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 Comparing Predictive Accuracy, Twenty Years
 Later: A Personal Perspective on the Use
 and Abuse of Diebold-Mariano Tests

 Francis X. Diebold

 Department of Economics, University of Pennsylvania, Philadelphia, PA 19104 ( fdiebold@sas.upenn.edu )

 The Diebold-Mariano (DM) test was intended for comparing forecasts; it has been, and remains, useful
 in that regard. The DM test was not intended for comparing models. Much of the large ensuing literature,

 however, uses DM-type tests for comparing models, in pseudo-out-of-sample environments. In that case,
 simpler yet more compelling full-sample model comparison procedures exist; they have been, and should
 continue to be, widely used. The hunch that pseudo-out-of-sample analysis is somehow the "only," or
 "best," or even necessarily a "good" way to provide insurance against in-sample overfitting in model
 comparisons proves largely false. On the other hand, pseudo-out-of-sample analysis remains useful for
 certain tasks, perhaps most notably for providing information about comparative predictive performance
 during particular historical episodes.

 KEY WORDS: Forecasting; Model comparison; Model selection; Out-of-sample tests.

 1. INTRODUCTION

 I was excited about the Diebold-Mariano article (Diebold and
 Mariano 1995, DM) when it first circulated in 1991, almost 25
 years ago. But I tend to be excited about all of my papers, so it is
 fascinating to watch which ones resonate most in the intellectual

 marketplace. Certainly the warm reception accorded to DM was
 most gratifying.

 The need for formal tests for comparing predictive accuracy
 is surely obvious. We have all seen hundreds of predictive horse
 races, with one or the other declared the "winner" (usually the
 new horse in the stable), but with no consideration given to the
 statistical significance of the victory. Such predictive compar-
 isons are incomplete and hence unsatisfying. That is, in any
 particular realization, one or the other horse must emerge victo-

 rious, but one wants to know whether the victory is statistically
 significant. That is, one want to know whether a victory "in sam-
 ple" was merely good luck, or truly indicative of a difference
 "in population."

 If the need for predictive accuracy tests seems obvious ex
 post, it was not at all obvious to empirical econometricians
 circa 1991. Bobby Mariano and I simply noticed the defective
 situation, called attention to it, and proposed a rather general
 yet trivially simple approach to the testing problem. And then -
 boom! - use of predictive accuracy tests exploded.

 It has been a long, strange trip. In this article, I offer some
 perspectives on where we have been, where we are, and where
 we are going.

 2. COMPARING MODEL-FREE FORECASTS

 Consider a model-free forecasting environment, as, for exam-
 ple, with forecasts based on surveys, forecasts extracted from
 financial markets, forecasts obtained from prediction markets,
 or forecasts based on expert judgment. One routinely has com-
 peting model-free forecasts of the same object, gleaned, for

 example, from surveys or financial markets, and seeks to deter-
 mine which is better.

 To take a concrete example, consider U.S. inflation forecast-
 ing. One might obtain survey-based forecasts from the Sur-
 vey of Professional Forecasters ( S ), {7i?}]=x, and simultane-
 ously one might obtain market-based forecasts from inflation-

 indexed bonds (£), {nB}J=v Suppose that loss is quadratic and
 that during t = 1 , . . . , T the sample mean-squared errors are

 MSE(7T,5) = 1.80 and MSE(tt*) = 1.92. Evidently "S wins,"
 and one is tempted to conclude that S provides better inflation
 forecasts than does B. The forecasting literature is filled with
 such horse races, with associated declarations of superiority
 based on outcomes.

 Obviously, however, the fact that MSE(7t,5) < MSE(jttB) in a
 particular sample realization does not mean that S is necessarily
 truly better than B in population. That is, even if in population
 MSE(7t,5) = MSE(7T,5), in any particular sample realization t =
 1 , . . . , T one or the other of S and B must "win," so the question

 arises in any particular sample as to whether S is truly superior
 or merely lucky. Diebold and Mariano ( 1 995) proposed a test for

 answering that question, allowing one to assess the significance
 of apparent predictive superiority.

