h - yt), which approxi-
 mately equals twice the unconditional variance of the pro-
 cess. Appearance of these population results in the finite-
 sample Monte Carlo results requires a sample large enough
 to facilitate precise estimation and powerful unit-root
 testing.

 Finally, for p = .5, the L model uniformly dominates the
 D model. Although this case is less interesting for applica-
 tions and we shall therefore not dwell on it, it is interesting
 to note the emergence of a ridge in the response surface for
 small T, the height of which steadily increases in h.

 Taken as a whole, the D versus L results appear driven by
 the fact that differencing provides insurance against prob-
 lems due to small-sample bias and explosive root prob-
 lems, at a cost. Those problems are most severe for small
 T and large h, so the insurance is more than worth its
 cost. Elsewhere in the parameter space, however, the sit-
 uation is reversed. As a rule of thumb, the results sug-
 gest that one is better off differencing if the sample size
 is small or moderate and the process appears highly persis-
 tent, and conversely. Note in particular that the "we don't
 know and we don't care" view is explicitly refuted: Al-
 though the trend-stationary versus difference-stationary dis-
 tinction is not important in some contexts, it most def-
 initely makes a difference for forecasting. Moreover, the
 best forecasting model is not necessarily the true model;
 the ability of a unit-root pretest to select a good fore-
 casting model is distinct from its ability to select the
 true model. The fact that neither D nor L dominates uni-

 formly suggests that unit-root pretests may help to im-
 prove forecast accuracy. We now explore this possibility in
 detail.
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 2.2 D Versus P

 Figure 2 makes clear that the pretesting strategy domi-
 nates that of routinely differencing the data for almost all
 sample sizes and forecast horizons. The reason is that our
 pretest takes the unit-root hypothesis as its null. For alter-
 natives close to the unit-root null, the power of the pretest
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 Figure 2 PMSE(D)/PMSE(P). Source: 20,000 Monte Carlo trials
 based on DGP yt = (a - ap + bp) + (b - bp)t + pyt 1 + Et, where
 Et N N(0, .012), a = 73707 b = .0065. D denotes the model in first
 differences; P denotes the model after pretesting.

 is low, so the pretest model reduces to the model in differ-
 ences. Hence, P performs much like D did in Figure I when
 that model is a good approximation. On the other hand, for
 processes with roots far from the unit-root null, the Dickey-
 Fuller test is bound to find strong evidence against the null,
 in which case the pretest model reduces to L, which we
 know to be much more accurate than D when persistence
 is low.

 In particular, we find that for p = 1, when D is the true
 model, the pretest is unlikely to reject the model in differ-
 ences, resulting in a PMSE(D)/PMSE(P) ratio very close
 to 1. Similar results hold for p = .99. For p = .97, P be-
 gins to exhibit important advantages over D. For small T,
 the test lacks power and rarely rejects, so P and D coin-
 cide, and PMSE(D)/PMSE(P) is effectively 1 regardless of
 h. As T grows, the test rejects the unit-root null more of-
 ten, yet the ratio PMSE(D)/PMSE(P) remains close to 1.
 The reason is that, at least for small h, the PMSE for a
 highly persistent process in levels tends to be close to that
 of the equivalent model in differences. Because for large T
 the L model will be estimated rather precisely, the result-
 ing forecast is about as accurate as that for the D model. In
 contrast, for both T and h large, the P forecast is consid-
 erably more accurate than the D forecast. This outcome is
 reflected in PMSE(D)/PMSE(P) ratios in excess of 1. The
 reason is that for long horizons the false imposition of a
 unit root (which is of little consequence for short horizons)
 becomes a liability.

 This tendency becomes even more apparent for p = .9.
 Only for very small T, the relative accuracy of D and P
 remains similar. In general, the P model is much more ac-
 curate than the D model. Finally, consider the process with
 p = .5. In Figure 1 we showed that the loss in forecast accu-
 racy from falsely adopting the model in differences is very
 high for p = .5. The Dickey-Fuller pretest has considerable
 power against this distant alternative, however, and almost
 always rejects the model in differences. Hence, P and L tend
 to coincide, and the PMSE(D)/PMSE(P) results in Figure
 2 are almost identical to those in the corresponding panel
 of Figure 1 for PMSE(D)/PMSE(L).

