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Financial risk management is inti­
mately concerned with tail quantiles 
(e.g., the value of x such that P(X > 
x) = 0.05) and tail probabilities (e.g., 

P(X > x), for a large value x). Extreme quan­
tiles and probabilities are of particular interest 
because the ability to assess them accurately 
translates into the ability to manage extreme 
financial risks effectively, such as those associ­
ated with currency crises, stock market 
crashes, and large bond defaults. 

Unfortunately, traditional parametric 
statistical and econometric methods, typically 
based on estimation of entire densities, are ill-
suited to the assessment of extreme quantiles 
and event probabilities. These parametric meth­
ods implicitly strive to produce a good fit in 
regions where most of the data fall, potentially 
at the expense of good fit in the tails, where, by 
definition, few observations fall.1 Seemingly 
sophisticated non-parametric methods of den­
sity estimation, such as kernel smoothing, are 
also well-known to perform poorly in the tails.2 

It is common, moreover, to require 
estimates of quantiles and probabilities not 
only near the boundary of the range of 
observed data, but also beyond the boundary. 
The task of estimating such quantiles and 
probabilities would seem hopeless. A key idea, 
however, emerges from an area of probability 
and statistics known as "extreme value theory" 
(EVT): One can estimate extreme quantiles 
and probabilities by fitting a "model" to the 
empirical survival function of a set of data 

using only the extreme event data rather than 
all the data, thereby fitting the tail and only the 
tail.3 The approach has a number of attractive 
features, including: 

1. The estimation method is tailored to the 
object of interest, the tail of the distribu­
tion, rather than the center of the distri­
bution. 

2. An arguably reasonable functional form 
for the tail can be formulated from a pri­
ori considerations. 

The upshot is that the methods of EVT offer 
hope for progress toward the elusive goal of 
reliable estimates of extreme quantiles and 
probabilities. 

The concerns of EVT are in fact wide-
ranging and include fat-tailed distributions, 
time series processes with heavy-tailed inno­
vations, general asymptotic theory, point pro­
cess theory, long memory and self-similarity, 
and much else. Our concerns here, alluded to 
above, are much more narrow: We focus pri­
marily on estimation of extreme quantiles and 
probabilities, with applications to financial risk 
management. Specifically, we provide a reac­
tion, from the perspective of financial risk 
management, to recent developments in the 
EVT literature, the maturation of which has 
resulted in optimism regarding the prospects for 
practical applications of the ideas to financial 
risk management.4 In our view, as we hope to 
make clear, the optimism is partly appropriate 
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but also partly exaggerated, and at any rate much of the 
potential of EVT remains latent; hence what follows is 
partly praise, partly criticism, and partly a wish list. 

PITFALLS A N D OPPORTUNITIES 

Much of our discussion is related directly or indi­
rectly to the idea of tail estimation under a power law 
assumption, so we begin by introducing the basic frame­
work. We assume that returns are in the maximum 
domain of attraction of a Frechet distribution, so that the 
tail of the survival function is a power law times a slowly 
varying function: 

P(X > x) = k(x)x-α (1) 

That family includes, for example, α-stable laws 
with α < 2 (but not the Gaussian case, α = 2). Often it 
is assumed that k(x) is in fact constant, in which case atten­
tion is restricted to densities with tails of the form 

P(X > x) = kx-α (2) 

with the parameters k and α to be estimated. 
A number of estimation methods can be used. 

The most popular, by far, is Hill's [1975] estimator, which 
is based directly on the extreme values and proceeds as fol­
lows. Order the observations with x(1) the largest, x(2) the 
second largest, and so on, and form an estimator based on 
the difference between the m-th largest observation and 
the average of the m largest observations: 

It is a simple matter to convert an estimate of α to 
estimates of the desired quantiles and probabilities. The 
Hill estimator has been used in empirical financial settings; 
see, for example, the impressive early work of Koedijk, 
Schafgans, and deVries [1990]. It also has good theoret­
ical properties. It can be shown that it is consistent and 
asymptotically normal, assuming the data are iid and that 
m grows at a suitable rate with the sample size.5 

Selecting the Cutoff for Hill Estimation 

We discuss the iid assumption more later; here we 
focus on choice of m. Roughly speaking, consistency and 

asymptotic normality of the Hill estimator require that m 
approach infinity with the sample size, but at a slower rate. 
Unfortunately, however, this asymptotic condition gives 
no guidance regarding choice of m for any asset return 
series of fixed length, and the finite sample properties of 
the estimator depend crucially on the choice of m. 

In particular, there is an important bias-variance 
trade-off when varying m for fixed sample size: Increas­
ing m, and therefore using progressively more data (mov­
ing toward the center of the distribution), reduces variance 
but increases bias. Increasing m reduces variance because 
more data are used, but it increases bias because the power 
law is assumed to hold only in the extreme tail. 

