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a b s t r a c t

We provide a newmeasure of historical U.S. GDP growth, obtained by applying optimal signal-extraction
techniques to the noisy expenditure-side and income-side GDP estimates. The quarter-by-quarter values
of our newmeasure often differ noticeably from those of the traditional measures. Its dynamic properties
differ as well, indicating that the persistence of aggregate output dynamics is stronger than previously
thought.
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1. Introduction

Aggregate real output is surely the most fundamental and im-
portant concept in macroeconomic theory. Surprisingly, however,
significant uncertainty still surrounds its historical measurement.
In the U.S., in particular, two often-divergent GDP estimates ex-
ist, a widely-used expenditure-side version, GDPE , and a much
less widely-used income-side version, GDPI .1 Nalewaik (2010)
and Fixler and Nalewaik (2009) make clear that, at the very least,
GDPI deserves serious attention and may even have properties in
certain respects superior to those of GDPE .2 That is, if forced to
choose between GDPE and GDPI , a surprisingly strong case exists

∗ Corresponding author.
E-mail addresses: aruoba@econ.umd.edu (S.B. Aruoba),

fdiebold@sas.upenn.edu (F.X. Diebold), jeremy.j.nalewaik@frb.gov (J. Nalewaik),
schorf@ssc.upenn.edu (F. Schorfheide), dongho.song@bc.edu (D. Song).
1 Indeed we will focus on the U.S. because it is a key egregious example of

unreconciled GDPE and GDPI estimates.
2 For additional informative background on GDPE , GDPI , the statistical discrep-

ancy, and the national accounts more generally, see BEA (2006), McCulla and Smith
(2007), Landefeld et al. (2008), and Rassier (2012).
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for GDPI . But of course one is not forced to choose between GDPE
and GDPI , and a GDP estimate based on both GDPE and GDPI may
be superior to either one alone. In this paper we propose and im-
plement a framework for obtaining such a blended estimate.

Our work is related to, and complements, (Aruoba et al., 2012).
There we took a forecast-error perspective, whereas here we
take a measurement-error perspective.3 In particular, we work
with a dynamic factor model in the tradition of Geweke (1977)
and Sargent and Sims (1977), as used and extended byWatson and
Engle (1983), Edwards and Howrey (1991), Harding and Scutella
(1996), Jacobs and van Norden (2011), Kishor and Koenig (2012),
and Fleischman and Roberts (2011), among others.4 That is, we
view ‘‘true GDP ’’ as a latent variable on which we have several

3 Hence the pair of papers roughly parallels the well-known literature on
‘‘forecast error’’ and ‘‘measurement error’’ properties of data revisions; see for
example Mankiw et al. (1984), Mankiw and Shapiro (1986), Faust et al. (2005),
and Aruoba (2008).
4 See also Smith et al. (1998), who take a different but related approach, and

the independent work of Greenaway-McGrevy (2011), who takes a closely-related
approach but unfortunately estimates a model that we show to be unidentified in
Section 2.3.
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indicators, the twomost obvious beingGDPE andGDPI , andwe then
extract true GDP using optimal filtering techniques.

The measurement-error approach is time honored, intrinsi-
cally compelling, and very different from the forecast-combination
perspective of Aruoba et al. (2012), for several reasons.5 First, it
enables extraction of latent true GDP using a model with parame-
ters estimatedwith exact likelihood or Bayesian methods, whereas
the forecast-combination approach forces one to use calibrated pa-
rameters. Second, it delivers not only point extractions of latent
true GDP but also interval extractions, enabling us to assess the as-
sociated uncertainty. Third, the state-space framework in which
the measurement-error models are embedded facilitates explo-
ration of the relationship between GDP measurement errors and
the economic environment, such as stage of the business cycle,
which is of special interest.

We proceed as follows. In Section 2 we consider several
measurement-error models and assess their identification status,
which turns out to be challenging and interesting in the most real-
istic and hence compelling case. In Section 3 we discuss the data,
estimation framework and estimation results. In Section 4 we ex-
plore the properties of our new GDP series. Finally, we conclude
with both a summary and a caveat in Section 5, where the caveat
refers to the potential limitations ofGDPI (relative toGDPE) for real-
time analysis.

2. Five measurement-error models of GDP

We use dynamic-factor measurement-error models, which
embed the idea that both GDPE and GDPI are noisy measures
of latent true GDP . We work throughout with growth rates of
GDPE , GDPI and GDP (hence, for example, GDPE denotes a growth
rate).6 We assume throughout that true GDP growth evolves with
simple AR(1) dynamics, and we entertain several measurement
structures, to which we now turn.

2.1. (Identified) 2-equation model: Σ diagonal

We begin with the simplest 2-equation model; the measure-
ment errors are orthogonal to each other and to transition shocks
at all leads and lags.7 Themodel has a natural state-space structure,
and we write
GDPEt
GDPIt


=


1
1


GDPt +


ϵEt
ϵIt


(1)

GDPt = µ(1 − ρ) + ρGDPt−1 + ϵGt ,

where GDPEt and GDPIt are expenditure- and income-side es-
timates, respectively, GDPt is latent true GDP , and all shocks
are Gaussian and uncorrelated at all leads and lags. That is,
(ϵGt , ϵEt , ϵIt)

′
∼ iid N(0, Σ), where

Σ =

σ 2
GG 0 0
0 σ 2

EE 0
0 0 σ 2

II

 . (2)

The Kalman smootherwill deliver optimal extractions ofGDPt con-
ditional upon observed expenditure- and income-side measure-
ments.Wewill refer tomeasures ofGDP obtained thisway asGDPM
throughout the paper.Moreover, themodel can be easily extended,
and some of its restrictive assumptions relaxed, with no funda-
mental change. We now proceed to do so.

5 On the time-honored aspect, see, for example, Gartaganis and Goldberger
(1955).
6 We will elaborate on the reasons for this choice later in Section 3.
7 Here and throughout, when we say ‘‘N-equation’’ state-space model, we mean

that the measurement equation is an N-variable system.
2.2. (Identified) 2-equation model: Σ block-diagonal

The first extension is to allow for correlated measurement
errors. This is surely important, as there is roughly a 25% overlap in
the counts embedded in GDPE and GDPI , and moreover, the same
deflator is used for conversion from nominal to real magnitudes.8
We write
GDPEt
GDPIt


=


1
1


GDPt +


ϵEt
ϵIt


(3)

GDPt = µ(1 − ρ) + ρGDPt−1 + ϵGt ,

where now ϵEt and ϵIt may be correlated contemporaneously but
are uncorrelated at all other leads and lags, and all other definitions
and assumptions are as before; in particular, ϵGt and (ϵEt , ϵIt)

′

are uncorrelated at all leads and lags. That is, (ϵGt , ϵEt , ϵIt)
′

∼

iid N(0, Σ), where

Σ =

σ 2
GG 0 0
0 σ 2

EE σ 2
EI

0 σ 2
IE σ 2

II

 . (4)

Nothing is changed, and the Kalman filter retains its optimality
properties.

