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 We propose a constructive, multivariate framework for assessing agreement between
 (generally misspecified) dynamic equilibrium models and data, which enables a complete second-
 order comparison of the dynamic properties of models and data. We use bootstrap algorithms to
 evaluate the significance of deviations between models and data, and we use goodness-of-fit criteria
 to produce estimators that optimize economically-relevant loss functions. We provide a detailed
 illustrative application to modelling the U.S. cattle cycle.

 1. INTRODUCTION

 Dynamic equilibrium models are now used routinely in many fields. Such models, for
 example, have been used to address a variety of macroeconomic issues, including business-
 cycle fluctuations, economic growth, and the effects of government policies.' Additional
 prominent fields of application include international economics, public economics, indus-
 trial organization, labour economics, and agricultural economics.2

 At present, however, many important questions regarding the empirical implementa-
 tion of dynamic equilibrium models remain incompletely answered. The questions fall
 roughly into two methodological groups. The first group involves issues related to assessing
 model adequacy, and the second involves issues related to model estimation. We contribute

 to an emerging literature that has begun to deal with both issues, including Watson (1993),
 King and Watson (1992, 1996), Canova, Finn and Pagan (1994), Kim and Pagan (1994),
 Pagan (1994), Leeper and Sims (1994), Cogley and Nason (1995), and Hansen, McGrattan

 1. Among many others, see Kydland and Prescott (1982), Hansen (1985), Christiano and Eichenbaum
 (1995), and Rotemberg and Woodford (1996, 1997) (business cycles), Lucas (1988), Jones and Manuelli (1990),
 Rebelo (1991), and Greenwood, Hercowitz and Krusell (1997) (growth), and Lucas (1990), Cooley and Hansen
 (1992), and Ohanian (1997) (policy effects).

 2. Among many others, see Backus, Kehoe and Kydland (1994) (international economics), Auerbach and
 Kotlikoff (1987) (public economics), Ericson and Pakes (1995) (industrial organization), Rust (1989) (labour
 economics), and Rosen, Murphy and Scheinkman (1994) (agricultural economics).

 433

This content downloaded from 
�������������165.123.34.86 on Mon, 09 Jan 2023 14:47:27 UTC������������� 

All use subject to https://about.jstor.org/terms



 434 REVIEW OF ECONOMIC STUDIES

 and Sargent (1997). A 1996 Journal of Economic Perspectives symposium (Kydland and
 Prescott (1996), Sims (1996), Hansen and Heckman (1996)) focused on these issues, and
 two important messages emerged: (1) dynamic equilibrium models, like all models, are
 intentionally simple abstractions and therefore should not be construed as the true data
 generating process; and (2) formal methods should be developed and used to help us
 assess the models more thoroughly. In this paper, we take a step toward meeting those
 goals.

 Some parts of our framework are new, while others build on earlier work in interesting
 ways. In many respects, our work begins where Watson (1993) ends. With an eye toward
 future research, Watson notes that ". . . one of the most informative diagnostics . .. is the
 plot of the model and data spectra," and he recommends that in the future researchers
 ''present both model and data spectra as a convenient way of comparing their complete
 set of second moments." Our methods are based directly on comparison of model and
 data spectra; they can be used to assess the performance of a model (for a given set of
 parameters), to estimate model parameters, and to test hypotheses about parameters or
 models. To elaborate, our approach is:

 A. Frequency-domain and multivariate. Working in the frequency domain enables
 decomposition of variation across frequencies, which is often useful, and the multi-
 variate focus facilitates simple examination of cross-variable correlations and lead-
 lag relationships at the frequencies of interest.

 B. Based on a full second-order comparison of model and data dynamics, in contrast
 to a common approach used in the business cycle literature, in which only a few
 variances and covariances from the model economy and the actual economy are
 compared. The spectrum provides a complete summary of Gaussian time series
 dynamics and an approximate summary of non-Gaussian time series dynamics.

 C. Based on the realistic assumption that all models are misspecified. We regard all
 of the models we entertain as false, in which case traditional statistical methods
 lose some of their appeal.

 D. Graphical and constructive. The framework permits one to assess visually and
 quickly the dimensions along which a model performs well, and the dimensions
 along which it performs poorly.

 E. Based on a common set of tools that can be used by researchers with potentially
 very different objectives and research strategies. The framework can be used to
 evaluate strictly calibrated models, and it can also be used formally to estimate
 and test models.

 F. Designed to facilitate statistical inference about objects estimated from data,
 including spectra, goodness-of-fit measures, model parameters, and test statistics.
 Bootstrap methods play an important role in that regard; we develop and use a
 simple nonparametric bootstrap algorithm.

 G. Mathematically convenient. Under regularity conditions, the spectrum is a
 bounded continuous function, which makes for convenient mathematical
 developments.