 (The Diebold-Mariano article has a rather colorful history.
 It was written in summer 1991 when Diebold visited the

 Institute for Empirical Macroeconomics at the Federal Re-
 serve Bank of Minneapolis; see Diebold and Mariano (1991)
 at http.V/econpapers. repec. org/paper/fipfedmem/defaultl . htm .

 Subsequently it was curtly rejected by Econometrica after a
 long refereeing delay, with a quarter-page "report" express-
 ing bewilderment as to why anyone would care about the sub-
 ject it addressed. I remain grateful to the Journal of Business
 and Economic Statistics for quickly recognizing the article's
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 contribution and eventually publishing it in 1995. Quite curi-
 ously, Econometrica published a Diebold-Mariano extension
 the following year. In 2002, the article was reprinted in the
 JBES Twentieth Anniversary Commemorative Issue (Ghysels
 and Hall 2002).) It provides a test of the hypothesis of equal
 expected loss (in our example, MSE(7r,5) = MSE(7r,5)), valid
 under quite general conditions including, for example, wide
 classes of loss functions and forecast-error serial correlation of

 unknown form.

 2.1 The DM Perspective, Assumption DM, and the DM
 Statistic

 The essence of the DM approach is to take forecast errors
 as primitives, intentionally, and to make assumptions directly
 on those forecast errors. (In a model-free environment there
 are obviously no models about which to make assumptions.)
 More precisely, DM relies on assumptions made directly on the
 forecast error loss differential. Denote the loss associated with
 forecast error et by L(et ); hence, for example, time-i quadratic

 loss would be L(et) = ej. The time-ř loss differential between
 forecasts 1 and 2 is then d'2t = L(e't) - L(^). DM requires
 only that the loss differential be covariance stationary. (Actu-
 ally covariance stationarity is sufficient but may not be strictly
 necessary, as less-restrictive types of mixing conditions could
 presumably be invoked.) That is, DM assumes that

 Í £(¿12,) = /z,VÍ
 AssumptionDM : I cov(d'2t, di2(/-r)) = y(r)> ^ (1)

 [ 0 < var(di2/) = o2 < oo.

 The key hypothesis of equal predictive accuracy (i.e., equal
 expected loss) corresponds to E(d'2t) = 0, in which case, under
 the maintained Assumption DM:

 DM,2 = W(0, 1), (2)
 a'dn

 where d' 2 = j Y^=' d'2 1 is the sample mean loss differential
 and <t¿12 is a consistent estimate of the standard deviation of d'2
 (more on that shortly). That is it, there is nothing more to do, it

 really is that trivial: If Assumption DM holds, then the N( 0, 1)
 limiting distribution of test statistic DM must hold.

 DM is obviously extremely simple, almost embarrassingly
 so. It is simply an asymptotic z-test of the hypothesis that the
 mean of a constructed but observed series (the loss differential)
 is zero. The only wrinkle is that forecast errors, and hence
 loss differentials, may be serially correlated for a variety of
 reasons, the most obvious being forecast suboptimality. Hence,
 the standard error in the denominator of the DM statistic (2)
 should be calculated robustly. Diebold and Mariano (1995) used

 - Vê(0)/T, where g(0) is a consistent estimator of the loss
 differential spectrum at frequency zero.

 DM is also readily extensible. The key is to recognize that
 the DM statistic can be trivially calculated by regression of
 the loss differential on an intercept, using heteroscedasticity
 and autocorrelation robust (HAC) standard errors. Immediately
 then (and as noted in the original Diebold-Mariano article),
 one can potentially extend the regression to condition on addi-
 tional variables that may explain the loss differential, thereby
 moving from an unconditional to a conditional expected loss

 perspective. (Important subsequent work takes the conditional
 perspective farther; see Giacomini and White (2006).) For ex-
 ample, comparative predictive performance may differ by stage
 of the business cycle, in which case one might include a 0-1
 NBER business cycle chronology variable (say) in the DM HAC
 regression.

 2.2 Thoughts on Assumption DM

 Thus far I have praised DM rather effusively, and its great
 simplicity and wide applicability certainly are virtues: There is
 just one Assumption DM, just one DM test statistic, and just
 one DM limiting distribution, always and everywhere. But of
 course everything hinges on Assumption DM. Here I offer some
 perspectives on the validity of Assumption DM.