2.3. (Unidentified) 2-equation model, Σ unrestricted

The second key extension is motivated by Fixler and Nalewaik
(2009) and Nalewaik (2010), who document cyclicality in the sta-
tistical discrepancy (GDPE − GDPI ), which implies failure of the
assumption that (ϵEt , ϵIt)

′ and ϵGt are uncorrelated at all leads
and lags. Of particular concern is contemporaneous correlation be-
tween ϵGt and (ϵEt , ϵIt)

′. Hence we allow the measurement errors
(ϵEt , ϵIt)

′ to be correlated with GDPt , or more precisely, correlated
with GDPt innovations, ϵGt . We write
GDPEt
GDPIt


=


1
1


GDPt +


ϵEt
ϵIt


(5)

GDPt = µ(1 − ρ) + ρGDPt−1 + ϵGt ,

where (ϵGt , ϵEt , ϵIt)
′
∼ iid N(0, Σ), with

Σ =

σ 2
GG σ 2

GE σ 2
GI

σ 2
EG σ 2

EE σ 2
EI

σ 2
IG σ 2

IE σ 2
II

 . (6)

In this environment the standard Kalman filter is rendered sub-
optimal for extracting GDP , due to correlation between ϵGt and
(ϵEt , ϵIt), but appropriately-modified optimal filters are available.

Of course in what follows we will be concerned with esti-
mating our measurement-equation models, so we will be con-
cerned with identification. The diagonal-Σ model (1)–(2) and the
block-diagonal-Σ model (3)–(4) are identified. Identification of
less-restricted dynamic factor models, however, is a very delicate
matter. In particular, it is not obvious that the unrestricted-Σ
model (5)–(6) is identified. Indeed it is not, as we prove in Ap-
pendix A. Hence we now proceed to determine minimal restric-
tions that achieve identification.

2.4. (Identified) 2-equation model: Σ restricted

The identification problem with the general model (5)–(6)
stems from the fact that we can make true GDP more volatile (in-

8 See Aruoba et al. (2012) for more. Many of the areas of overlap are particularly
poorly measured, such as imputed financial services, housing services, and
government output.
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crease σ 2
GG) and make the measurement errors more volatile (in-

crease σ 2
EE and σ 2

II ), but reduce the covariance between the funda-
mental shocks and the measurement errors (reduce σ 2

EG and σ 2
IG),

without changing the distribution of observables.

2.4.1. Restricting the original parameterization
We can achieve identification by slightly restricting parameter-

ization (5)–(6). In particular, as we show in Appendix A, the unre-
stricted system (5)–(6) is unidentified because the Σ matrix has
six free parameters with only five moment conditions to deter-
mine them. Hence we can achieve identification by restricting any
single element of Σ . Imposing any such restriction would seem
challenging, however, as we have no strong prior views directly
on any single element of Σ . Fortunately, however, a simple re-
parameterization exists about which we have a more natural prior
view, to which we now turn.

2.4.2. A useful re-parameterization
Let

ζ =

1
1−ρ2 σ

2
GG

1
1−ρ2 σ

2
GG + 2σ 2

GE + σ 2
EE

, (7)

the variance of latent true GDP relative to the variance of
expenditure-side measured GDPE . Then, rather than fixing an
element of Σ to achieve identification, we can fix ζ , about which
we have a more natural prior view. In particular, at first pass we
might take σ 2

GE ≈ 0, in which case 0 < ζ < 1. Or, put differently,
ζ > 1would require a very negative σ 2

GE , which seems unlikely. All
told, we view a ζ value less than, but close to, 1.0 as most natural.
We take ζ = 0.80 as our benchmark in the empirical work that
follows, although we explore a wide range of ζ values both below
and above 1.0.

2.5. (Identified) 3-equation model: Σ unrestricted

Thus far we showed how to achieve identification by fixing
a parameter, ζ , and we noted that our prior is centered around
ζ = 0.80. It is also of interest to know whether we can get some
complementary data-based guidance on choice of ζ . The answer
turns out to be yes, by adding a third measurement equation with
a certain structure.

Suppose, in particular, that we have an additional observable
variable Ut that loads on true GDPt with measurement error
orthogonal to those of GDPI and GDPE . In particular, consider the
3-equation modelGDPEt
GDPIt
Ut


=

0
0
κ


+

1
1
λ


GDPt +


ϵEt
ϵIt
ϵUt


(8)

GDPt = µ(1 − ρ) + ρGDPt−1 + ϵGt ,

where (ϵGt , ϵEt , ϵIt , ϵUt)
′
∼ iid N(0, Ω), with

Ω =


σ 2
GG σ 2

GE σ 2
GI σ 2

GU

σ 2
EG σ 2

EE σ 2
EI 0

σ 2
IG σ 2

IE σ 2
II 0

σ 2
UG 0 0 σ 2

UU

 . (9)

Note that the upper-left 3 × 3 block of Ω is just Σ , which
is now unrestricted. Nevertheless, as we prove in Appendix B,
the 3-equation model (8)–(9) is identified. Of course some of
the remaining elements of the overall 4 × 4 covariance matrix
Ω are restricted, which is how we achieve identification in the
3-equation model, but the economically interesting sub-matrix,
which the 3-equation model leaves completely unrestricted,
is Σ .

Depending on the application, of course, it is not obvious that
an identifying variable Ut with measurement errors orthogonal
to those of GDPE and GDPI (i.e., with stochastic properties that
satisfy (9)), is available. Hence it is not obvious that estimation of
the 3-equation model (8)–(9) is feasible in practice, despite the
model’s appeal in principle. Indeed, much of the data collected
from business surveys is used in the BEA’s estimates, invalidating
use of that data as Ut since any measurement error in that data
appears directly in either GDPE or GDPI , producing correlation
across the measurement errors. Moreover, variables drawn from
business surveys similar to those used to produce GDPE and GDPI ,
even if they are not used directly in the estimation of GDPE and
GDPI , might still be invalid identifying variables if the survey
methodology itself produces similar measurement errors.9

Fortunately, however, some important macroeconomic data is
collected not from surveys of businesses, but from samples of
households. A sample of data drawn from a universe of households
seems likely to have measurement errors that are different than
those contaminating a data sample drawn from a universe of
businesses, especially when the ‘‘universes’’ of businesses and
households are not complete census counts, as is the case here.
For example, the universe of business surveys is derived from tax
records, so businesses not paying taxes will not appear on that
list, but individuals working at that business may appear in the
universe of households.

Importantly, very little data collected from household surveys
are used to construct GDPE and GDPI , so a Ut variable computed
from a household survey seems most likely to meet our
identification conditions. The change in the unemployment rate is
a natural choice (hence our notational choiceUt ).Ut arguably loads
on trueGDP with ameasurement error orthogonal to those ofGDPE
and GDPI , because the Ut data is being produced independently
(by the BLS rather than BEA) from different types of surveys. In
addition, virtually all of the GDPE and GDPI data are estimated in
nominal dollars and then converted to real dollars using a price
deflator, whereas Ut is estimated directly with no deflation.

All told, we view ‘‘3-equation identification’’ as a useful com-
plement to the ‘‘ζ -identification’’ discussed earlier in Section 2.4.
All identifications involve assumptions. ζ -identification involves
introspection about likely values of ζ , given its structure and
components, and that introspection is of course subject to er-
ror. 3-equation identification involves introspection about various
measurement-error correlations involving the newly-introduced
third variable, which is of course also subject to error. Indeed the
two approaches to identification are usefully used in tandem, and
compared.