The bias-variance trade-off regarding choice of 
m is precisely analogous to the bias-variance trade-off 
regarding choice of bandwidth in non-parametric density 
estimation. Unfortunately, although much of the recent 
non-parametric density estimation literature is devoted to 
"automatic" bandwidth selection rules, which optimize 
an objective function depending on both variance and 
bias, until recently no such rules had been developed for 
choice of m in tail estimation. Instead, m is typically 
chosen via ad hoc rules of thumb, sometimes supple­
mented with plots of the empirical survival function with 
the estimated tail superimposed. In our view, such plots 
are invaluable — and although they are used sometimes, 
they are not used often enough — but they need to be 
supplemented with complementary and rigorous rules for 
suggesting a choice of m. 

Recent unpublished work by Danielsson and 
deVries [1997a] offers hope: They develop a bootstrap 
method for selecting m and establish optimality proper­
ties. We look forward to continued exploration of boot­
strap and other methods for optimal selection of m, and 
to the accumulation of practical experience with the 
methods in financial settings. 

Convenient Variations on the 
Hill Estimator I: 
Estimation by Linear Regression 

Although the Hill estimator was not originally 
motivated by a regression framework, the basic idea — 
assume a power law for the tail and then base an estima­
tor directly on the extreme observations — has an imme­
diate regression interpretation, an idea that traces at least 
to Kearns and Pagan [1997]. Simply note that P(X > x) 
= kx-α implies 

lnP(X > x) = ln(k) - αln(x) (4) 
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so that α is the slope coefficient in a simple linear rela­
tionship between the log tail of the empirical survival 
function and the log extreme values. One should there­
fore be able to estimate α by a linear regression of the log 
tail of the empirical survival function on an intercept 
and the logs of the m most extreme values. 

Note that nothing is presently known about the 
properties of standard estimators (e.g., least squares) in this 
context; more research is needed. The basic insight never­
theless strikes us as important. First, it highlights the con­
ceptual fact that the essence of the tail estimation problem 
is fitting a log-linear function to a set of data. Second, it may 
have great practical value because it means that the exten­
sive kit of powerful tools developed for regression can poten­
tially be brought to bear on the tail estimation problem. Huge 
literatures exist, for example, on robust estimation of regres­
sion models (which could be used to guide strategies for 
model fitting), recursive methods for diagnosing structural 
change in regression models (which could be used to guide 
selection of m), and bootstrapping regression models (which 
could be used to improve finite sample inference). 

Convenient Variations on the 
Hill Estimator II: 
Estimation by Non-Linear Regression 

A more accurate tail expansion, used for example 
in Danielsson and deVries [1997b], and asymptotically 
equivalent to the one given above, but which may have 
better properties in small samples, is 

P(X > x) = kx -α(1 + cx-d) (5) 

where k, α, c, and d are the parameters to be estimated. 
Again, the relevant parameters could be estimated very sim­
ply by non-linear regression methods, with the choice of m 
and much else guided by powerful regression diagnostics. 

Convenient Variations on the 
Hill Estimator III: Imposing Symmetry 

In many (although not all) financial applications, we 
may want to impose symmetry on the distribution, which 
is to say, we may want to impose that the parameters gov­
erning the left and right tail behavior be identical. Regres­
sion technology again comes to the rescue. Using standard 
methods, one may estimate a system of two equations, one 
for each tail, imposing parameter equality across equations. 

Finite Sample Estimation and Inference 

A reading of the EVT literature reveals a sharp and 
unfortunate contrast between probability theory and sta­
tistical theory. Probability theory is elegant, rigorous, and 
voluminous, while statistical theory remains primitive 
and skeletal in many respects. Readers who have reached 
this point will already appreciate certain aspects of this 
anticlimax, such as the difficulty of choosing the cutoff in 
Hill estimation. But the situation is actually worse. 

First, notoriously little is known about the finite 
sample properties of the tail index estimator under vari­
ous rules for cutoff selection, even under the standard 
maintained assumptions, most importantly that the data are 
iid. In our view, a serious and thorough Monte Carlo study 
is needed, standardizing the choice of m by a defensible 
automatic selection rule such as the Danielsson-deVries 
bootstrap, and characterizing the sampling distribution of 
the tail index estimator as a function of sample size for var­
ious data-generating processes satisfying the power law 
assumption. Such a Monte Carlo analysis would be facil­
itated by the simplicity of the estimator and the speed with 
which it can be computed, but hindered by the tedious cal­
culations required for bootstrap cutoff selection. 