 2.3 P Versus L

 In Figure 3, we directly compare P and L. For p = 1,
 pretesting gives similar results to differencing. Not sur-
 prisingly, pretesting uniformly dominates the levels model.
 Similar results hold, at least for small and moderate sam-
 ple sizes, for p = .99. Figure 3 indicates that pretest-based
 forecasts are about as accurate as the level forecasts when

 p = .5. The most interesting results are for the intermedi-
 ate region of p = .97 and p = .9. For small and moderate
 T and large h, Figure 3 shows evidence of a ridge on the
 response surface for p = .9. That ridge flattens and widens
 for p = .97, as the accuracy of the pretest model improves.
 Evidently those are cases for which we would like to have
 rejected the unit-root null hypothesis but did not. Although
 the root is far enough from the unit circle, and the sample
 size (albeit small) is large enough for the levels models to
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 based on DGP Yt = (a - ap + bp) + (b - bp)t + pyt 1 + et, where

 could be used to flatten the ridge and to improve forecast ac-

 curacy. It is not obvious r,he eyu that more powerful tests

 would be beneficial in all regions of the parameter space.

 As we showed earlier, in some cases incorrectly using the
 model in differences rather than the correct model in levels

 will actually improve forecast accuracy, so more powerful
 unit-root pretests may actually worsen forecast accuracy in
 those regions. More research is needed to quantify these
 trade-offs.

 2.4 A Summary Assessment

 Taken as a whole, the results cast the pretesting strat-
 egy in a favorable light. P dominates D uniformly, which
 makes clear that the Box-Jenkins strategy of routinely dif-
 ferencing to achieve stationarity is not to be recommended
 for constructing forecasting models. P does not dominate
 L uniformly, but it nevertheless dominates over much of
 the design space, which similarly casts doubt on a strategy
 relying on asymptotics by routinely specifying forecasting
 models in levels.

 3. SOME PRACTICAL ADVICE

 Given the wide range of sample sizes and forecast hori-
 zons, it is difficult to translate the results in Figures 1-3
 into concrete practical advice. Moreover, the DGP based
 on quarterly real GNP may not be representative for other
 frequencies. We therefore repeated the simulation exercise
 for selected sample sizes and forecast horizons for DGP's
 specifically chosen to be representative for each frequency.
 Because the pretesting strategy clearly dominates differenc-
 ing, we focus on the choice between pretesting and rou-
 tinely forecasting on the basis of the level model.

 Table 1 summarizes the simulation design for each fre-
 quency. The quarterly DGP based on U.S. real GNP is iden-
 tical to the DGP defined in Section 1. The annual DGP is

 based on 125 observations for U.S. per capita real GNP as
 defined by Diebold and Senhadji (1996). The daily DGP
 is based on the Dow Jones stock-price index for 1/1/74-
 4/2/98, and the monthly DGP is based on the U.S. indus-
 trial production index (DRI code: IP) for the postwar period.

 For annual data (say, T = 40-160 and h = 1-100), we find
 that pretesting unambiguously improves forecast accuracy
 for all forecast horizons and sample sizes if the root of the
 DGP is .97 or higher. For p = .9, pretesting still improves
 forecast accuracy for sample sizes as high as 70 but does not
 perform as well as the L model in larger samples. For p =
 .5, the two models are tied. In practice, this result suggests
 using pretests for datasets of up to 70 annual observations
 and for all larger sample sizes, provided the process is likely

 Table 1. Data-Generating Processes

 Parameter

 a b

 Annual -6.0674 .0173 .0500

 Quarterly 7.3707 .0065 .0099
 Monthly 3.3654 .0024 .0105
 Daily 5.1126 .0004 .0095

 NOTE: The DGP is (yt - a - bt) = p(yt-1 - a - b(t - 1)) + et, where Et is normally dis-
 tributed with standard deviation -. We choose annual and quarterly parameters to be represen-
 tative of those for U.S. real GNP, monthly parameters for U.S. industrial production, and daily
 parameters for the U.S. Dow-Jones stock-price index. See the text for details.
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 to be highly persistent. In the remaining cases, the L model
 is preferred.
 For quarterly data (say, T = 80-200 and h = 1-16), the P

 model is more accurate for all forecast horizons and sample
 sizes, provided the root of the process is .97 or higher. For
 p = .9, the level model is uniformly more accurate, and
 for p = .5 the models are tied. We conclude that pretesting
 should be used for all processes with roots of .97 or higher
 and the L model for processes with smaller roots.
 For monthly data (say, T = 240-480 and h = 1-48),

 pretesting improves forecast accuracy for p = 1 and for p =
 .99 for all forecast horizons and sample sizes considered.
 For p = .97 and p = .9, however, the L model is at least as
 accurate as the P model, and for p = .5 the two methods
 are tied. This finding suggests that pretesting is useful only
 for processes with roots of .99 or higher, and in all other
 cases the L model will be more accurate.