 First, as George Box (1979) famously and correctly noted,
 "All models are false, but some are useful." Precisely the same
 is true of assumptions. Indeed all areas of economics benefit
 from assumptions that are surely false if taken literally, but that

 are nevertheless useful. So too with Assumption DM. Surely dt
 is likely never precisely covariance stationary, just as surely no
 economic time series is likely precisely covariance stationary.
 But in many cases Assumption DM may be a useful approxi-
 mation.

 Second, special forecasting considerations lend support
 to the validity of Assumption DM. Forecasters strive to
 achieve forecast optimality, which corresponds to unfore-
 castable covariance-stationary errors (indeed white-noise errors
 in the canonical one-step-ahead case), and hence unforecastable
 covariance-stationary loss differentials. Of course forecasters
 may not achieve optimality, resulting in serially correlated, and
 indeed forecastable, forecast errors. But 7(1) nonstationarity of
 forecast errors takes serial correlation to the extreme. (Even
 with apparent nonstationarity due to apparent breaks in the loss
 differential series, Assumption DM may nevertheless hold if the
 breaks have a stationary rhythm as, for example, with hidden-
 Markov processes in the tradition of Hamilton (1989).)

 Third, even in the extreme case where nonstationary com-
 ponents somehow do exist in forecast errors, there is reason
 to suspect that they may be shared. In particular, information
 sets overlap across forecasters, so that forecast-error nonsta-
 tionarities may vanish from the loss differential. For example,
 two loss series, each integrated of order one, may nevertheless
 be cointegrated with cointegrating vector (1,-1). Suppose, for
 example, that L(e't) = xt + £'t and L(^) = xt + S2t, where
 xt is a common nonstationary 7(1) loss component, and e't
 and S2t are idiosyncratic stationary 7(0) loss components. Then
 d'2t = L(e't) - L(e2t) = £'t ~ £ it is 7(0), so that the loss differ-
 ential series is covariance stationary despite the fact that neither
 individual loss series is covariance stationary.

 Fourth, and most importantly, standard and powerful tools
 enable empirical assessment of Assumption DM. That is, the ap-
 proximate validity of Assumption DM is ultimately an empirical
 matter, and a wealth of diagnostic procedures are available to
 help assess its validity. One can plot the loss differential series,
 examine its sample autocorrelations and spectrum, test it for
 unit roots and other nonstationarities including trend, structural
 breaks or evolution, and so on.
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 3. COMPARING MODELS VIA
 PSEUDO-OUT-OF-SAMPLE FORECASTS

 DM emphasized comparing forecasts in model-free environ-
 ments, but in their concluding remarks they also mentioned
 the possibility of DM-based model comparison. They envi-
 sioned applying the DM test in standard fashion to pseudo-
 out-of-sample forecast errors under Assumption DM (subject,
 of course, to its empirically assessed approximate validity). The
 subsequent literature took a very different course, emphasizing
 the nonstationarity induced in loss differentials from estimated

 models as estimated parameters converge to their pseudo-true
 values. That literature eschews Assumption DM on loss differ-
 entials and replaces it with assumptions on underlying mod-
 els. Here, we explore the costs and benefits of the different
 approaches.

 3.1 Unknown Models: Assumption DM is the Only
 Game in Town

 Consider first the case of model-based forecasts, but where
 the models are not known to the econometrician as, for exam-

 ple, with forecasts purchased from a vendor who uses a propri-
 etary model. In this case of unknown models, one has only the
 forecast errors, so one has no choice but to proceed as in the
 model-free case of Section 2. Moreover, that is not necessarily a
 problem. As long as Assumption DM is approximately true, the
 DM test is approximately valid. Of course parameter estimation
 may induce nonstationarity, but one might naturally conjecture
 that under a variety of sampling schemes of relevance in prac-
 tice, parameter estimation uncertainty would be small, so that
 the induced nonstationarity would be small, in which case the
 loss differential would be approximately stationary and the DM
 N( 0, 1) null distribution would be approximately valid. And of
 course, as also emphasized above, the importance of any non-
 stationarity is ultimately an empirical matter, easily checked.