One can even view the 3-equation approach as a device for
implicitly selecting ζ . In particular, we can find the ζ implied by
the 3-equation model estimate, that is, find the ζ that minimizes
the divergence between Σ̂ζ and Σ̂3, in an obvious notation.10 For
example, using the Frobeniusmatrix-norm tomeasure divergence,
we obtain an optimum of ζ ∗

= 0.82. The minimum is sharp
and unique. The implied ζ ∗ of 0.82 is of course quite close to the
directly-assessed value of 0.80 at which we arrived earlier, which
lends additional credibility to the earlier assessment. See (online)
Appendix C.2.1 for details.

9 For example, if the business surveys used to produce GDPE and GDPI tend
to oversample large firms, variables drawn from a business survey that also
oversamples large firms may have measurement errors that are correlated with
those in GDPE and GDPI , absent appropriate corrections.
10 We will discuss subsequently the estimation procedure used to obtain Σ̂ζ and
Σ̂3 .
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Fig. 1. GDP and unemployment data. GDPE and GDPI are in growth rates and Ut is in changes. All are measured in annualized percent.
3. Data and estimation

We intentionallyworkwith a stationary system in growth rates,
because we believe that measurement errors are best modeled as
iid in growth rates rather than in levels, due to BEA’s devoting
maximal attention to estimating the ‘‘best change’’. 11 In its above-
cited ‘‘Concepts and Methods . . .’’ document, for example, the BEA
emphasizes that:

Best change provides the most accurate measure of the period-
to-period movement in an economic statistic using the best
available source data. In an annual revision of the NIPAs,
data from the annual surveys of manufacturing and trade
are generally incorporated into the estimates on a best-
change basis. In the current quarterly estimates, most of the
components are estimated on a best-change basis from the
annual levels established at the most recent annual revision.

The monthly source data used to estimate GDPE (such as retail
sales) and GDPI (such as nonfarm payroll employment) are
generally produced on a best-change basis aswell, using a so-called
‘‘link-relative estimator’’. This estimator computes growth rates
using firms in the sample in both the current and previousmonths,
in contrast to a best-level estimator, which would generally use all
the firms in the sample in the currentmonth regardless of whether
or not theywere in the sample in the previousmonth. For example,
for retail sales the BEA notes that12:

11 For example, see ‘‘Concepts and Methods in the U.S. National Income and
Product Accounts’’, available at http://www.bea.gov/national/pdf/methodology/
chapters1-4.pdf.
12 See http://www.census.gov/retail/marts/how_surveys_are_collected.html.
Advance sales estimates for the most detailed industries are
computed using a type of ratio estimator known as the link-
relative estimator. For each detailed industry, we compute a
ratio of current-to-previous month weighted sales using data
from units for which we have obtained usable responses for
both the current and previous month.

Indeed the BEA produces estimates on a best-level basis only at
5-year benchmarks. These best-level benchmark revisions should
drive only the very-low frequency variation in GDPE , and thus
probablymatter very little for the quarterly growth rates estimated
on a best-change basis.

3.1. Descriptive statistics

We show time-series plots of the ‘‘raw’’ GDPE and GDPI data
in Fig. 1, and we show summary statistics for the raw series in
the top panel of Table 1. Not captured in the table but also true
is that the raw data are highly correlated; the simple correla-
tions are corr(GDPE,GDPI) = 0.85, corr(GDPE,U) = −0.67, and
corr(GDPI ,U) = −0.73. Median GDPI growth is a bit higher than
that of GDPE , and GDPI growth is noticeably more persistent than
that of GDPE . Related, GDPI also has smaller AR(1) innovation vari-
ance and greater predictability as measured by the predictive R2.
Fig. 1 also depicts the sample paths of changes in the unemploy-
ment rate, whichwe use to estimate the 3-equationmodel, and the
discrepancy between the growth ratesGDPE andGDPI . According to
our state-space models, the discrepancy equals the measurement
error difference ϵEt −ϵIt . Themean of the discrepancy series is zero,
and its variance is approximately 30% of the variance of GDPE . The
first-order autoregressive coefficient is slightly negative, but the R2

associated with an AR(1) regression is only about 4%.

http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.bea.gov/national/pdf/methodology/chapters1-4.pdf
http://www.census.gov/retail/marts/how_surveys_are_collected.html
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Table 1
Descriptive statistics for various GDP series.

x̄ 50% σ̂ Sk ρ̂1 ρ̂2 ρ̂3 ρ̂4 Q12 σ̂e R2 V̂e

GDPE 3.03 3.04 3.49 −0.31 .33 .27 .08 .09 47.07 3.28 .06 12.12
GDPI 3.02 3.39 3.40 −0.55 .47 .27 .22 .08 81.60 2.99 .12 11.43

GDPM 2-eqn, Σ diag 3.02 3.22 3.00 −0.56 .56 .34 .21 .09 108.25 2.48 .18 8.92
GDPM 2-eqn, Σ block 3.02 3.35 2.64 −0.64 .70 .45 .28 .13 170.08 1.89 .29 6.90
GDPM 2-eqn, ζ = 0.65 3.02 3.32 2.61 −0.64 .67 .43 .27 .12 157.56 1.92 .26 6.73
GDPM 2-eqn, ζ = 0.75 3.02 3.30 2.77 −0.63 .65 .41 .26 .11 148.23 2.08 .25 7.60
GDPM 2-eqn, ζ = 0.80 3.02 3.29 2.87 −0.62 .64 .39 .25 .11 141.14 2.19 .24 8.16
GDPM 2-eqn, ζ = 0.85 3.02 3.31 2.89 −0.64 .66 .41 .28 .12 153.27 2.15 .25 8.29
GDPM 2-eqn, ζ = 0.95 3.02 3.26 3.02 −0.64 .66 .40 .28 .12 149.61 2.27 .25 9.07
GDPM 2-eqn, ζ = 1.05 3.01 3.22 3.12 −0.65 .67 .40 .28 .12 155.60 2.30 .26 9.69
GDPM 2-eqn, ζ = 1.15 3.04 3.34 3.07 −0.67 .76 .47 .31 .15 201.15 1.99 .35 9.46
GDPM 3-eqn 3.02 3.37 3.02 −1.14 .63 .37 .21 .03 141.79 2.33 .23 9.03

GDPF 3.02 3.29 3.30 −0.51 .46 .29 .19 .07 78.28 2.92 .12 10.80

Notes: The sample period is 1960Q1–2011Q4. In the top panel we show statistics for the raw data. In the middle panel we show statistics for various posterior-median
measurement-error-based (‘‘M ’’) estimates of true GDP , where all estimates are smoothed extractions. In the bottom panel we show statistics for the forecast-error-based
estimate of true GDP produced by Aruoba et al. (2012), GDPF . x̄, 50%, σ̂ and Sk are sample mean, median, standard deviation and skewness, respectively, and ρ̂τ is a sample
autocorrelation at a displacement of τ quarters. Q12 is the Ljung–Box serial correlation test statistic calculated using ρ̂1 , . . . , ρ̂12 . R2

= 1−
σ̂ 2
e

σ̂ 2 , where σ̂e denotes the estimated

disturbance standard deviation from a fitted AR(1) model, is a predictive R2 . V̂e is the unconditional variance implied by a fitted AR(1) model, V̂e =
σ̂ 2
e

1−ρ̂2 .
3.2. Estimation

Bayesian estimation involves parameter estimation and latent
state smoothing. First, we generate draws from the posterior dis-
tribution of themodel parameters using a Random-WalkMetropo-
lis–Hastings algorithm. Next, we apply the simulation smoother
of Durbin and Koopman (2001) to obtain draws of the latent
states conditional on the parameters. See (online) Appendix C for
details.