 All of the classical ideas of the business-cycle analysis discussed, for example, by
 Lucas (1977) have spectral analogues, ranging from univariate persistence (typical spectral
 shape) to multivariate issues of comovement (coherence) and lead-lag relationships (phase
 shifts) at business-cycle frequencies. We highlight these links and draw upon the business-
 cycle literature for motivation in the methodological Sections 2 and 3. The methods we
 develop, however, are not wed to macroeconomics in any way; rather, they can be used
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 DIEBOLD ET AL. COMPARING MODELS AND DATA 435

 in a variety of fields. Therefore, to maintain balance and to introduce researchers in

 different areas to the use of our framework, we apply our methods to a simple and

 accessible, yet rich, microeconomic model in Section 4. We conclude in Section 5.

 2. ASSESSING AGREEMENT BETWEEN MODEL AND DATA

 Our basic strategy is to assess models by comparing model spectra to data spectra. Our
 goal is the provision of a graphical framework that facilitates visual comparisons of model

 spectra to interval estimates of data spectra. We compute model spectra exactly (either

 analytically or numerically); thus, they have no sampling uncertainty. Sampling error

 does, however, affect the sample data spectra, which are of course just estimates of true but

 unknown (population) data spectra. We exploit well-established procedures for estimating
 spectra, and we develop and use bootstrap techniques to assess the sampling uncertainty

 of estimated spectra.3

 Estimating spectra

 Consider the N-variate linearly regular covariance stationary stochastic process

 yt=p +B(L)ct= p +E Biet-,

 E if t=s,
 S) 0 otherwise,

 where E( t)=0, Bo=I, and the coefficients are square summable (in the matrix sense).
 The autocovariance function is F(r)= r_ BiQB+T and the spectral density function
 is

 F(O) ) =-E r( r)e , - or < o) < oTr.

 Consider now a generic off-diagonal element of F(co),fkl (a)). In polar form, the cross-
 spectral density is fkl (co) = gakl (w) exp [i phkl ()], where gakl (co) = [re2 (fkl (co)) +

 im2 (fkl (co))]1/2 is the gain or amplitude, and where phkl (o) = arctan {im (fkl (a)))/
 re (fkl (a)))} is the phase. As is well known, the gain tells how the amplitude of y, is
 multiplied in contributing to the amplitude of Yk at frequency c, and phase measures the

 lead of Yk over yl at frequency c. (The phase shift in time units is ph (o)/o.) We shall
 often find it convenient to examine coherence rather than gain, where the coherence is

 defined as cohkl (o)) = gakl (0)/(fkk (0))fil (o)), which measures the squared correlation
 between Yk and y, at frequency o.

 Given a sample path {YIt,... ,YNt t=, we estimate the N x 1 mean vector p with
 Y= (Y1,... ., YN)' From this point onward, we assume that all sample paths have been

 centred around this sample mean. We estimate the autocovariance function with

 F(r) = [9k (r)] (k = 1,...**, N, I= 1,***, N), where 'kl (T) = 1/TEZ-=1 YktYI,t+T r=?
 ?1,... , ?(T- 1). We estimate the spectral density matrix using the Blackman-Tukey
 lag-window approach in which we replace the sample spectral density function,

 F(coj) = 1/2r rT=(-(T-1) ()e ir(oj= 2,rj/T, j= 1, . . ., T/2- 1) with one involving the

 3. Alternatively, one could fix the data spectrum, and assess sampling error in the model spectrum by
 simulating repeated realizations from the model. The two approaches are essentially complementary, roughly
 analogous to the Wald and Lagrange multiplier testing perspectives. See, for example, Gregory and Smith (1991).
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 436 REVIEW OF ECONOMIC STUDIES

 "windowed" sample autocovariance sequence, F*(oj)= 1/2ir ()T- 1)A(r)r()e-"
 where A(r) is a matrix of lag windows. The Blackman-Tukey procedure results in a
 consistent estimator if we adjust the lag window A(r) with sample size in such a way that
 variance and bias decline simultaneously. We then obtain the sample coherence and phase

 at any frequency oj by transforming the appropriate elements of F*(c01).

 Assessing sampling variability

 A key issue for our purposes is how to ascertain the sampling variability of the estimated
 spectral density function. To do so, we use an algorithm for resampling from time series
 data, which we call the Cholesky factor bootstrap, and which is closely related to the
 Ramos (1988) bootstrap; the main difference is that Ramos proceeds in the frequency
 domain, whereas we develop the Cholesky factor bootstrap in the time domain. First we
 compute the Cholesky factor of the sample covariance matrix of the series of interest. We
 then exploit the fact that, up to second order, the series of interest can be written as the
 product of the Cholesky factor and serially uncorrelated disturbances, which can be easily
 bootstrapped using parametric or non-parametric procedures.4

 First we need some definitions and notation. Let z1 = (y t, ... ., yN,)', and let
 Z= (z1, Z2, ... ., z'T)'. Then z (1 0 p, ), where 1 is an N-dimensional column vector of
 ones, and Y = Toeplitz(F(0), (1),I.. , F(T- 1)). By symmetry and positive definiteness,
 we can write I = PP', where the unique Cholesky factor P is lower triangular. We estimate

 I by=t Toeplitz(f(0), (1), ... ., f(T-1)), where ,t( ) = 1/ T 1I ZI T=
 1,. .., ?(T- 1); this ensures that we can write I= PP', where the unique Cholesky
 factor P is lower triangular. Now let {AlIi-jI I} ij =0 be a set of decreasing weights applied
 to the successive off-diagonal blocks oft, and call the resulting matrix V. Finally, let P*
 be the Cholesky factor of V .

