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Abstract:  We show that the common practice of converting 1-day volatility estimates to h-
day estimates by scaling by  is inappropriate and produces overestimates of the variability
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 Chew (1994) provides insightful early discussion. 1

 A leading example is Bankers Trust’s RAROC system; see Falloon (1995).2

 See, for example, Smithson and Minton (1996a, b) and J.P. Morgan (1996).3
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1.  Motivation and Background

What is the relevant horizon for risk management?  This obvious question has no

obvious answer.   Horizons such as 7 to 10 days for equity and foreign exchange, and longer1

horizons such as 30 days for interest rate instruments, are routinely discussed.  In fact,

horizons as long as a year are not uncommon.   Operationally, risk is often assessed at a 1-day2

horizon, and shorter (intra day) horizons have even been discussed.  Short-horizon risk

measures are converted to other horizons, such as 10-day or 30-day, by scaling.   For3

example, to obtain a 10-day volatility we multiply the 1-day volatility by .  Moreover, the

horizon conversion is often significantly longer than 10 days.  Many banks, for example, link

trading volatility measurement to internal capital allocation and risk-adjusted performance

measurement schemes, which rely on annual volatility estimates.  The temptation is to scale 1-

day volatility by .

The routine and uncritical use of scaling is also widely accepted by regulators.  For

example, the Basle Committee's January 1996 "Amendment to the Capital Accord to

Incorporate Market Risks" features it prominently.  Specifically, the amendment requires a

10-day holding period and advises conversion by scaling:

In calculating value at risk, an instantaneous price shock equivalent to a 10 day
movement in prices is to be used, i.e. the minimum "holding period" will be ten
trading days.  Banks may use value-at-risk numbers calculated according to
shorter holding periods scaled up to ten days by the square root of time ...

(p. 44, section B.4, paragraph c)
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In this paper we sound an alarm:  such scaling is inappropriate and misleading.  We

show in section 2 that converting volatilities by scaling is statistically appropriate only under

strict conditions that are routinely violated by high-frequency (e.g., 1-day) asset returns.  In

section 3, we provide a detailed illustrative example of the failure of scaling.  We conclude in

section 4, in which we note that, even in the unlikely event that the conditions for its statistical

legitimacy are met, scaling is nevertheless problematic for economic reasons associated with

fluctuations in portfolio composition .

2.  The Links Between Short-Horizon and Long-Horizon Risk:  Statistical

Considerations

Scaling Works in iid Environments but Fails Otherwise

Here we describe the restrictive environment in which scaling is appropriate.

Let  be a log price at time t, and suppose that changes in the log price are independently and

identically distributed, 

Then the 1-day return is

with standard deviation .  Similarly, the h-day return is

with variance  and standard deviation .  Hence the "  rule":  to convert a 1-day

standard deviation to an h-day standard deviation, simply scale by .  For some
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 See for example, the surveys by Bollerslev, Chou and Kroner (1992) and Diebold4

and Lopez (1995).
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applications, a percentile of the distribution of h-day returns may be desired; percentiles also

scale by  if log changes are iid, and in addition, normally distributed.

The scaling rule relies on 1-day returns being iid.  The literature on mean reversion in

stock returns appreciates this, and scaling is often used as a test for whether returns are iid,

ranging from early work (e.g., Cootner, 1964) to recent work (e.g., Campbell, Lo and

MacKinlay, 1996).  But high-frequency financial asset returns are distinctly not iid.  Even if

high-frequency portfolio returns are conditional-mean independent (which has been the

subject of intense debate in the efficient markets literature), they are certainly not conditional-

variance independent, as evidenced by hundreds of recent papers documenting strong

volatility persistence in financial asset returns. 4

The Failure of Scaling in non-iid Environments

To highlight the failure of scaling in non-iid environments and the nature of the

associated erroneous long-horizon volatility estimates, we will use a simple GARCH(1,1)

process for 1-day returns,

t = 1, ..., T.  We impose the usual regularity and covariance stationarity conditions, ,

, , and .  The key feature of the GARCH(1,1) process is that it allows for

time-varying conditional volatility, which occurs when  and/or  is nonzero.  The model
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 Again, see the surveys of GARCH models in finance by Bollerslev, Chou and Kroner5

(1992) and Diebold and Lopez (1995).