 3.2 Known Models I: Proceeding Under Assumption
 DM

 I have emphasized, and I will continue to emphasize, that DM
 compares forecasts via the null hypothesis of a zero expected
 loss differential,

 H0 : E{dnt) = E (L(eu(F]t)) - L{e2t{F2t))) = 0, (3)

 where the new and slightly more detailed notation ( et(Ft ) rather
 than et ) is designed to emphasize that the errors are driven by
 forecasts, not models. As I have also emphasized, in the DM
 framework the loss differential d'2t is the primitive, and one
 makes Assumption DM directly on d'2t.

 Many subsequent researchers, in contrast, use DM and DM-
 type tests not for comparing forecasts, but rather for comparing
 fully articulated econometric models (known to the researcher,
 who presumably specified and estimated them), via forecasts, in
 pseudo-"out-of-sample" situations. That approach traces to the
 work of West (1996) and Clark and McCracken (2001), inter
 alia, and in what follows I will use "WCM" in broad reference
 to it.

 Mechanically, WCM proceeds roughly as follows. First, split
 the data into a pseudo-in-sample period t = 1, . . . , t* and a
 pseudo-out-of-sample period ř = ř* + 1, . . . , 7' Then recur-
 sively estimate the models with the last pseudo-in-sample ob-
 servation starting at t = t* and ending at t = T - 1, at each t
 predicting t + 1 . Finally, base a DM-style test on the sample
 mean quadratic loss differential,

 ■7 5Z/=r+i {eì,t/t-' ~ei,t/t-') ,A.
 d'i ■7 =

 where et¡t-' is a time-ř pseudo-out-of-sample one-step-ahead
 forecast error, or "recursive residual." There are of course many
 variations. For example, the in-sample period could be fixed or
 rolling, as opposed to expanding, but (4) serves as something of
 a canonical benchmark.

 Convergence of model parameters to their pseudo-true values
 as sample size grows introduces nonstationarities into forecast
 errors and hence into the loss differential, so it would seem that

 Assumption DM is violated in the model-based environment.
 But just as in the "unknown model" case of Section 3.1, param-
 eter estimation uncertainty might be small, so that the induced
 forecast-error nonstationarity would be small, in which case the
 loss differential would be approximately stationary and the DM
 N( 0, 1) null distribution would be approximately valid. Presum-
 ably that is why so many researchers have continued to do model

 comparisons using DM with N( 0, 1) critical values, despite the
 fact that they are precisely correct only under Assumption DM.

 3.3 Known Models II: "Old-School" WCM

 What I will call "Old-school" WCM follows the DM ap-
 proach and effectively tests a null hypothesis based on the loss
 differential,

 Ho:E{dnt) = E{L{eXt{Fu{Mx{Ox))))

 - L(e2t(F2t(M2(02))))) = 0, (5)

 where I now write číř(F;,(M/ (#/))) to emphasize that the error
 en is ultimately driven by a model A/,-, which in turn involves a

 vector of pseudo-true parameters 0¡.
 A key observation is that in the WCM framework the ultimate

 primitives are not forecasts (or the loss differential), but rather
 models , so WCM proceeds by making assumptions not about
 the loss differential, but rather about the models.

 Complications arise quickly in the WCM framework, how-
 ever, as one may entertain a wide variety of models and model
 assumptions. Indeed there is no single "Assumption WCM"
 analogous to Assumption DM; instead, one must carefully tip-
 toe across a minefield of assumptions depending on the situa-
 tion. (Lengthy surveys of the WCM approach, and implicitly
 the many varieties of "Assumption WCM," include West (2006)
 and Clark and McCracken (2013).) Such assumptions include
 but are not limited to:

 1 . Nesting structure. Are the models nested, nonnested, or par-
 tially overlapping?

 2. Functional form. Are the models linear or nonlinear?

 3. Model disturbance properties. Are the disturbances Gaus-
 sian? Martingale differences? Something else?
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 4. Estimation sample(s). Is the pseudo-in-sample estimation
 period fixed? Recursively expanding? Rolling? Something
 else?