Second, the problem is not just that the properties 
of the existing approach to estimation of the tail index have 
been inadequately explored. The problem is augmented by 
the fact that crucial variations on the theme have been left 
untouched. For example, in financial risk management, 
interest centers not on the tail index per se, but rather on 
the extreme quantiles and probabilities. The ability to 
withstand big hits, quantified by specific probabilities, 
translates directly into credit ratings, regulatory capital 
requirements, and so on. The extreme quantile and prob­
ability estimators are highly non-linear functions of the tail 
index; hence, poor sampling properties of the tail index 
estimator will likely translate into even worse properties of 
the quantile and probability estimators, and the standard 
approximation based on a Taylor series expansion ("the 
delta method") is likely to be poor. Moreover, often one 
would like an interval estimate of, say, an extreme event 
probability. One rarely sees such intervals computed in 
practice, and we know of no Monte Carlo work that 
bears on their coverage accuracy or width. 

Third, various maintained assumptions may of 
course be violated and may worsen the (potentially already 
poor) performance of the estimator. Again, a systematic 
Monte Carlo analysis would help us to assess the severity 
of the induced complications. To take one example, the 
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scant evidence available suggests the estimator is likely to 
perform poorly if the assumed slowly varying function k(x) 
is far from constant, even if the tail behavior satisfies the 
power law assumption (see Embrechts, Klüppelberg, and 
Mikosch [1997, Chapter 6]). This is unfortunate insofar as, 
although power law tail behavior can perhaps be justified 
as reasonable on a priori grounds, no justification can be 
given for the assumption that k(x) is constant. 

Other maintained assumptions can also fail and may 
further degrade the performance of the estimator. We now 
consider two such crucial assumptions, iid data and power 
law tail behavior, in greater detail. 

Violations of Maintained Assumptions I: 
Dependent Data 

It is widely agreed that high-frequency financial 
asset returns are conditionally heteroscedastic, and hence 
not iid.6 Unfortunately, the EVT literature routinely 
assumes iid data. Generalizations to dependent data 
have been attempted (e.g., Leadbetter, Lindgren, and 
Rootzen [1983]), but they typically require "anticlus-
tering" conditions on the extremes, which rule out 
precisely the sort of volatility clustering routinely found 
in financial asset returns. It seems clear that Monte 
Carlo analyses need to be done on the performance of 
the tail estimator under realistic data-generating processes 
corresponding to routine real-world complications, 
such as the dependence associated with volatility dynam­
ics. The small amount of Monte Carlo that has been 
done (e.g., Kearns and Pagan [1997]) indicates that the 
performance can be very poor. 

We see at least two routes to improving the per­
formance of the tail index estimator in the presence of 
dependent data. First, one can fit generalized extreme 
value distributions directly to a series of per period max­
ima. This idea is not new, but it is curiously underutilized 
in our view, and it has a number of advantages. Use of per 
period maxima naturally reduces dependence, use of an 
exact generalized extreme value distribution is justified if 
the periods are taken to be long enough, and maximum 
likelihood estimation is easily implemented. Moreover, the 
question addressed — the distribution of the maximum 
— is of intrinsic interest in risk management. 

On the downside, however, the aggregation 
reduces efficiency, and a new "bandwidth" selection 
problem of sorts is introduced — selection of the appro­
priate amount of aggregation. That is, should one use 
weekly, monthly, quarterly, or annual maxima? 

Second, one can estimate the tail of the conditional, 
rather than the unconditional, distribution. In the iid case, 
the two of course coincide, but they diverge under depen­
dence, in which case the conditional distribution is of 
greater interest. One can fit the tail of the conditional dis­
tribution by first fitting a conditional volatility model, stan­
dardizing the data by the estimated conditional standard 
deviation, and then estimating the tail index of the stan­
dardized data. Such a procedure is similar to Engle and 
Gonzalez-Rivera [1991], except that we fit only the tail 
rather than the entire density of the standardized data. The 
key is recognizing that, if the adopted volatility model is a 
good approximation to the true volatility dynamics, then the 
standardized residuals will be approximately iid, which takes 
us into the world for which EVT was designed. 

Violations of Maintained Assumptions II: 
Assessing the Power Law Assumption 

As we have seen, most of the tail estimation liter­
ature assumes that returns are in the maximum domain of 
attraction of a Frechet distribution, so that the tail of the 
survival function follows a power law. But how do we 
check that assumption, and what is the evidence? Inoue 
[1998] provides some key results that help answer such 
questions. He develops a general framework for consistent 
testing of hypotheses involving conditional distributions 
of time series, which include conditional tail behavior 
restrictions of the form 

P(Xt>x|Ωt-1) = kx - α (6) 

for sufficiently large x.7 The hypothesized conditional tail 
behavior restriction means that k and α are independent 
of the information set, which simplifies the assessment of 
the conditional probabilities. 