 More precisely, they define and study the temporal aggregation of weak GARCH6

processes, a formal definition of which is beyond the scope of this paper.  Although the
distinction is not crucial for our purposes, technically inclined readers should read "weak
GARCH" whenever they encounter the word "GARCH."

 Note the new and more cumbersome, but necessary, notation, the subscript in which7

keeps track of the aggregation level.   
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has been fit to hundreds of financial series and has been tremendously successful empirically;

hence its popularity.   We hasten to add, however, that our general thesis -- that scaling fails5

in the non-iid environments associated with high-frequency asset returns -- does not depend

on any way on a GARCH(1,1) structure.  Rather, we focus on the GARCH(1,1) case because

it has been studied the most intensely, yielding a wealth of results that enable us to illustrate

the failure of scaling both analytically and by simulation.

Drost and Nijman (1993) study the temporal aggregation of GARCH processes.  6

Suppose we begin with a sample path of a 1-day return series, , which follows the

GARCH(1,1) process above.   Then Drost and Nijman show that, under regularity conditions,7

the corresponding sample path of h-day returns, , similarly follows a GARCH (1,1)

process with

where 
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 Bollerslev (1986) shows that a necessary and sufficient condition for the existence of8

a finite fourth moment, and hence a finite kurtosis, is . 

 The Drost-Nijman result coheres with the result of Diebold (1988), who shows that9

temporal aggregation produces returns that approach an unconditional normal distribution,
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and  is the solution of the quadratic equation,

where

and  is the kurtosis of .   The Drost-Nijman formula is neither pretty nor intuitive, but it is8

important, because it is the key to correct conversion of 1-day volatility to h-day volatility.  It

is painfully obvious, moreover, that the scaling formula does not look at all like the Drost-

Nijman formula.

If, however, the scaling formula were an accurate approximation to the Drost-Nijman

formula, it would still be very useful because of its simplicity and intuitive appeal. 

Unfortunately, such is not the case.  As , analysis of the Drost-Nijman formula reveals

that  and , which is to say that temporal aggregation produces gradual

disappearance of volatility fluctuations.   Scaling, in contrast, magnifies volatility fluctuations.9
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3.  A Detailed Example

 Let us examine the failure of scaling in a specific example.  We parameterize the

GARCH(1,1) process to be realistic for daily returns by setting =0.10 and =0.85, which are

typical of the parameter values obtained for estimated GARCH(1,1) processes.  Choice of  is

arbitrary and amounts to a normalization, or choice of scale.  We set =1, which implies that

the unconditional variance of the process equals 20.  We set , discard the first

1,000 realizations to allow the effects of the initial condition to dissipate, and keep the

following T=9,000 realizations.  In Figure 1 we show the series of daily returns and the

corresponding series of 1-day conditional standard deviations, .  The daily volatility

fluctuations are evident.

Now we examine 10-day and 90-volatilities, corresponding to h=10 and h=90.  In

Figure 2 we show 10-day volatilities computed in two different ways.  We obtain the first

(incorrect) 10-day volatility by scaling the 1-day volatility,  , by .  We obtain the

second (correct) 10-day volatility by applying the Drost-Nijman formula.   In Figure 3, we10

repeat the comparison of Figure 2, except we display 90-day rather than 10-day volatilities.

It is clear that although scaling produces volatilities that are correct on average, it

magnifies the volatility fluctuations, whereas they should in fact be damped.  That is, scaling

produces erroneous conclusions of large fluctuations in the conditional variance of long-

horizon returns, when in fact the opposite is true.  Moreover, we cannot claim that the scaled
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 A moment’s reflection reveals misspecification to be the compelling case.  The11

modern approach is to acknowledge misspecification from the outset, as for example in the
influential paper of Nelson and Foster (1994). 
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volatility estimates are “conservative” in any sense; rather, they are sometimes too high and

sometimes too low.

If scaling is inappropriate, then what is appropriate?  First, as we have shown, if the

short-horizon return model is correctly specified as a GARCH(1,1) process, then long-horizon

volatilities can be computed using the Drost-Nijman formula.