 5. Estimation method. Are the models estimated by OLS?
 MLE? GMM? Something else? And crucially: Does the loss
 function embedded in the estimation method match the loss

 function used for pseudo-out-of-sample forecast accuracy
 comparison?

 6. Asymptotics. What asymptotics are invoked as T -> oo?
 t*/T -» 0 lť/T - > oo7ť/T -> const? Something else?

 Unfortunately but not surprisingly, the relevant limiting distri-

 bution generally depends on the assumptions. Perhaps the most
 important WCM-style finding is that, in models with estimated
 parameters, the validity of the DM asymptotic N( 0, 1) null dis-
 tribution depends on the nesting structure of the models (see
 Clark and McCracken 2001). Asymptotic normality holds, for
 example, when nonnested models are compared, but not when
 nested models are compared.

 3.4 Known Models 1 1 1 : "New-School" WCM

 Old-school WCM makes assumptions on models, takes them
 literally, and wades through substantial mathematics to con-
 clude that the appropriate limiting distribution depends on the
 model assumptions. Ironically, however, the subsequent WCM
 literature has recently changed course, coming full circle and
 implicitly arriving at the view that Assumption DM may often
 be credibly invoked even when comparing estimated models.

 More precisely, an emerging "New-School" WCM takes a
 more nuanced approach using more compelling asymptotics,
 and, interestingly, winds up steering toward DM N(0, 1) critical
 values, as in Clark and McCracken (201 1), who take a model-
 based approach but move away from the sharp hypothesis of
 E(d'2t) = 0. (See also Clark and McCracken 2013.) They con-
 sidered instead the local-to-zero hypothesis E(d'2t) = k/Vf ,
 and they showed that standard normal critical values often ap-
 proximate the exact null distribution very well. Indeed, from
 both finite-sample and asymptotic perspectives the basic DM
 test (2) (the "MSE - ř" test in their parlance), using standard
 normal critical values , features prominently. Given the ease and

 validity of such an approach, it is hard to imagine doing the more
 tedious bootstrap procedures that they also discussed.

 3.5 Summation

 For comparing forecasts, DM is the only game in town. There
 is really nothing more to say. For comparing models, with es-
 timated parameters, the situation is more nuanced. DM-style
 tests are still indisputably relevant, but the issue arises as to
 appropriate critical values. The most obvious approach is to
 continue to use DM critical values, subject to empirical as-
 sessment of Assumption DM. Old-school WCM, in contrast,
 argues that comparison of models with estimated parameters
 requires a fundamentally new approach, making assumptions
 on models rather than forecast errors, and winds up suspi-
 cious of the DM N( 0, 1) critical values. New-school WCM
 also considers comparison of models with estimated parame-
 ters, but it takes a different perspective and finds that asymptotic

 normality of DM is likely a trustworthy approximation. So after
 20 years, as the smoke finally clears, we see that DM with Gaus-
 sian large-sample critical values appears appropriate for forecast
 comparisons (as emphasized by DM), for pseudo-out-of-sample
 model comparisons subject to approximate empirical validity of
 Assumption DM as suggested by DM, and for pseudo-out-of-
 sample model comparisons subject to model assumptions as
 suggested by WCM.

 4. OPTIMAL MODEL COMPARISONS ARE
 FULL-SAMPLE COMPARISONS

 Thus far I have argued that DM tests with Gaussian critical
 values are appropriate from both the DM and WCM perspec-
 tives. But the key issue involves not details of implementation of

 the WCM pseudo-out-of-sample model-comparison paradigm,
 but rather the paradigm itself. It is not only tedious (one must
 construct the pseudo-out-of-sample forecast errors), but also
 largely misunderstood and supoptimal in certain important re-
 spects.

 The key question is simple: Why would one ever want to do
 pseudo-out-of-sample model comparisons, as they waste data
 by splitting samples? For example, in comparing nested models,
 why not do the standard full-sample LR, LM, or Wald tests, with
 their unbeatable asymptotic optimality properties?