 For daily data (say, T = 360-720 and h = 1-90), pretest-
 ing only improves forecast accuracy uniformly for p = 1.
 For p = .99, the performance is mixed, with the P model
 being more accurate for sample sizes of fewer than 600
 days at all horizons. For larger sample sizes, the L model is
 slightly more accurate at long forecast horizons and roughly
 as accurate as the P model at shorter horizons. For p = .97,
 the L model is uniformly more accurate. For p = .9, the L
 model is slightly more accurate for small T, especially for
 T < 500, except at very short horizons. For larger sample
 sizes the differences vanish. For p = .5 the two methods
 are tied. This finding suggests that pretesting is useful for
 forecasting daily data only if the data are very persistent
 with roots of .99 or higher. For other applications, the L
 model is likely to be more appropriate.

 Our advice may appear to be circular in that it often
 depends on knowledge of the true root. In practice, how-
 ever, OLS point estimates of the roots for quarterly macro-
 economic data are typically in excess of .97, estimates for
 monthly data are in excess of .99, and estimates for daily
 data are well in excess of .99. These differences in dominant

 roots across sampling frequencies make sense when viewed
 in terms of the implied half-life of the response to an inno-
 vation (see Caner and Kilian 1999). Moreover, the presence
 of small-sample bias suggests that these OLS estimates, if
 anything, understate the true roots. We therefore conclude
 that pretesting is recommended for virtually all forecasting
 exercises involving trending macroeconomic data.

 4. DISCUSSION

 Here we provide additional discussion of our Monte
 Carlo results. Looking backward, we interpret them in the
 context of earlier theoretical and empirical literatures on
 which they build, and looking forward, we sketch prelimi-
 nary results of extensions to incorporate alternative estima-
 tors.

 4.1 Relationship to the Literature

 Our work builds on, and complements, a small litera-
 ture dating back almost a decade. Stock (1990) found in a
 particular application that model specification in levels ver-

 sus differences matters little but pointed out that in general
 it will. Some preliminary evidence in favor of pretesting
 was presented by Campbell and Perron (1991), who stud-
 ied 1-step-ahead and 20-step-ahead forecasts made using
 autoregressive models. They showed that one loses little by
 pretesting relative to using the true model, and sometimes
 one actually gains. In their study, autoregressive models in
 levels did best for series that are near white noise, whereas

 autoregressive models in differences did best for series that
 are near a random walk. Cochrane (1991), in a comment
 on Campbell and Perron, explored longer forecast horizons.
 He compared level and difference-stationary models but did
 not discuss pretesting. Neither did Franses and Kleibergen
 (1996), who studied the out-of-sample forecasting accuracy
 of trend-stationary and difference-stationary models for the
 Nelson-Plosser dataset.

 Apart from the contemporaneous and independent contri-
 bution of Clements and Hendry (1999), whose results nicely
 complement ours, the extant work most closely related to
 ours is that of Stock (1996) and Stock and Watson (1998).
 Stock (1996) showed that pretesting may be useful from
 a local-to-unity asymptotic perspective and presented some
 Monte Carlo evidence for the AR(1) model without trend. In
 recent contemporaneous and independent work, Stock and
 Watson (1998) provided a comprehensive empirical study
 of the out-of-sample accuracy of macroeconomic forecast-
 ing models; one of their conclusions was that autoregressive
 models based on unit-root pretests tend to perform well.

 Our Monte Carlo results complement and strengthen both
 the largely theoretical work of Stock (1996) and the purely
 empirical work of Stock and Watson (1998). Our analysis
 is closer in spirit to Stock's, but there are important differ-
 ences. Stock focused narrowly on documenting problems
 in long-horizon forecasting from models with roots close
 to unity. Moreover, he did not consider models with trend,
 and he fixed the ratio h/T in his Monte Carlo analysis.
 Our analysis, in contrast, is wider in scope. It includes a
 grid of alternative values of p, h, and T, corresponding to
 applications of autoregressive forecast models using daily,
 weekly, monthly, quarterly, and annual data. To the extent
 that results can be compared directly, ours and Stock's tend
 to agree; however, we find stronger evidence in favor of
 pretesting than did Stock (1996), reflecting the greater im-
 portance of small-sample bias in models with trends.