Here we present and discuss estimation results for our various
models. In Table 2 we show details of parameter prior and
posterior distributions, as well as statistics describing the overall
posterior and likelihood, for various 2-equation models, and in
Table 3 we provide the same information for the 3-equation
model.

The complete estimation information in the tables can be
difficult to absorb fully, however, so here we briefly present
aspects of the results in a more revealing way. For the 2-equation
models, the parameters to be estimated are those in the transition
equation and those in the covariance matrix Σ , which includes
variances and covariances of both transition and measurement
shocks. Hencewe simply display the estimated transition equation
and the estimated Σ matrices. For the 3-equation model, we also
need to estimate a factor loading in the measurement equation,
so we display the estimated measurement equation as well. Below
each posterior median parameter estimate, we show the posterior
interquartile range in brackets.

For the 2-equation model with Σ diagonal, we have

GDPt = 3.07
[2.81,3.33]

(1 − 0.53) + 0.53
[0.48,0.57]

GDPt−1 + ϵGt , (10)

Σ =


6.90

[6.39,7.44]
0 0

0 2.32
[2.12,2.55]

0

0 0 1.68
[1.52,1.85]

 . (11)

For the 2-equation model with Σ block-diagonal, we have

GDPt = 3.06
[2.77,3.34]

(1 − 0.62) + 0.62
[0.57,0.68]

GDPt−1 + ϵGt , (12)

Σ =


5.17

[4.39,5.95]
0 0

0 3.86
[3.34,4.48]

1.43
[0.96,1.95]

0 1.43
[0.96,1.95]

2.70
[2.25,3.22]

 . (13)
For the 2-equation model with benchmark ζ = 0.80, we have

GDPt = 3.08
[2.79,3.35]

(1 − 0.57) + 0.57
[0.51,0.62]

GDPt−1 + ϵGt , (14)

Σ =


7.09

[6.54,7.70]
−0.69

[−1.15,−0.29]
−0.38

[−0.74,−0.04]
−0.69

[−1.15,−0.29]
3.90

[3.14,4.77]
1.29

[0.80,1.85]

−0.38
[−0.74,−0.04]

1.29
[0.80,1.85]

2.36
[1.98,2.82]

 . (15)

Finally, for the 3-equation model, we haveGDPEt
GDPIt
Ut

 =

 0
0

1.62
[1.53,1.71]

 +

 1
1

−0.52
[−0.55,−0.50]

GDPt +

ϵEt
ϵIt
ϵUt

 (16)

GDPt = 2.78
[2.60,2.95]

(1 − 0.58) + 0.58
[0.54,0.63]

GDPt−1 + ϵGt , (17)
ϵGt
ϵEt
ϵIt
ϵUt



∼ N



0
0
0
0

 ,


6.96

[6.73,7.35]
−1.10

[−1.27,−0.84]
−0.82

[−1.03,−0.59]
1.46

[1.27,1.66]

−1.10
[−1.27,−0.84]

4.57
[4.17,4.79]

1.95
[1.70,2.12]

0

−0.82
[−1.03,−0.59]

1.95
[1.70,2.12]

3.07
[2.54,3.27]

0

1.46
[1.27,1.66]

0 0 0.59
[0.50,0.71]



 .

(18)

Many aspects of the results are noteworthy; here we simply
mention a few. First, every posterior interval in every model
reported above excludes zero. Hence the diagonal and block
diagonal models do not appear satisfactory.

Second, the Σ estimates are qualitatively similar across
specifications. Covariances are always negative, as per our con-
jecture based on the counter-cyclicality in the statistical discrep-
ancy (GDPE − GDPI ) documented by Fixler and Nalewaik (2009)
and Nalewaik (2010). Shock variances always satisfy σ̂ 2

GG > σ̂ 2
EE >

σ̂ 2
II .
Finally, GDPM is highly serially correlated across all specifica-

tions (ρ ≈ .6), much more so than the current ‘‘consensus’’ based
on GDPE (ρ ≈ .3).We shall havemore to say about these and other
results in Section 4.
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Table 2
Priors and posteriors, 2-equation models, 1960Q1–2011Q4.

Prior Posterior Posterior
(Mean, Std.Dev) 25% 50% 75% 25% 50% 75%

Diagonal Block diagonal
µ N(3, 10) 2.81 3.07 3.33 2.77 3.06 3.34
ρ N(0.3, 1) 0.48 0.53 0.57 0.57 0.62 0.68
σ 2
GG IG(10, 15) 6.39 6.90 7.44 4.39 5.17 5.95

σ 2
GE N(0, 10) – – – – – –

σ 2
GI N(0, 10) – – – – – –

σ 2
EE IG(10, 15) 2.12 2.32 2.55 3.34 3.86 4.48

σ 2
EI N(0, 10) – – – 0.96 1.43 1.95

σ 2
II IG(10, 15) 1.52 1.68 1.85 2.25 2.70 3.22

Posterior – −984.57 −983.46 −982.60 −986.23 −985.00 −984.01
Likelihood – −951.68 −950.41 −949.43 −950.70 −949.49 −948.60

ζ = 0.75 ζ = 0.80
µ N(3, 10) 2.75 3.03 3.31 2.79 3.08 3.35
ρ N(0.3, 1) 0.53 0.59 0.64 0.51 0.57 0.62
σ 2
GG IG(10, 15) 5.78 6.31 6.92 6.54 7.09 7.70

σ 2
GE N(0, 10) −0.76 −0.29 0.15 −1.15 −0.69 −0.29

σ 2
GI N(0, 10) −0.34 0.01 0.34 −0.74 −0.38 −0.04

σ 2
EE IG(10, 15) 3.08 3.88 4.75 3.14 3.90 4.77

σ 2
EI N(0, 10) 0.73 1.23 1.78 0.80 1.29 1.85

σ 2
II IG(10, 15) 1.94 2.30 2.76 1.98 2.36 2.82

Posterior – −982.50 −980.99 −979.87 −982.48 −981.05 −979.91
Likelihood – −950.93 −949.55 −948.40 −950.85 −949.44 −948.41

ζ = 0.85 ζ = 0.95
µ N(3, 10) 2.72 2.96 3.14 2.84 3.03 3.25
ρ N(0.3, 1) 0.51 0.56 0.60 0.49 0.54 0.60
σ 2
GG IG(10, 15) 6.67 7.19 7.76 7.69 8.43 9.28