 In this section, I consider that question. The answer turns out
 to be that pseudo-out-of-sample model comparisons generally
 are wasteful and hence are dominated by full-sample proce-
 dures. There are, however, many nuances.

 4.1 Two Models

 I begin by stepping back and extracting some basic principles
 of model comparison that emerge from the massive literature.

 4.1.1 Optimal Finite-Sample Comparisons. I proceed by
 example, the first quite specialized and the second quite general.
 First consider the frequentist model comparison paradigm, and
 the very special and simple comparison of two nested Gaussian
 linear models, M ' and M2, where M' c M2 and M2 is assumed
 true. (Hence M' may or may not be true.) In that time-honored
 case, and at the risk of belaboring the obvious, one achieves
 exact finite-sample optimal inference using the F-test of linear
 restrictions,

 r _ (SSR, - SSR2)/(* - 1)
 Fn r _ - SSR2/(r-*) ' (6)

 where SSR denotes a sum of squared residuals, T is sample size,
 and k is the number of restrictions imposed under the null hy-
 pothesis. As is well known, F'2 is the uniformly most powerful
 test, so any other approach is suboptimal. The key observation
 for our purposes is that the optimal frequentist model compari-
 son procedure is based on full-sample analysis, not pseudo-out-
 of-sample analysis.

 Now maintain focus on exact finite-sample analysis but go in
 some sense to an opposite extreme, considering the Bayesian
 model comparison paradigm, and a more general two-model
 comparison (nested or nonnested, linear or nonlinear, Gaussian
 or non-Gaussian). Like the classical F test above, the Bayesian
 paradigm produces exact finite-sample inference, but the
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 perspective and mechanics are very different. Its essence is to
 condition inference on the observed data yt = {yi , y2, . . . , yt}.
 The Bayesian prescription for doing so is simply to select the
 model favored by posterior odds,

 P( M''yt) _ p(y,'M') p{Mx)
 p(M2'y,) _ p(y,'M2) X pjMjy
 posterior odds Bayes' factor prior odds

 As Equation (7) emphasizes, however, all data-based infor-
 mation in the posterior odds comes from the Bayes' factor,
 which is the ratio of marginal likelihoods. Hence if prior odds
 are 1:1, the Bayesian prescription is simply to select the model
 with higher marginal likelihood,

 p(yt'M¡) = J p(yt'6, Mj)p(0'M¡)d6. (8)
 A key observation for our purposes is that the optimal Bayesian
 model comparison procedure, like the optimal frequentist proce-
 dure, is based on full-sample analysis, not pseudo-out-of-sample
 analysis. An inescapable principle of Bayesian analysis is to
 condition inference on all observed data.

 Thus from frequentist two-model classical hypothesis testing
 in very simple environments, to Bayesian two-model posterior
 comparisons in much more general environments, optimal finite-
 sample model comparison is full-sample model comparison.
 Indeed it is hard to imagine otherwise: If one discards data
 in finite samples, both intuition and mathematics suggest that
 surely one must pay a price relative to an efficient procedure
 that uses all data.

 A second key observation, to which we will return in Section
 4.2, is that model selection based on marginal likelihood, at
 which we have arrived, is intimately related to model selection
 based on predictive likelihood. By Bayes' theorem the predictive
 likelihood is a ratio of marginal likelihoods,

 /• I - m . x P(y,+ ''M¡)
 Ky,+i|;y„ /• I - M¡) m . x = ...... ,

 p{yt'M¡) ......

 so that

 FT , I~ „X P(yr'Mi)
 FT I I p(yt+i'yt, , I~ M¡) „X = .......
 f=ļ p(y''Mi) .......

 Hence, Bayesian model selection is not only based on the (full-
 sample) marginal likelihood but also based on the (full-sample)
 predictive performance record.

 4.1.2 Optimal Asymptotic Comparisons. Now consider
 asymptotic analysis, and let us stay with our consideration of
 the Bayesian marginal likelihood paradigm. Asymptotic anal-
 ysis is in a certain sense ill-posed there, as the Bayesian per-
 spective is fundamentally finite sample, conditioning precisely
 and exclusively on the available sample information. From
 that perspective, once one determines the model with higher
 marginal likelihood there is nothing more to do, regardless of
 whether the sample size is small or huge. The Bayesian op-
 timal finite-sample two-model comparison procedure (7) re-
 mains the Bayesian asymptotically optimal two-model compar-
 ison procedure - nothing changes.