 The fact that z -(1 0 p, PP') implies that data generated by drawing
 c(i) i (o0 INT) and forming

 Z()=, + PC (i)9

 where ju = 1 0 pu, will have the same second-order properties as the observed data. In
 practice we replace the unknown population first and second moments with the consistent
 estimates described above. Thus, to perform a parametric bootstrap, we draw

 E(i) N(O, INT), we form

 Z(i) = z-+ p*i ~N(Z-, 1*)

 where z= 1 y, and then we compute both the estimates F*(1)(c0j), ji= I . .., T/2-1, i=
 1, ... , R and confidence intervals. Alternatively, to perform a nonparametric bootstrap,
 we note that () = P -'(z - u z). In practice, we draw g(l) with replacement from
 P*-'(z - ), we form

 Z(i) = 5+ p*E( Y*)g

 from which we compute F*(i)(oj), j= 1, ... , T/2-1, i= 1, ... , R, and then we construct
 confidence intervals.

 4. Note that the Cholesky factor bootstrap will miss nonlinear dynamics such as GARCH-it is designed
 to capture only second-order dynamics, in identical fashion to standard (as opposed to higher-order) spectral
 analysis. Users should be cautious in employing our procedures if nonlinearities are suspected to be operative,
 as may be the case with high-frequency financial data, or with models of prices in which inventory constraints
 may be important, as in Deaton and Laroque (1995). Such nonlinearities, however, are not likely to be important
 in non-price data.
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 DIEBOLD ET AL. COMPARING MODELS AND DATA 437

 The simplicity of the Cholesky factor bootstrap is appealing; it is an intuitive and

 easily-implemented generic method for generating samples of time-series pseudo-data

 whose autocovariances match those of the actual data. Moreover, and perhaps surpris-

 ingly, the Cholesky factor bootstrap, which has a nonparametric flavour, and alternatives

 such as the VAR bootstrap (e.g., Canova, Finn and Pagan (1994)), which has a parametric

 flavour, are in fact closely related. A modern and unifying view, currently the focus of

 intense research in mathematical statistics, is to interpret various time series bootstraps as

 sieves (Grenander (1981) whose complexity increases with sample size at a suitable rate.5
 The Cholesky factor bootstrap has a sieve interpretation; the sieve is a spectrum estimated

 by smoothing a suitably-increasing number of sample autocovariances as the sample size
 grows. The VAR bootstrap also has a sieve interpretation; the sieve is an estimated

 autoregression of suitably-increasing length as the sample size grows. Thus, asymptotically
 in T, both the Cholesky factor and VAR bootstraps can be effective algorithms for generat-
 ing data with the same second-order properties as an observed sample path. Neither is in

 general "superior" to the other; the two are best viewed as complements. Both are the
 subject of ongoing research, as is the "block" bootstrap of Kiinsch (1989) and Liu and
 Singh (1992) as modified for spectra by Politis and Romano (1992), as well as the spectral
 bootstrap of Franke and Hardle (1992) and Berkowitz and Diebold (1997).

 We hasten to add, however, that the literature on bootstrapping time series in gen-
 eral-and spectra in particular-is very young and very much unsettled. We still have a
 great deal to learn about the comparative properties of various bootstraps, both asymptoti-
 cally and in finite samples, and the conditions required for various properties to obtain.
 Presently available results differ depending on the specific statistic being bootstrapped,
 and moreover, only scattered first- and occasionally second-order asymptotic results are
 available, and even less is known about actual finite-sample performance. With this in
 mind, we present both theoretical and Monte Carlo analyses of the performance of the
 Cholesky factor bootstrap in two appendices to this paper, available at http://www.ssc.

 upenn.edu/ - diebold/index.html. In Appendix 1, we establish first-order asymptotic valid-
 ity, and in Appendix 2, we document good small-sample performance in a simple Monte
 Carlo experiment.