CONCLUDING REMARKS 

EVT is not needed for estimating routine quantities 
in financial risk management, such as 10%, 5%, and perhaps 
even 1% value at risk. Rather, EVT is concerned with 
extreme (e.g., one-tenth of 1%) tail behavior. So EVT has 
its place, but it is important that it be kept in its place, and 
that tools be matched to tasks.8 EVT promises exciting 
opportunities for certain subareas of risk management, and 
for helping to fill some serious gaps in our current capa­
bilities, but it will not revolutionize the discipline. 
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Even when EVT is appropriate, we argue that 
caution is needed, because estimation of aspects of very 
low-frequency events from short historical samples is 
fraught with pitfalls. This has been recognized in other 
fields, albeit often after long lags, including the empiri­
cal macroeconomics literature on long-run mean rever­
sion in real output growth rates (e.g., Diebold and 
Senhadji [1996]) and the empirical finance literature on 
long-run mean reversion in asset returns (e.g., Campbell, 
Lo, and MacKinlay [1997]). 

The problem for the present context — applica­
tions of EVT in financial risk management — is that for 
estimating objects such as a "once every hundred years" 
quantile, the relevant measure of sample size is likely 
much better approximated by the number of non-over­
lapping hundred-year intervals than by the number of data 
points. From that perspective, our data samples are terri­
bly small relative to the demands we place on them. 

We emphasize, however, that the situation is not 
hopeless. EVT is here to stay, but we believe that best-
practice applications of EVT to financial risk management 
will benefit from awareness of its limitations — as well as 
its strengths. When the smoke clears, the contribution of 
EVT remains basic and useful: It helps draw smooth 
curves through the extreme tails of empirical survival 
functions in a way that is guided by powerful theory and 
hence provides a rigorous complement to alternatives 
such as graphical analysis of empirical survival functions.9 

Our point is simply that we shouldn't ask more of the the­
ory than it can deliver. 

Finally, we have also tried to highlight a number 
of areas in which additional research will lead to stronger 
theory and more compelling applications, including strate­
gies for automatic cutoff selection, linear and non-linear 
regression implementations, thorough Monte Carlo anal­
ysis of estimator performance under ideal and non-ideal 
conditions, focus on interval as well as point estimation, 
strategies for handling dependent data, and tests of the 
power law assumption. 

We look forward to vigorous exploration of the 
role of EVT in risk management. In particular, we await 
progress on the multivariate front, since the risk manager 
almost always has a portfolio of assets or securities to worry 
about, not an individual asset, and to date the EVT litera­
ture describes a univariate theory. While we could simply 
treat the extreme value problem directly at the portfolio 
level, the top-down approach, it is much more useful to take 
the bottom-up view, where we explicitly model the joint 
stochastic structure of the portfolio elements. 

Current risk management is based on confidence 
intervals rather than tail probabilities. Clearly, the two are 
dual, but the former is easier to estimate than the latter. 
Perhaps unsurprisingly, risk managers at the leading finan­
cial institutions are often concerned about tail probabil­
ities, in particular the severity and frequency of really big 
hits. Meanwhile, note that the regulatory agencies, the Fed 
and the BIS, for instance, assign capital, the currency in 
which punishment and reward are denominated, on the 
basis of confidence interval performance. Successful char­
acterization of the tail would therefore enliven consider­
ably the current regulatory discussion. 
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1This includes, for example, the fitting of stable distri­
butions, as in McCulloch [1996]. 

2See Silverman [1986]. 
3The survival function is simply 1 minus the cumulative 

density function, 1 — F(x). Note, in particular, that because F(x) 
approaches 1 as x grows, the survival function approaches 0. 

4Embrechts, Klüppelberg, and Mikosch [1997], for 
example, provide both a masterful summary of the literature and 
an optimistic assessment of its potential. See also the papers 
introduced by Paul-Choudhury [1998]. 

5Other estimators are available, but none are demon­
strably superior, and certainly none are as popular. Hence we 
focus on the Hill estimator throughout this article. 

6See, for example, the surveys by Bollerslev, Chou, and 
Kroner [1992] and Diebold and Lopez [1995]. 

7Here Xt is centered around its conditional mean and 
scaled by its conditional standard deviation. 

8Einmahl [1990], for example, stresses the success of the 
empirical survival function for analyzing all but the most 
extreme risks. 

9See Danielsson and deVries [1997c] for just such a 
blend of rigorous EVT and intuitive graphics. Note that the 
conditional heteroscedasticity diminishes as the periodicity 
increases from daily to weekly and higher periodicity (lower fre­
quency). Therefore, many of the EVT tools may in fact be 
applicable to lower-frequency financial data. 
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