Second, if the short-horizon return model is correctly specified but does not fall into

the family of models covered by Drost and Nijman, then the Drost-Nijman results do not

apply, and there are no known analytic methods for computing h-day volatilities from 1-day

volatilities.  If we had analytic formulae, we could apply them, but we don’t.  Hence if h-day

volatilities are of interest, it makes sense to use an h-day model.

Third, when the 1-day return model is not correctly specified, things are even

trickier.   For example, the best approximation to 10-day return volatility dynamics may be11

very different from what one gets by applying the Drost-Nijman formula to an (incorrect)

estimated GARCH(1,1) model for 1-day return volatility dynamics (and of course very

different as well from what one gets by scaling estimates of daily return volatilities by ). 

This again suggests that if h-day volatilities are of interest, it makes sense to use an h-day

model. 

4.  Concluding Remarks

The relevant horizon may vary by asset class (e.g., equity vs. fixed income), industry

(e.g., banking vs. insurance), position in the firm (e.g., trading desk vs. CFO), and motivation



 Moreover, Christoffersen and Diebold (1997) show that the predictable volatility12

dynamics in many asset returns vanish quickly with horizon, indicating that scaling can
quickly lead one astray.

 See Findley (1983) and Diebold (1998) for discussion of this same point in the13

context of more traditional forecasting problems.
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(e.g., private vs. regulatory), and thought must be given to the relevant horizon on an

application-by-application basis.  Modeling volatility only at one short horizon, followed by

scaling to convert to longer horizons, is likely to be inappropriate and misleading, because

temporal aggregation should reduce volatility fluctuations, whereas scaling amplifies them.  12

Instead, a strong case can be made for using different models at different horizons. 13

We hasten to add that it is not our intent to condemn scaling always and everywhere. 

Scaling is charmingly simple, and it is appropriate under certain conditions.  Moreover, even

when those conditions are violated, scaling produces results that are correct on average, as we

showed.  Hence scaling has its place, and its widespread use as a tool for approximate horizon

conversion is understandable.  But as our sophistication increases, the flaws with such “first-

generation” rules of thumb become more pronounced, and directions for improvement

become apparent.  Our intent is to stimulate such improvement.

We believe that the use of different models for different horizons is an important step

in the right direction.  But even with that sophisticated strategy, the nagging and routinely-

neglected problem of portfolio fluctuations, pinpointed in a prescient article by Kupiec and

O’Brien (1995), remains.  Measuring the volatility of trading results depends not only on the

volatility of the relevant market prices but also on the position vector that describes the

portfolio.  Estimates of h-day volatility are predicated on the assumption of a fixed position
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vector throughout the h-day horizon, which is unlikely.

Positions tend to change frequently in the course of normal trading, both within and

across days, for a number of reasons.  First, positions may be taken in order to facilitate a

customer transaction, and then decline to normal “inventory” levels when offsetting customer

orders come in, or when the positions are laid-off in the market or hedged.  Second, traders

may put on or take off short-term speculative positions, or adjust long-term proprietary

trading strategies.  Finally, trading management may intervene to reduce positions in response

to adverse market movements.

Whatever the cause of fluctuations in the position vector, it conflicts with the h-day

buy-and-hold assumption.  The degree to which this assumption is violated will depend on the

trading desk’s business strategy, the instruments it trades, and the liquidity of the markets in

which it trades.  For example, even one day may be too long a horizon over which to assume

a constant portfolio for a market maker in a major European currency -- the end-of-day

portfolio will bear little relation to the variety of positions that could be taken over the course

of the next day, much less the next 10 days.  To understand the risk over a longer horizon, we

need not only robust statistical models for the underlying market price volatility, but also

robust behavioral models for changes in trading positions.

Finally, we stress the challenges associated with aggregating risks across positions and

trading desks when the risks are assessed at different horizons.  Obviously, one can’t simply

add together risk measures at different horizons.  Instead, conversion to a common horizon

must be done through a combination of statistically appropriate h-day models of price

volatility and behavioral models for changes in traders’ positions.  That, in our view, is a
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pressing direction for future research.
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Figure 1
GARCH(1,1) Realization and Conditional Standard Deviation
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Figure 2
10-Day Volatility, Scaled and Actual
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Figure 3
90-Day Volatility, Scaled and Actual