 Constructing confidence tunnels

 For notational simplicity we focus on confidence tunnels for univariate spectra; as will be
 clear, the extension to cross spectra is immediate. If interest centres on only one frequency,
 we simply use the bootstrap distribution at that frequency to construct the usual bootstrap
 confidence interval. That is, we find qL, qU such that P(f*( (o) ?<q u) =1 - a/2 and
 P(f*( )(o)) qL) =-a /2, where (1 -a) is the desired confidence level, "L" stands for
 lower, " U" stands for upper, the "T" subscript indicates that we tailor the band to the
 finite-sample size T, and the (.) superscript indicates that we take the probability under

 the bootstrap distribution. The (1 - a)% two-sided confidence interval is [qT, qT].
 However, one often wants to assess the sampling variability of the entire spectral

 density function over many frequencies (e.g., business-cycle frequencies, or perhaps all
 frequencies) to learn about the broad agreement between data and model. One approach
 is to form the pointwise bootstrap confidence intervals described above, and then to
 "connect the dots." But obviously, a set of (1 - a)% confidence intervals constructed for
 each of n ordinates will not achieve (1 - a)% joint coverage probability. Rather, the actual

 5. See, for example, Biihlmann (1997) and Bickel and Biihlmann (1996).
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 438 REVIEW OF ECONOMIC STUDIES

 confidence level will be closer to (1 - a)'%, which holds exactly if the pointwise intervals
 are independent. A better approach is to use the Bonferroni method to approximate the

 desired coverage level, by assigning (1 - a/n)% coverage to each ordinate.6 The resulting
 "confidence tunnel" has coverage of at least (1 - a)% and therefore provides a conservative
 estimate of the tunnel.

 A third approach to confidence tunnel construction is the supremum method of

 Woodroofe and van Ness (1967) and Swanepoel and van Wyk (1986), which uses an

 estimate of the (standardized) distribution of supo,<, ,j,If*(o)I)-f(o )i)l,oj=27i/ T,
 j= 1, . . ., T/2 - 1, to construct a confidence tunnel for the curve. Specifically,

 (1) Calculatef*( )(oj), oj= 2nj/T, j= 1, . . ., T/2-1.
 (2) Find c such that:

 p [sup (f *(,) (o)jf * (())) I?c1=I-a,
 Lo<, (r 2/Tf*(c0f ) - j

 where we evaluate the probability with respect to the bootstrap distribution.

 (3) Construct the confidence tunnel, f *(cj) ? c 2/Tf *(oj),

 coj=2 rj/T, j=1,...,T/2-1.

 Unlike the Bonferroni tunnels, the supremum tunnels attain asymptotically correct cover-
 age rates even with statistical dependence among ordinates. Little is known, however,
 about the comparative finite-sample performance of the Bonferroni and supremum tunnels,
 and the supremum tunnels may require very large samples for accurate coverage, as noted
 by Hannan (1970, p. 294).

 3. ESTIMATION: MAXIMIZING AGREEMENT BETWEEN MODEL
 AND DATA

 Now we consider estimation, together with the related issues of goodness-of-fit and hypoth-
 esis testing. To make the discussion as transparent as possible, we first discuss the univari-
 ate case, and then we proceed to the multivariate case.

 Univariate

 Estimation requires a loss function, or goodness-of-fit measure, for assessing closeness

 between model and data. A strength of our approach is that many loss functions may be
 entertained; the particular loss function adopted should reflect the user's preferences, as
 argued by Pagan (1994). In most cases it would seem that a function of the form

 Cgw (0) = g(fm (c; 0)jf*(w))w(w)dw,

 will be adequate. The function g measures the divergence between f" (c; 0) (the model
 spectrum) and f *(c) (an estimate of the data spectrum); note that the model spectrum

 6. In the univariate case, typically n = T/2 - 1. In the multivariate case, the question arises as to "how
 wide to cast the net" in forming confidence tunnels. One might view each element of the spectral density matrix
 in isolation, for example, in which case each of the respective confidence tunnels would use n = T/2 - 1. At the
 other extreme, one could use n = N2(T/2 - 1), effectively forming a tunnel for the entire matrix.
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 DIEBOLD ET AL. COMPARING MODELS AND DATA 439

 is analytically or numerically computable to any desired degree of accuracy, and that the

 data spectrum, although unknown, is consistently estimable. We weight this divergence
 across frequencies by the function w(c). In practice, we replace the integral with a sum

 over frequencies oj= 2rj/T, j= 1, . . ., T/2- 1. Quadratic loss with uniform weighting
 over all frequencies, for example, corresponds to g(a, b) = (a - b)2 and w(w) = 1, yielding

 Cgw(O) = Ej (fi (wi; 0) (w1))
 The goodness-of-fit measure may readily be transformed into an estimation criterion

 by taking

 Ogw = argmin Cgw (0)
 0

 The Gaussian ML estimator is asymptotically of this form, for a particular and potentially

 restrictive choice of g, f *, and w; it is

 airgmax (- jIln f, (coj; 9) -12 Ej f ( ;oi) arm 'fm(coi 0)
 Note in particular that Gaussian ML involves minimization of spectral divergence with
 equal weighting across all frequencies.