σ 2
GE N(0, 10) −2.17 −1.98 −1.77 −2.88 −2.73 −2.50

σ 2
GI N(0, 10) −0.97 −0.80 −0.53 −1.99 −1.58 −1.22

σ 2
EE IG(10, 15) 5.36 5.79 6.28 5.64 6.10 6.39

σ 2
EI N(0, 10) 2.04 2.33 2.63 2.43 2.64 2.93

σ 2
II IG(10, 15) 2.36 2.65 3.04 2.45 3.22 3.81

Posterior – −982.62 −981.40 −980.48 −984.09 −982.80 −981.57
Likelihood – −949.42 −948.25 −947.49 −950.19 −948.84 −947.81

ζ = 1.05 ζ = 1.15
µ N(3, 10) 2.85 3.07 3.33 2.55 2.89 3.21
ρ N(0.3, 1) 0.48 0.53 0.58 0.52 0.56 0.61
σ 2
GG IG(10, 15) 8.92 9.57 10.25 9.07 9.88 10.73

σ 2
GE N(0, 10) −4.04 −3.88 −3.70 −5.61 −5.50 −5.22

σ 2
GI N(0, 10) −3.09 −2.65 −2.29 −4.38 −4.21 −4.01

σ 2
EE IG(10, 15) 6.74 7.13 7.41 8.51 9.07 9.30

σ 2
EI N(0, 10) 3.23 3.46 4.13 5.29 5.52 5.89

σ 2
II IG(10, 15) 3.27 3.66 4.43 5.68 6.00 6.31

Posterior – −984.89 −983.63 −982.49 −988.63 −987.18 −986.32
Likelihood – −949.31 −948.30 −947.53 −949.82 −948.51 −947.67
3.3. Diagnostic checks

We have assumed throughout that all shocks are Gaussian
white noise. As regards normality, we feel that it is an obvious
benchmark. The recent severe recession does not necessarily
invalidate the normality assumption, as occasional extreme draws
will occur even under normality, and moreover our Kalman
filtering remains BLUE even under non-normality. Nevertheless it
is of course interesting and important to check the validity of the
normality assumption.

We report diagnostic normality checks in Fig. 2 for the three
model shocks, ϵE , ϵI and ϵG. In the top panel we show the distri-
butions of residual skewness across our 25,000 posterior draws.
All are tightly and symmetrically distributed around zero, provid-
ing strong support for symmetry. In the middle panel we show
the distributions of residual kurtosis. Those for the measurement
errors ϵE and ϵI are tightly and symmetrically distributed around
three, consistent with normality. The distribution of residual kur-
tosis for ϵG again appears consistent with normality, although less
strongly than for the distributions of ϵE and ϵI . It is centered around
a median slightly greater than three, and it is skewed slightly
rightward.

As regards the white noise assumption, we show the interquar-
tile ranges of our 25,000 posterior residual autocorrelation func-
tion draws in the bottom panel of Fig. 2, again for each of ϵE , ϵI and
ϵG. They are tightly centered around zero and reveal no evidence of
serial correlation in measurement errors or true GDP innovations.
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Fig. 2. Distributions of residual skewness, kurtosis and autocorrelations across 25,000 posterior draws. In the skewness and kurtosis plots the solid vertical lines denote
posterior medians. The shaded region in the autocorrelation plots denotes the posterior interquartile range.
All told, then, the GDPE and GDPI data appear to accord quite well
with our benchmark dynamic factor model.

4. New perspectives on the properties of GDP

Our various extracted GDPM series differ in fundamental ways
fromothermeasures, such asGDPE andGDPI . Herewediscuss some
of the most important differences.

4.1. GDP sample paths

Let us begin by highlighting the sample-path differences
between our GDPM and the obvious competitors GDPE and
GDPI . We make those comparisons in Fig. 3. In each panel we
show the sample path of GDPM together with a shaded pos-
terior interquartile range, and we show one of the competitor
series.13 In the top panel we show GDPM vs. GDPE . There are of-
ten wide divergences, with GDPE well outside the posterior in-
terquartile range of GDPM . Indeed GDPE is substantially more
volatile than GDPM . In the bottom panel of Fig. 3 we show GDPM
vs. GDPI . Noticeable divergences again appear often, with GDPI
also outside the posterior interquartile range of GDPM . The diver-
gences are not as pronounced, however, and the ‘‘excess volatil-
ity’’ apparent in GDPE is less apparent in GDPI . That is because,
as we will show later, GDPM loads relatively more heavily on
GDPI .

13 For GDPM we use our benchmark estimate from the 2-equation model with
ζ = 0.80.
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Fig. 4. GDP sample paths, 2007Q1–2009Q4. In each panel we show the sample path of GDPM (light color) together with posterior interquartile range with shading and we
show one of the competitor series (dark color). For GDPM we use our benchmark estimate from the 2-equation model with ζ = 0.80.
Table 3
Priors and posteriors, 3-equation model, 1960Q1–2011Q4.

Parameter Prior Posterior
(Mean, Std) 25% 50% 75%

µ N(3, 10) 2.60 2.78 2.95
ρ N(0.3, 1) 0.54 0.58 0.63
σ 2
GG IG(10, 15) 6.73 6.96 7.35

σ 2
GE N(0, 10) −1.27 −1.10 −0.84

σ 2
GI N(0, 10) −1.03 −0.82 −0.59

σ 2
EE IG(10, 15) 4.17 4.57 4.79

σ 2
EI N(0, 10) 1.70 1.95 2.12

σ 2
II IG(10, 15) 2.54 3.07 3.27

σ 2
GU N(0, 10) 1.27 1.46 1.66

σ 2
UU IG(0.3, 10) 0.50 0.59 0.71

κ N(0, 10) 1.53 1.62 1.71
λ N(−0.5, 10) −0.55 −0.52 −0.50
Posterior – −1251.1 −1249.6 −1248.3
Likelihood – −1199.0 −1197.5 −1196.2

To emphasize the economic importance of the differences in
competing real activity assessments, in Fig. 4 we focus on the
tumultuous period 2007Q1–2009Q4. The figure makes clear not
only that both GDPE and GDPI can diverge substantially from GDP ,
but also that the timing and nature of their divergences can be
very different. In 2007Q3, for example, GDPE growth was strongly
positive and GDPI growth was negative.

4.2. GDP dynamics

In our linear framework, the data-generating process for true
GDPt is completely characterized by the pair, (σ 2

GG, ρ).
14 In Fig. 5we

show those pairs across MCMC draws for all of our measurement-
error models, and for comparison we show (ρ, σ 2) values
corresponding to AR(1) models fit to GDPE alone and GDPI alone.
In addition, in Table 1 we show a variety of statistics quantifying
the sample properties of our various optimally extracted GDPM

14 We provide complementary nonlinear Markov-switching results in (online)
Appendix C.2.3.
measures vs. those of GDPE , GDPI and GDPF , the forecast-error-
based estimate of true GDP produced by Aruoba et al. (2012).