 4.2 Extensions to Other Estimators

 The OLS estimator is the most commonly used estima-
 tor in practice, but there are other estimators of interest in
 forecasting. For example, Canjels and Watson (1997) doc-
 umented that, for processes with roots close to unity, the
 feasible generalized least squares estimator of Prais and
 Winsten (1954) provides the best estimates of the trend co-
 efficient. Given the obvious importance of accurate trend
 estimates, especially at long-forecast horizons, a compari-
 son of the forecast accuracy of the Prais-Winsten estima-
 tor to the OLS estimator used in this article seems useful.

 In addition, it will be worthwhile to study bias-corrected
 OLS forecasts, insofar as our simulation results are consis-
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 tent with the view that much of the advantage of falsely
 imposing a unit root in borderline stationary processes is
 due to the elimination of OLS small-sample bias. A natu-
 ral conjecture is that the mean squared error of forecasts
 from trend-stationary models may be improved by replac-
 ing the OLS autoregressive coefficient estimates by bias-
 corrected coefficient estimates. Such corrections have been

 used successfully in the closely related area of impulse re-
 sponse analysis. For example, Andrews and Chen (1994)
 reported that approximate median bias corrections for uni-
 variate autoregressive models may reduce the mean squared
 error of impulse response estimates for at least some param-
 eter ranges and horizons. Alternative bias corrections based
 on the mean bias of the autoregressive coefficient estimates
 were explored by Rudebusch (1993) and Kilian (1998) based
 on work by Shaman and Stine (1988) and Pope (1990).

 Here we briefly report some preliminary results for the
 accuracy of forecasts based on the iterated Prais-Winsten
 (IPW) estimator (as described by Park and Mitchell 1980)
 and based on the exactly median-unbiased estimator (MU)
 of Andrews (1993) for the AR(1) model with trend. The
 exactly median unbiased estimator is feasible only in the
 AR(1) model, but it provides a useful benchmark. Note that
 bias corrections of slope parameters need not lower the pre-
 diction mean squared error because the forecast variance
 will tend to increase. Hence, the usefulness of bias correc-
 tions in forecasting is an empirical question. We find that
 the MU forecasts are clearly dominated overall by the L
 forecasts. The reason is that the MU procedure occasion-
 ally produces very poor estimates of the trend behavior of
 the process, especially near the unit circle. We therefore
 will not pursue the MU forecast any further and focus on
 the IPW forecast instead.

 Although the IPW forecasts from the levels model tend
 to dominate the L forecasts of the same model, they do
 not dominate the D forecast. This finding suggests the pos-
 sibility that pretesting may further improve the accuracy
 of the IPW forecasts. It is not straightforward to compare
 the pretest strategy to that of estimating the levels model by
 the IPW estimator, however. The reason is that the standard

 Dickey-Fuller pretest is based on the OLS estimator. If we
 are interested in using other estimators, the usual Dickey-
 Fuller critical values do not apply. Thus, we would have to
 generate a new set of critical values for use with the IPW
 estimator to isolate the effects of pretesting, an exercise that
 is beyond the scope of this study.

 Instead, we compare the strategy of always using the IPW
 forecast to the strategy of using the IPW forecast only if
 the standard OLS-based Dickey-Fuller test rejects the null
 of a unit root (and using the D forecast if the test does not
 reject). We find that, for the parameter regions of practical
 interest in macroeconomics, this pretest strategy tends to
 dominate the IPW forecast for the quarterly, monthly, and
 daily DGP's discussed in Section 3. For the annual DGP, the
 results are mixed. For p = .97 or higher, pretesting tends
 to result in more accurate forecasts than the IPW forecast.

 For p = .9, however, the results depend on the sample size.

 For sample sizes of, at most, 70, the P forecast tends to be
 more accurate, but for larger sample sizes the IPW forecasts
 dominate.

 Overall, these results are qualitatively very similar to the
 results in Section 3 for P versus L. Our simulations clearly
 show that the usefulness of pretesting is not limited to the
 OLS estimator. We defer to future work a more careful

 investigation of the pretest strategy for the IPW estimator
 based on appropriately modified pretests.

 5. CONCLUDING REMARKS AND DIRECTIONS FOR
 FUTURE RESEARCH

 Difference-stationary and trend-stationary models of the
 same series may imply very different predictions. Decid-
 ing which model to use is thus tremendously important
 for applied forecasters, and unit-root pretests may provide
 a formal criterion for deciding whether to difference the
 data. Very little is known, however, about the usefulness of
 unit-root tests as diagnostic tools for selecting a forecasting
 model. In an effort to remedy this situation, we conducted
 a Monte Carlo study in which we explored systematically
 the extent to which pretesting for unit roots improves fore-
 cast accuracy in a canonical AR(1) model with trend, for a
 variety of sample sizes, forecast horizons, and degrees of
 persistence. We found strong evidence that pretesting im-
 proves forecast accuracy relative to routinely differencing
 the data. We also characterized in detail the conditions un-

 der which pretesting is likely to improve forecast accuracy
 relative to forecasts from models in levels and provided
 some practical advice.