 To compute standard errors and interval estimates for parameters of interest, and to
 test hypotheses about the elements of Ogw, we again use the Cholesky factor bootstrap.
 We proceed as follows:

 (1) At bootstrap replication (i), draw a bootstrap sample of size T using the Cholesky
 factor algorithm.

 (2) Numerically minimize C(i) (0) to get 0( .
 (3) Repeat R times.
 (4) Compute standard errors, form interval estimates, implement bias corrections, or

 test hypotheses using the distribution of 0 (i), i= 1, . . ., R.

 Note that implementation of the Cholesky factor bootstrap does not involve conditioning
 on the economic model; instead, we generate the bootstrap samples directly from the
 sample autocovariance matrix of the data. This is important in our environment, in which
 all models are best regarded as false.

 In closing this section, let us elaborate on our allowance for differential weighting by
 frequency. There are at least two reasons for entertaining this possibility. First, the use of
 a loss function that weights differentially by frequency may be helpful in dealing with
 measurement error, which may not contaminate all frequencies equally. In such situations,
 it may be prudent to downweight those frequencies that are likely to be more contaminated

 by measurement error. Second, the use of a loss function that weights differentially by
 frequency may be important in misspecified models. For example, as discussed by Hansen
 and Heckman (1996), model misspecification may contaminate some frequencies more
 than others. Examples of this include potential contamination at seasonal frequencies, as
 in the work of Hansen and Sargent (1993) and Sims (1993). Watson (1993) also advocates
 the use of differential weighting in parameter estimation, for the same reason, although
 he does not pursue the matter, and notes that optimizing a loss function at particular
 frequencies corresponds to constructing an analogue estimator along the lines of Manski
 (1988).
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 440 REVIEW OF ECONOMIC STUDIES

 Multivariate

 The multivariate analogue of our earlier loss function is

 irr
 CGw(O) G(Fm (c; 0), F*(wo)) 0 W(w)dw,

 where 0 denotes component-by-component multiplication. The multivariate analogue of
 our earlier univariate quadratic loss function, for example, is CGW(O)=
 ZYtr(D'(j; O)D(w1; 0)), where D(wj; 0)=Fm(wj; 0)-F*(wj), w1=2nj/T, j=1, ..
 T/2 - 1.

 The estimation criterion function has the same form as in the univariate case,

 OGW= argmin CGw(O),
 0

 and the bootstrap approaches to computing standard errors, confidence intervals, and
 hypothesis testing parallel the univariate case precisely. Furthermore, as expected, the
 multivariate Gaussian ML estimator emerges as a special and potentially restrictive case;
 it is

 argmax (2Ej In & F (oj ; 0)1- tr Ej F'(coj ; O)P(coj))

 It is worth emphasizing how all parts of the spectrum contribute to loss in the multivariate
 case. Consider, for example, a bivariate model (variables x and y) under quadratic loss.
 Then

 D(wi; 0) ( co:fij 0) d,y(coj; 0)
 d., cj;0) dyy (coj;

 where

 d-x (coj; f0) =fx, (coj 0 f9-f!,* (co),)

 dyy (coj; f0) = fyy,m (coj 0 f9-f yy (coj ),

 dxy (coj; f0) =fxy,m (coj; 0) -f x*y (coj ),

 dyx (coj; f) =fyx,m (coj ; 9) -fy*x (coj ) =fxy,m (coj ; 9) -f x*y (coj) dxy (coj; 0).

 Thus,

 tr (D'(w1; 0)D(w1; 0))=[d 2 (coj; 0)+dxy(coj; 0)dyx (j; 0)]

 +[dyy(w1; 0C)+dXy(wj; 0)dyx(w; 0)]

 = d 2x (coj; 09) + 21 dxy (coj 0)1 2 + dS2> (Cj; 0)

 [fxx,m (Cj; 0) -f (Cj)]2

 + 2[re (fxy,m (oj; 0)) - re (y (C.j))]2

 + 2[im (fxy,m(w1; 0)) - im (fty (C, ))]2

 + [fyy,m(wj; 0) _-f*, (w)]2.

 This expression shows clearly how the goodness of fit of both univariate spectra, as well
 as both the real and imaginary parts of the cross spectrum, contribute to loss.
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 DIEBOLD ET AL. COMPARING MODELS AND DATA 441

 4. APPLICATION: THE U.S. CATTLE CYCLE

 In this section, we provide a detailed illustration of the use of our assessment and estimation

 techniques by applying them to an important model of the dynamics of beef cattle con-

 sumption and stock developed by Rosen, Murphy and Scheinkman (RMS, 1994). The so-

 called "cattle cycle," documented for example in Mundlak and Huang (1996), is a well-

 known phenomenon in agricultural economics. This simple yet rich model allows us to
 illustrate clearly the application of all the tools in our framework, and moreover, our

 findings provide new insight into the RMS model and its agreement with the data.