A key result of our analysis is the strong serial correlation
(persistence, forecastability, etc.) of true GDP and our extracted
GDPM , regardless of the particular specification. First consider the
(ρ, σ 2

GG) draws, which determine the population autocovariance
function of the true GDP process, depicted in Fig. 5. Depending on
the specification of the measurement error model, the posterior
mean estimates of ρ lie in the interval of 0.5–0.6. For comparison,
the estimated AR(1) coefficient for GDPE is only 0.33. The large ρ
values are accompanied by relatively small innovation variances
σ 2
GG.
Now consider the sample statistics of the extracted GDPM

series summarized in Table 1. As expected from the parameter
estimates depicted in Fig. 5, the GDPM series is robustly more
serially correlated than GDPE , GDPI , GDPF . More specifically, if we
fit an AR(1) model to GDPM we find that the shock persistence is
roughly double that of GDPE (ρ of roughly 0.60 for GDPM vs. 0.30
for GDPE). Simultaneously, the estimated innovation variances of
the GDPM series are much smaller than those associated with the
rawdata. This translates intomuch higher predictive R2’s forGDPM .
Indeed GDPM is twice as predictable as GDPI or GDPF , which in
turn are twice as predictable as GDPE . Table 1 also reveals that the
variousGDPM series are all less volatile than each ofGDPE ,GDPI and
GDPF , and a bit more skewed left.

To appreciate these results, consider the 2-equation model
with block-diagonal Σ . A straightforward analysis of the implied
autocovariances implies that in population both GDPE and GDPI
have to be more volatile than true GDP . Moreover, due to
the presence of measurement errors that are independent of
the GDP innovations, the first-order autocorrelations of GDPE
and GDPI always provide downward-biased estimates of ρ, the
autocorrelation of true GDP .

Oncewe allow for themeasurement errors to be correlatedwith
ϵGt , the volatility ranking and the sign of the bias are ambiguous.
We can express the first-order autocorrelation of GDPE as

Corr(GDPEt ,GDPE,t−1) = ρ
V (GDPt) + σ 2

GE

V (GDPt) + 2σ 2
GE + σ 2

EE
. (19)

Thus the autocorrelation of GDPE provides an upward-biased
estimate of ρ if

σ 2
GE > 2σ 2

GE + σ 2
EE . (20)
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Fig. 5. (ρ, σ 2
GG) Pairs across MCMC draws. Solid lines indicate 90% (σ 2

GG, ρ) posterior coverage ellipsoids for the various models. Stars indicate posterior median values. The
sample period is 1960Q1-2011.Q4. For comparison we show (σ 2, ρ) values corresponding to AR(1) models fit to GDPE alone and GDPI alone.
Because the measurement error variance σ 2
EE is always non-

negative, an upward bias only arises if GDP innovation and mea-
surement error are negatively correlated and the measurement
error is small. Consider, for instance, the estimated 3-equation
model. Although σ̂ 2

GE < 0, the inequality (20) is not satisfied: σ̂ 2
GE =

−1.10 and 2σ̂ 2
GE + σ̂ 2

EE = 2.37. Thus, we emphasize that the high
serial correlation of GDPM is not a spurious artifact of our signal-
extraction approach. In view of the flexibility of ourmeasurement-
error model, it is a genuine empirical finding that is a reflection of
estimated size of the measurement error and its correlation with
the innovation to true GDP .

4.3. On the relative contributions of GDPE and GDP I to GDPM

It is of interest to know how the observed indicators GDPE and
GDPI contribute to our extracted true GDP . We do this in two
ways, by examining the Kalman gains, and by finding the convex
combination of GDPE and GDPI closest to our extracted GDP .

The Kalman gains associated with GDPE and GDPI govern the
amount by which news about GDPE and GDPI , respectively, causes
the optimal extraction of GDPt (conditional on time-t information)
to differ from the earlier optimal prediction of GDPt (conditional
on time-(t − 1) information). Put more simply, the Kalman gain
of GDPE (resp. GDPI ) measures its importance in influencing GDPM ,
and hence in informing our views about latent true GDP .

We summarize the posterior distributions of Kalman gains in
Fig. 6. Posterior median GDPI Kalman gains are large in absolute
terms, and most notably, very large relative to those for GDPE .
Indeed posterior median GDPE Kalman gains are zero in several
specifications. In any event, it is clear that GDPI plays a larger role
in informing us about GDP than does GDPE . For our benchmark
ζ -model with ζ = 0.80, the posterior median GDPI and GDPE
Kalman gains are 0.59 and 0.23, respectively.

The Kalman filter extractions average not only over space, but
also over time. Nevertheless, we can ask what contemporaneous
convex combination of GDPE and GDPI , λGDPE + (1 − λ)GDPI ,
is closest to the extracted GDPM . That is, we can find λ∗

=

argminλ L(λ), where L(λ) is a loss function. Under quadratic loss
we have

λ∗
= argmin

λ

T
t=1

[(λGDPEt + (1 − λ)GDPIt) − GDPMt ]2 ,
where GDPMt is our smoothed extraction of true GDPt . Over our
sample of 1960Q1–2011Q4, the optimum under quadratic loss is
λ∗

= 0.29. The minimum is quite sharp, and it puts more than
twice as much weight on GDPI than on GDPE .15 That weighting
accords closely with both the Kalman gain results discussed above
and the forecast-combination calibration results in Aruoba et al.
(2012). It does not, of course, mean that time series of GDPM will
‘‘match’’ time series of GDPF , because the Kalman filter does much
more than simple contemporaneous averaging of GDPE and GDPI
in its extraction of latent true GDP .

5. Conclusions, caveats, and future research

We produce several estimates of GDP that blend both GDPE
and GDPI . All estimates feature GDPI prominently, and our blended
GDP estimate has properties quite different from those of the
‘‘traditional’’ GDPE (as well as GDPI ). In a sense we build on the
literature on ‘‘balancing’’ the national income accounts, which
extends back almost as far as national income accounting itself, as
for example in Stone et al. (1942). We do not, however, advocate
that the U.S. publishes onlyGDPM , as theremay at times be value in
being able to see the income and expenditure sides separately. But
we would certainly advocate the additional calculation of GDPM
and using it as the benchmark GDP estimate.16

A caveat is in order, however, as GDPI is released in less-timely
fashion than GDPE , and moreover, early releases of GDPI may be
inferior to corresponding releases of GDPE . A key reason is the
simple fact that it takes time for the tax returns underlying much
of GDPI to be filed and processed. Hence if one is interested in real-
time tracking of real activity (during themost-recent four quarters,
say),GDPM is not likely to addmuch relative toGDPE .17 On the other

15 See Appendix C.2.2 for a plot of the entire surface.
16 The Federal Reserve Bank of Philadelphia recently began doing this; see their
‘‘GDPplus’’ series at http://www.philadelphiafed.org/research-and-data/real-time-
center/gdpplus/.
17 Of course one would surely also not want to use GDPE alone. Instead,
for real-time analysis GDPE should be blended with other higher-frequency
(monthly, weekly) indicators as in Aruoba et al. (2009) and Aruoba and Diebold
(2010), implemented in real time by the Federal Reserve Bank of Philadelphia
at http://www.philadelphiafed.org/research-and-data/real-time-center/business-
conditions-index.

http://www.philadelphiafed.org/research-and-data/real-time-center/gdpplus/
http://www.philadelphiafed.org/research-and-data/real-time-center/gdpplus/
http://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index
http://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index
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Fig. 6. (KGE , KGI ) Pairs across MCMC draws. Solid lines indicate 90% posterior coverage ellipsoids. Stars indicate posterior median values.
hand, whether one uses up-to-the-instant GDP data, as opposed to
up-to-a-year-ago data, is typically irrelevant to the research work
for which we seek to contribute a superior input.