 There are many useful directions for future research.
 Given the narrow confines of our AR(1) DGP, the results
 by necessity are tentative, and there are many obvious but
 nevertheless important variations on the applications con-
 sidered in this article. For example, we chose to focus on
 just one of many pretests for unit roots, and we ignored
 asymptotic refinements of unit-root tests based on bootstrap
 theory. Moreover, Stock (1996) showed that the asymptot-
 ically more powerful DF-GLS test of Elliott et al. (1996)
 may further improve forecast accuracy. Our analysis con-
 firmed that there are important potential advantages to the
 use of more powerful unit-root tests in some regions of the
 parameter space, but it also showed that low power in some
 cases may improve forecast accuracy. This finding suggests
 that there are likely to be trade-offs between different unit-
 root pretests in terms of their power properties. Working
 with daily data, for example, may call for different unit-
 root tests than working with annual data. Future research
 will have to quantify these trade-offs. In addition, it would
 be of interest to explore tests that take L rather than D
 as the null hypothesis (see Kwiatkowski, Phillips, Schmidt,
 and Shin 1992; Leybourne and McCabe 1994). Pretest pro-
 cedures based on such unit-root tests might be expected
 to dominate L for the same reason that the Dickey-Fuller
 pretest dominates D.

 Another limitation of our Monte Carlo analysis is the
 greatly simplified lag structure of the DGP. Further research
 is required to verify the robustness of our findings in mod-
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 els with richer dynamics. We also deliberately ignored the
 issue of lag-order uncertainty at this stage of the analysis.
 Future work will have to address the fact that the popula-
 tion model is unknown in practice and may not even be of
 finite lag order. Appropriate data-based lag-order selection
 procedures for the class of (autoregressive moving aver-
 age) ARMA(p, q) models were discussed, for example, by
 Ng and Perron (1995).
 A third limitation of our analysis is our focus on uni-

 variate models. Univariate models are of central interest in

 many applications and often have proved superior to multi-
 variate forecasting models, but they are not the only model
 in use. For example, Stock (1990, 1994) noted that results
 for univariate models do not bear directly on macroeco-
 nomic forecasting, which is typically multivariate. Future
 research undoubtedly will have to include vector-valued
 processes. Although the standard augmented Dickey-Fuller
 (ADF) test used in this article is widely used as a pretest
 for vector autoregressions, a similar analysis for multivari-
 ate cointegration tests would be useful. One would con-
 jecture that imposing cointegration in small samples ought
 to improve forecast accuracy, whether or not cointegration
 holds exactly. There is reason to believe, however, that im-
 posing cointegration may be less important than commonly
 thought. For example, Christoffersen and Diebold (1998)
 showed that, when forecasting cointegrated systems at long
 horizons, imposing the correct order of integration is cru-
 cial, but imposing cointegration is not.

 A fourth extension would be to allow for endogenously
 selected deterministic trend breaks under the alternative. In

 particular, piecewise linear deterministic trend models may
 forecast more accurately than linear models. The ADF test
 considered in this article does not allow for trend breaks,
 but tests like those developed by Zivot and Andrews (1992)
 do. Moreover, alternative procedures for the simultaneous
 determination of the trend model and of the order of inte-

 gration have been proposed, for example, by Phillips and
 Ploberger (1994).

 A fifth extension would be to examine the robustness of

 the results to structural change, in light of recent work by
 Clements and Hendry (1998) indicating that certain specifi-
 cations may be relatively more robust to structural change
 than others.

 A final extension, and perhaps the most novel and inter-
 esting in our view, would be to consider unit-root test sizes
 other than 5% and to determine how the performance of
 P relative to D and L varies with test size. In particular,
 it should be possible to tune the test size to optimize the
 performance of P. The present fairly stringent size of 5%
 leads to domination of D by P because the pretest selects D
 except when there is strong evidence against D but fails to
 produce domination of L by P. It is possible that increasing
 the test size would leave largely intact the domination of D
 by P but could bring us closer to a similar domination of
 L by P. At any rate, there is certainly no reason to think
 that the arbitrary size of 5% is necessarily close to optimal.
 Hence, our results on the generally good performance of
 the pretesting strategy are conservative-some simple ad-

 ditional tuning could cast the pretest strategy in an even
 more favorable light.
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