 The data

 We use annual data on U.S. cattle consumption and stock, 1900-1989, kindly supplied
 by Sherwin Rosen and originally obtained from Historical Statistics: Colonial Times to
 1970 and Agricultural Statistics, published by the U.S. Department of Agriculture. We
 plot the series in Figures 1 and 2; the cycle is visually apparent. Moreover, the series are
 clearly trending. Following RMS, we remove a linear trend from each series prior to
 additional analysis, allowing for a break in the slope of the trend in 1930; we also show
 the fitted trends in Figures 1 and 2.

 50

 40 -

 30

 30

 v 20

 10
 00 10 20 30 40 50 60 70 80 90

 Year

 FIGURE 1

 U.S. cattle consumption, 1900-1990, actual and estimated trend. (We show cattle consumption (solid line) and
 the estimated kinked-linear trend (dashed line))

 We obtain the estimated data spectrum, presented in Figure 3, by smoothing the
 sample autocovariance function using a Bartlett window with truncation lag 24. We make
 use, here and throughout, of a matrix graphic with univariate spectra plotted on the main
 diagonal, coherence in the upper-right corner, and phase in the lower-left corner. In
 addition, following standard practice, we graph log spectra rather than spectra throughout
 and refer to the log spectra simply as "spectra." Not all frequencies are of equal interest,
 however. The frequencies most relevant to an investigation of the cattle cycle, typically
 thought to have a period of roughly ten years, are not those in the entire [0, r] range,
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 FIGURE 2

 U. S. cattle stock, 1900-1990, actual and estimated trend. (We show cattle stock (solid line) and the estimated
 kinked-linear trend (dashed line))

 but rather those in a subset that excludes very low and very high frequencies. This presents
 no problem for our procedures and in fact provides a good opportunity to illustrate the
 ease with which they can be tailored to study specific applications. Thus, for much of our
 analysis, we concentrate on the frequency band corresponding to periods of 30 years to
 4 years, indicated by the shaded region in Figure 3 and subsequent figures.

 Four features of the point estimates of the data spectrum stand out. First, the con-
 sumption spectrum (and to a lesser extent, the stock spectrum) displays a power concentra-
 tion at roughly a ten-year cycle. Second, both the consumption and stock spectra otherwise
 have Granger's (1966) typical spectral shape, with high power at low frequencies, and
 declining power throughout the frequency range. Third, the coherence between consump-
 tion and stock is generally high and varies across frequencies, with a maximum (about
 0 85) at roughly a ten-year cycle. Finally, the phase shift, measured in years by which
 consumption leads stock, varies with frequency; within the band of interest, the maximum
 phase shift of roughly one year again occurs at a ten year cycle.

 In Figure 4 we present the data spectrum along with 90% confidence tunnels computed
 using the conservative Bonferroni technique in conjunction with the Cholesky-factor boot-
 strap. All of the point estimates display substantial uncertainty, as manifest in the wide
 90% confidence tunnels. Such uncertainty associated with estimated spectra is typical of
 economic time series, although it often goes unacknowledged.

 The model

 We begin with some accounting identities. The head count of all animals (y,) is the sum
 of the adult breeding stock (x,), the stock of calves (assumed equal to gx,t1), and the
 stock of yearlings (assumed equal to gx,-2), where g is a fertility parameter. That is,

 y,t= x, +gx,t1 +gx,t2 .
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 where 0/ is the one unstable root and {02, 03} are the two stable roots of
 3_ (I _,5)02_g=o,

 and Al is the one stable root of

 gp3A32+(1 -_6)p- 1 =0.

 The associated univariate spectra are

 D= 2 I1(I 1 4iei(0 )12
 fC co)) = (1 (I-Al e" )(I- pei0 )12

 AfCt co2 (I -, e" )(l- 0>2 e'c ) ( 1-03 e'c@ )(I 1-pe'a A2

 and the cross spectrum is

 f (0)= -(l1 +e'o')(I - 02e'o'(1- 0+3ei@c (
 (1+ ge +ge)

 These equations provide a full description of the model in the frequency domain. a., is a
 complicated function of the structural parameters, including some from the demand side
 of the model. All of the parameters of present interest, however, may be identified from
 the other reduced-form parameters, with the exception of yo and Y1. We therefore treat
 co as a free parameter and estimate it subject to no restrictions.

 RMS do not estimate the cattle cycle model. Rather, they choose values for the
 behavioural parameters and report that the calibrated model fits the data well. In the
 following sections, we explicitly estimate the model and assess its performance.