Interesting extensions of our framework and methods are
possible. Consider, for example, forecasting. When forecasting
a ‘‘traditional’’ GDP series such as GDPE , we must take it as
given (i.e., we must ignore measurement error). The analogous
procedure in our framework would take GDPM as given, modeling
and forecasting it directly, ignoring the fact that it is only an
estimate. Fortunately, however, in our framework we need not
do that. Instead we can estimate and forecast directly from the
dynamic factor model, accounting for all sources of uncertainty,
which should translate into superior interval and density forecasts.
Related, it would be interesting to calculate directly the point,
interval and density forecast functions corresponding to our
measurement-error model.
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Appendix

Here we report various details of theory, establishing identifi-
cation results for the two- and three-variable models in Appen-
dices A and B, respectively. The identification analysis is based
on Komunjer and Ng (2011).

Appendix A. Identification in the two-equation model

The constants in the state-space model can be identified
from the means of GDPEt and GDPIt . To simplify the subsequent
exposition we now set the constant terms to zero:

GDPt = ρGDPt−1 + ϵGt (A.1)
GDPEt
GDPIt


=


1
1


GDPt +


ϵEt
ϵIt


(A.2)

and the joint distribution of the errors is

ϵt =


ϵGt
ϵEt
ϵIt


∼ iidN


0, Σ


, where Σ =


ΣGG · ·

ΣEG ΣEE ·

ΣIG ΣIE ΣII


.

Using thenotation inKomunjer andNg (2011),wewrite the system
as

st+1 = A(θ)st + B(θ)ϵt+1 (A.3)

yt+1 = C(θ)st + D(θ)ϵt+1, (A.4)

where

st = GDPt , yt =


GDPEt
GDPIt


(A.5)

A(θ) = ρ, B(θ) =

1 0 0


C(θ) =


ρ
ρ


, D(θ) =


1 1 0
1 0 1


and θ = [ρ, vech(Σ)′]′. Note that only A(θ) and C(θ) are non-
trivial functions of θ .

Assumption 1. The parameter vector θ satisfies the following
conditions: (i) Σ is positive definite; (ii) 0 ≤ ρ < 1.

Because the rows ofD are linearly independent, Assumption 1(i)
implies that DΣD′ is non-singular. In turn, we deduce that
Assumptions 1, 2, and 4-NS of Komunjer and Ng (2011) are
satisfied.

We now express the state-space system in terms of its
innovation representation

st+1|t+1 = A(θ)st|t + K(θ)at+1 (A.6)
yt+1 = C(θ)ŝt|t + at+1,

where at+1 is the one-step-ahead forecast error of the system
whose variance we denote by Σa(θ). The innovation representa-
tion is obtained from the Kalman filter as follows. Suppose that
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conditional on time t information Y1:t the distribution of st |Y1:t ∼

N(st|t , Pt|t). Then the joint distribution of [st+1, y′

t+1]
′ is

st+1
yt+1

 Y1:T ∼


Ast|t
Cst|t


,


APt|tA′

+ BΣB′ APt|tC ′
+ BΣD′

CPt|tA′
+ DΣB′ CPt|tC ′

+ DΣD′


.

In turn, the conditional distribution of st+1|Y1:t+1 is

st+1|Y1:t+1 ∼ N

st+1|t+1, Pt+1|t+1


,

where

st+1|t+1 = Ast|t + (APt|tC + BΣD′)(CPt|tC ′
+ DΣD′)−1(yt − Cst|t)

Pt+1|t+1 = APt|tA′
+ BΣB′

− (APt|tC ′
+ BΣD′)

× (CPt|tC ′
+ DΣD′)−1(CPt|tA′

+ DΣB′).

Now let P be the matrix that solves the Riccati equation,

P = APA′
+ BΣB′

− (APC ′
+ BΣD′)(CPC ′

+ DΣD′)−1

× (CPA′
+ DΣB′), (A.7)

and let K be the Kalman gain matrix

K = (APC ′
+ BΣD′)(CPC ′

+ DΣD′)−1. (A.8)

Then the one-step-ahead forecast error matrix is given by

Σa = CPC ′
+ DΣD′. (A.9)

Eqs. (A.7)–(A.9) determine the matrices that appear in the
innovation-representation of the state-space system (A.6).

In order to be able to apply Proposition 1-NS of Komunjer and
Ng (2011) we need to express P , K , and Σa in terms of θ . While
solving Riccati equations analytically is in general not feasible,
our system is scalar, which simplifies the calculation considerably.
Replacing A by ρ and P by p such that scalars appear in lower case,
and defining

ΣBB = BΣB′, ΣBD = BΣD′, and ΣDD = DΣD′,

we can write (A.7) as

p = pρ2
+ ΣBB − (pρC ′

+ ΣBD)(pCC ′
+ ΣDD)

−1

× (pρC + ΣDB). (A.10)

Likewise,

K = (pρC ′
+ ΣBD)(pCC ′

+ ΣDD)
−1 and

Σa = pCC ′
+ ΣDD.

(A.11)

Because ΣBB − ΣBDΣ
′

DDΣDB > 0 we can deduce that p > 0.
Moreover, because A = ρ ≥ 0 and C ≥ 0, we deduce that
K ≠ 0 and therefore Assumption 5-NS of Komunjer and Ng (2011)
is satisfied. According to Proposition 1-NS in Komunjer and Ng
(2011), two vectors θ and θ1 are observationally equivalent if and
only if there exists a scalar γ ≠ 0 such that

A(θ1) = γ A(θ)γ −1 (A.12)

K(θ1) = γK(θ) (A.13)

C(θ1) = C(θ)γ −1 (A.14)

Σa(θ1) = Σa(θ). (A.15)
Define θ = [ρ, vech(Σ)′]′ and θ1 = [ρ1, vech(Σ1)
′
]
′. Using the

definition of the scalar A(θ) in (A.5) we deduce from (A.12) that
ρ1 = ρ. Since C(θ) depends on θ only through ρ we can deduce
from (A.14) that γ = 1. Thus, given θ and ρ, the elements of the
vector vech(Σ1)have to satisfy conditions (A.13) and (A.15),which,
using (A.11), can be rewritten as

Σa = Σa1 = p1CC ′
+ ΣDD1 (A.16)

K = K1 = (p1ρC ′
+ ΣBD1)Σ

−1
a . (A.17)

Moreover, p1 has to solve the Riccati equation (A.10):

p1 = p1ρ2
+ ΣBB1 − K0(p1ρC + ΣBD). (A.18)

Eqs. (A.16)–(A.18) are satisfied if and only if

pCC ′
+ ΣDD = p1CC ′

+ ΣDD1 (A.19)

pρC ′
+ ΣBD = p1ρC ′

+ ΣBD1 (A.20)

p(1 − ρ2) − ΣBB = p1(1 − ρ2) − ΣBB1. (A.21)
We proceed by deriving expressions for the Σxx matrices that

appear in (A.19)–(A.21):
ΣBB = ΣGG

ΣBD =

ΣGG + ΣGE ΣGG + ΣGI


ΣDD =


ΣGG + ΣEE + 2ΣEG ·

ΣGG + ΣGE + ΣGI + ΣEI ΣGG + ΣII + 2ΣGI


.