 Estimating the model

 Estimation requires specification of an explicit loss function. We use a loss function that

 incorporates the focus in the cattle cycle literature on cycles of roughly 10 years. We
 exclude frequencies corresponding to periods of more than 30 years or less than 4 years,
 which from the standpoint of our earlier discussion of frequency downweighting corre-
 sponds to giving equal weight to frequencies in the band of interest, and giving zero weight
 to frequencies outside the band. Minimization of such a loss function, which measures
 divergence between model and data spectra only within a particular frequency band, leads
 us to an estimator that we call band-restricted maximum likelihood (Band-ML).8

 We perform the minimization using the simplex algorithm, which is a derivative-free
 method, as implemented in the Matlab fmins.m procedure. Using penalty functions, we
 constrain the discount factor to be between 0 65 and 1 00, the fertility rate to be between
 0.00 and 1 00, the death rate to be between 0 00 and 1.00, the persistence parameter to
 be between 0 00 and 1 '00, and the scale parameter to be between 0 10 and 7 00. We start
 the iterations with the RMS parameter values for the discount rate, fertility rate, death
 rate, and persistence parameter; RMS did not report a value for the scale parameter,
 which we start at 1 7. In our experience, estimation is numerically straightforward and
 stable; the estimated parameter vector is always in the interior of the constraint set,

 8. Gaussian Band-ML is the maximum-likelihood analogue of Engle's (1974) band-spectral linear regres-
 sion. Band-ML may of course be undertaken for models more complicated than simple linear regression, such
 as the present one.
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 TABLE 1

 Parameter estimates
 Band-restricted maximum likelihood estimation

 Parameter 1 g c p

 Estimation or
 Calibration Method

 Band-ML 0 86 0 67 0 08 0 21 2 10
 (003) (0 09) (0 03) (0 10) (0 37)

 RMS 0-909 0 85 0 10 0 60 (NA)

 (NA) (NA) (NA) (NA) (NA)

 Notes: f, is the discount factor, g is the fertility rate, 8 is the death rate, and p is the persistence
 parameter. Band-ML denotes band-restricted maximum likelihood estimation, with the fre-
 quency band used for estimation corresponding to periods from 30 to 4 years. Standard errors,
 based on 200 bootstrap replications, appear in parentheses. RMS denotes the Rosen-Murphy-
 Scheinkman calibrated parameters. (They have no standard errors, because they were not
 estimated.)

 convergence is fast, and alternative starting values produce virtually identical estimates.9
 We display the Band-ML estimates in Table 1; for comparison, we also display the

 RMS parameter values. Several of the Band-ML parameter estimates are similar to those

 chosen by RMS. In particular, the estimate of the death rate parameter (0 08) is nearly
 identical to the RMS value (0 10), the estimate of the producer's discount factor (0 86)
 is close to the RMS value (0-91), and the estimated fertility parameter (0 67) is lower

 than but nevertheless close to the RMS value (0 85). As stressed in Diebold (1998),
 however, even small differences in parameters can make important differences for activities
 such as forecasting.

 The Band-ML estimate of the persistence parameter, however, differs substantially
 from the RMS value. RMS choose a fairly persistent value of 0 6; in contrast, we find
 that optimizing the Band-ML loss function requires very little persistence in the driving
 process (0 2). This implies that the RMS model has a strong internal propagation mecha-
 nism: the model takes shocks with relatively little serial correlation and transforms them
 into series that display substantial persistence in equilibrium. This dimension of the RMS
 model differs fundamentally from standard dynamic equilibrium models used in macro-
 economics, international economics, and public finance. As Watson (1993) and others
 have noted, models used in those fields typically have weak internal propagation mecha-
 nisms-they require highly persistent underlying shocks to generate a realistic amount of
 serial correlation in the variables determined in equilibrium.

 In addition to finding the parameter estimates that maximize agreement between
 model and data, we can assess their sampling uncertainty within our framework. Standard
 errors are of some use in that regard, in spite of the fact that the sampling distributions
 need not be Gaussian. We compute them using 200 replications of the Cholesky factor
 bootstrap procedure, and we report them in parentheses below the estimated parameters
 in Table 1. More generally, our bootstrap procedures allow us to estimate the entire
 sampling distributions of the estimated parameters; we report on them in Figure 5. The

 9. One wrinkle does arise: simple economic models such as this one, in which one shock drives the
 evolution of a higher-dimensional system, have a singular spectral density Fm. This presents a problem for
 implementation of the Gaussian ML and Band-ML estimators, which involve F_'. We have found that the
 problem can be satisfactorily skirted in practice, because the model spectrum is typically obtained by simulating
 a long realization from the model, whose spectrum is then consistently estimated. This has the effect of introducing
 just enough "measurement error" to avoid a singular spectrum.
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 estimated sampling distributions of the discount factor, the depreciation rate, and the
 persistence parameter are fairly concentrated, while the estimated sampling distribution
 of the fertility rate is more dispersed.

 Our framework also enables us to examine the joint distribution of the estimated
 parameters. In Table 2 we present bootstrap estimates of the correlations between the
 estimated parameters. Perhaps the most interesting relationship is the strong negative
 correlation between the discount factor and the fertility rate, which occurs because the
 discount factor and the fertility rate enter multiplicatively in one of the cubic equations
 that define the ARMA polynomials. This implies that the loss function trades off high
 fertility rates for low discount factors, and suggests that fixing either one of the parameters
 at the higher RMS value would tend to result in an even lower estimate for the other.

 Assessing the model

 To assess divergence between model and data, we plot the model spectrum evaluated at
 the Band-ML parameter estimates in Figure 6, together with the earlier-discussed point
 estimates and 90% confidence tunnels for the data spectrum, produced with 200 replications
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 TABLE 2

 Estimated parameter correlations
 Band-restricted maximum likelihood estimation

 /3 ~~1.00
 g - 073 1.00
 S 0-49 - 037 1.00
 p -0-19 0.10 0-06 1.00

 Notes: /3 is the discount factor, g is the fertility rate, S is the
 death rate, and p is the persistence parameter. Estimated
 parameter correlations are based on 200 bootstrap replications.
 The frequency band used for estimation corresponds to periods
 from 30 tzo 4 years.

 BAND-ML, RMS_

 0 ..

 06-

 04

 BAND L, RS ~

 0 ~ ~ ~ ~ 0

 Frequency Frequcncy

 ..........~IGU E
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 nor the stock model spectrum has a peak corresponding to a ten-year cycle, which suggests

 that the model does not easily produce cyclical behaviour at the Band-ML parameter

 values. Moreover, the rate of decay of the model consumption spectrum appears slower
 than that of the data spectrum; thus, although the model and data consumption spectra

 are insignificantly different over most of the relevant frequency range, they begin to deviate
 significantly for cycles with periods of 4 years or less. Second, and conversely, the rate of
 decay of the model stock spectrum appears significantly faster than that of the data
 spectrum. The two diverge not only at high frequencies, but also over much of the relevant
 frequency range. In particular, the model stock spectrum lies slightly outside the lower

 region of the 90% confidence tunnel for cycles of about 20 years and less.

 Now let us examine phase and coherence. As with the model spectra, the model phase

 shift declines monotonically, which contrasts somewhat with the point estimate of the
 data phase shift, which has a local peak at roughly the ten-year cycle. In addition, the
 model generates significantly more phase shift than one sees in the data, particularly at
 the low and middle frequencies of interest. Finally, the model coherence reminds us of an
 inherent limitation of the model: because it is driven by a single shock, the model is
 singular, which forces unit coherence at all frequencies. Thus the model and data coherence
 diverge sharply; in spite of the fact that the confidence tunnel is very wide, the unit model
 coherence is always outside the data coherence confidence tunnel.

 We also show in Figure 6 the model spectrum evaluated at the RMS parameter values.
 The major difference between the two parameterizations of the model, within the frequency
 band of interest, is revealed in the spectral density of consumption. The RMS parameters
 generate substantially more variation at low and middle frequencies than do the Band-
 ML parameters. The differences in the phase shift and the spectral density of stock across
 the two parameterizations of the model are modest.

 All told, comparison of the Band-ML and RMS parameters, and model spectra
 evaluated at those parameters, reveals some similarities and some differences, with the
 similarities outnumbering the differences. The real insight afforded by our analysis is that
 the similar model behaviour across different parameterizations is due to several model
 deficiencies, and that the deficiencies cannot be remedied simply by exploring different
 estimators; rather, they need to be remedied at the source by improving the model. We
 hope that our results stimulate such work; an appropriately improved model might include
 richer dynamics for driving processes, incorporation of a demand side and prices, and
 explicit determination of trend.

 5. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

 We have described a framework for evaluating dynamic economic models that should be
 useful to applied economists in many fields. The framework is flexible-it can be used by
 researchers to evaluate purely calibrated models, and it can also be used by researchers
 interested in estimating parameters and conducting inference. Its frequency-domain found-
 ations provide useful diagnostics that nicely complement alternative time-domain
 approaches. In particular, it is graphical and constructive, and it takes seriously several
 important issues in the quantitative analysis of simple, dynamic equilibrium models: model
 misspecification, the user's objectives, and small sample sizes.

 Our analysis of the RMS model of cattle cycles illustrated the use of our tools for
 formally estimating models and performing statistical inference, as well as for assessing
 agreement between models and data at various parameter values, whether pre-set or esti-

 mated. In addition, it shed new light on the characteristics of the RMS model, and in
 particular, its strong internal propagation mechanism. Our analysis also revealed that the
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 450 REVIEW OF ECONOMIC STUDIES

 model is deficient in several key respects, not the least of which is its inability to generate
 internal spectral peaks.

 The ultimate goal of the research programme of which this paper is a part is to

 facilitate communication between researchers with potentially very different research objec-

 tives and strategies, thereby bringing modern dynamic economic theory into closer and

 more frequent contact with dynamic economic data. As economists use richer and more
 complicated models to understand a wider variety of data, we hope that our framework

 will find use in discerning the dimensions along which models are consistent-and incon-

 sistent-with data. That information can in turn be used to help construct new and
 improved models.
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