Without loss of generality let

ΣGG1 = ΣGG + (1 − ρ2)δ, (A.22)
which implies that
ΣBB1 = ΣBB + (1 − ρ2)δ.

We now distinguish the cases δ = 0 and δ ≠ 0.
Case 1: δ = 0. (A.21) implies p1 = p. It follows from (A.20) that
ΣBD1 = ΣBD. In turn, ΣGE1 = ΣGE and ΣGI1 = ΣGI . Finally,
to satisfy (A.19) it has to be the case that ΣDD1 = ΣDD, which
implies that the remaining elements ofΣ andΣ1 are identical. We
conclude that θ1 = θ .
Case 2: δ ≠ 0. (A.21) implies p1 = p + δ. Now consider (A.20):
pρC ′

+ ΣBD = pρ2 
1 1


+


ΣGG + ΣGE ΣGG + ΣGI


!
= pρ2 

1 1

+ δρ2 

1 1


+

ΣGG + ΣGE1 ΣGG + ΣGI1


+ δ(1 − ρ2)


1 1


.

We deduce that
ΣGE1 = ΣGE − δ, ΣGI1 = ΣGI − δ. (A.23)
Finally, consider (A.19), which can be rewritten as
0 = ΣDD1 − ΣDD + δCC ′.

Using the previously derived expressions for ΣDD and ΣDD1 we
obtain the following three conditions
0 = (1 − ρ2)δ + (ΣEE1 − ΣEE) − 2δ + ρ2δ = ΣEE1 − ΣEE − δ

0 = (1 − ρ2)δ − 2δ + (ΣEI1 − ΣEI) + ρ2δ = ΣEI1 − ΣEI − δ

0 = (1 − ρ2)δ + (ΣII1 − ΣII) − 2δ + ρ2δ = ΣII1 − ΣII − δ.

Thus, we deduce that

ΣEE1 = ΣEE + δ, ΣEI1 = ΣEI + δ, and
ΣII1 = ΣII + δ.

(A.24)

Combining (A.22)–(A.24) we find that

Σ1 =

ΣGG + δ(1 − ρ2) ΣGE − δ ΣGI − δ
ΣGE − δ ΣEE + δ ΣEI + δ
ΣGI − δ ΣEI + δ ΣII + δ

 . (A.25)

Thus, we have proved the following theorem:
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ΣBB = ΣGG

ΣBD =

ΣGG + ΣGE ΣGG + ΣGI λΣGG + ΣGU


ΣDD =

 ΣGG + ΣEE + 2ΣGE · ·

ΣGG + ΣGE + ΣGI + ΣEI ΣGG + ΣII + 2ΣGI ·

λΣGG + λΣGE + ΣGU λΣGG + λΣGI + ΣGU λ2ΣGG + 2λΣGU + ΣUU


Box I.
Theorem A.1. Suppose Assumption 1 is satisfied. Then the two-
variable model is

(i) identified if Σ is diagonal as in Section 2.1;
(ii) identified if Σ is block-diagonal as in Section 2.2;
(iii) not identified if Σ is unrestricted as in Section 2.3;
(iv) identified if Σ is restricted as in Section 2.4.

Appendix B. Identification in the three-equation model

The identification analysis of the three-variable is similar to the
analysis of the two-variable model in the previous section. The
system is given by

GDPt = ρGDPt−1 + ϵGt (B.26)GDPEt
GDPIt
Ut


=

1
1
λ


GDPt +


ϵEt
ϵIt
ϵUt


, (B.27)

and the joint distribution of the errors is

ϵt =

ϵGt
ϵEt
ϵIt
ϵUt

 ∼ iidN

0, Σ


,

where Σ =

ΣGG · · ·

ΣEG ΣEE · ·

ΣIG ΣIE ΣII ·

ΣUG ΣUE ΣUI ΣUU

 .

The matrices A(θ), B(θ), C(θ), and D(θ) are now given by

A(θ) = ρ, B(θ) =

1 0 0 0


C(θ) =


ρ
ρ
λρ


, D(θ) =

1 1 0 0
1 0 1 0
λ 0 0 1


,

where θ = [ρ, λ, vech(Σ)′]′.

Assumption 2. The parameter vector θ satisfies the following
conditions: (i) Σ is positive definite; (ii) 0 < ρ < 1; (iii) λ ≠ 0;
(iv) ΣUE = ΣUI = 0.

Condition (A.12) implies that ρ1 = ρ. Moreover, (A.14) implies
that γ = 1 and that λ1 = λ provided that ρ ≠ 0. As for the two-
variable model, we have to verify that (A.19)–(A.21) are satisfied.
The matrices Σxx that appear in these equations are given in Box I.

Without loss of generality, let

ΣGG,1 = ΣGG + (1 − ρ2)δ,

which implies that

ΣBB,1 = ΣBB + (1 − ρ2)δ.

Case 1: δ = 0. (A.21) implies p1 = p. It follows from (A.20)
that ΣBD,1 = ΣBD. In turn, ΣGE,1 = ΣGE , ΣGI,1 = ΣGI , and
ΣGU,1 = ΣGU . Finally, to satisfy (A.17) it has to be the case that
ΣDD,1 = ΣDD, which implies that the remaining elements of Σ

and Σ1 are identical for the two parameterizations. We conclude
that it has to be the case that θ1 = θ .
Case 2: δ ≠ 0. (A.21) implies p1 = p + δ. Now consider (A.20):

pρC ′
+ ΣBD

= pρ2 
1 1 λ


+


ΣGG + ΣGE ΣGG + ΣGI λΣGG + ΣGU


!
= pρ2 

1 1 λ

+ δρ2 

1 1 λ


+

ΣGG + ΣGE,1 ΣGG + ΣGI,1 λΣGG + ΣGU,1


+ (1 − ρ2)δ


1 1 λ


.

We deduce that

ΣGE,1 = ΣGE − δ, ΣGI,1 = ΣGI − δ, ΣGU,1 = ΣGU − δ.

Finally, consider (A.19), which can be rewritten as

0 = ΣDD,1 − ΣDD + δCC ′.

Using the previously derived expressions for ΣDD and ΣDD1 we
obtain the following five conditions

0 = (1 − ρ2)δ + (ΣEE1 − ΣEE) − 2δ + ρ2δ = ΣEE1 − ΣEE − δ

0 = (1 − ρ2)δ − 2δ + (ΣEI1 − ΣEI) + ρ2δ = ΣEI1 − ΣEI − δ

0 = (1 − ρ2)δ + (ΣII1 − ΣII) − 2δ + ρ2δ = ΣII1 − ΣII − δ

0 = λ(1 − ρ2)δ − λδ − δ + λρ2δ = δ

0 = λ2(1 − ρ2)δ − 2λδ + (ΣUU1 − ΣUU) + λ2ρ2δ

= ΣUU1 − ΣUU − λ(2 − λ)δ.

Thus, we deduce that

δ = 0, ΣEE1 = ΣEE, ΣEI1 = ΣEI , ΣII1 = ΣII ,

and ΣUU1 = ΣUU .

This proves the following theorem:

Theorem B.1. Suppose Assumption 2 is satisfied. Then the three-
variable model is identified.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2015.12.009.
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