 Nevertheless, one can ask interesting and important asymp-
 totic questions related to Bayesian model selection. For ex-
 ample, because the marginal likelihood (7) can be difficult to

 calculate, the question arises as to whether one can approximate
 it asymptotically with a simpler construct. Schwarz (1978) an-
 swered in the affirmative, showing that, under conditions includ-

 ing T -> 00, the model with higher marginal likelihood is the
 model with smaller Schwarz information criterion (SIC), where

 SIC = klnT -2lnL, (9)

 and k is the number of parameters estimated. Indeed SIC is
 often, and appropriately, called the Bayesian information cri-
 terion (BIC). The key observation for our purposes should by
 now be familiar: the SIC as used routinely is based on the
 full-sample likelihood, not a pseudo-out-of-sample predictive
 likelihood (and in Gaussian contexts it is based on full-sample
 residuals, not pseudo-out-of-sample forecast errors).

 4.2 Many Models

 But there is much more to consider. In reality, we typically
 compare many models, nested and nonnested, one or none of
 which may be coincide with the true data-generating process
 (DGP). (Note that the explicit or implicit assumption thus far
 has been that at least one of the two models considered is true.

 The classical nested approach clearly assumes that at least the
 larger model is correctly specified, as mentioned earlier. Inter-
 estingly, the traditional Bayesian (possibly nonnested) approach
 also implicitly assumes that one of the models is correctly spec-
 ified, as emphasized in Diebold (1991). Only recently has that
 assumption begun to be relaxed, as in Geweke (2010), Geweke
 and Amisano (201 1), and Durham and Geweke (2013).) Let us
 continue our asymptotic discussion from that more-compelling
 perspective.

 SIC extends immediately to comparisons of many models;
 one simply selects the model with smallest SIC. SIC is of cen-
 tral importance because it has the key property of consistency in

 model selection, sometimes called the "oracle property." Con-
 sistency in model selection involves selection over a fixed set
 of models, and it refers to a procedure that asymptotically se-
 lects the true DGP with probability 1 (if the true DGP is among
 the models considered) and otherwise asymptotically selects the
 KLIC-optimal approximation to the true DGP with probability
 1 (if the true DGP is not among the models considered, and if a
 unique KLIC-optimal approximation is among the models con-
 sidered). The key observation for our purposes is that SIC - and
 its consistency property - is based on the full-sample likelihood,
 not on a pseudo-out-of-sample predictive likelihood.

 It is illuminating from a model comparison perspective to
 specialize SIC to the Gaussian linear regression case, in which
 it can be written in terms of penalized in-sample mean-squared
 error (MSE),

 SIC = r^MSE, (10)
 ' ^,~1 yT e2

 where MSE = ^,~1 ' and the et 's are regression residuals. SIC
 is an estimate of out-of-sample mean-squared forecast error; the
 key point for our purposes is that it achieves the oracle property
 by taking in-sample MSE and inflating it in just the right way
 to offset the in-sample MSE deflation inherent in model fitting.
 This is an important lesson: optimal estimators of out-of-sample
 predictive MSE are typically based on in-sample residual MSE
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 (using the full sample of available data), inflated appropriately,
 as emphasized by Efron and Tibshirani (1993) and many others.

 4.3 Selection Versus Testing

 In closing this section, it is useful to step back and note that al-

 though criteria like SIC and AIC were developed as pure model
 selection tools, not as hypothesis tests for model comparison,
 they can be readily adapted in that way, so that my basic points
 extend in that direction. The leading example is Vuong (1989)
 and Rivers and Vuong (2002), who developed inferential meth-
 ods for AIC. (see also Li 2009). That is, the AIC measures
 KLIC divergence from the DGP, and they develop methods for
 testing the pairwise null hypothesis of equal population KLIC
 divergence. Hansen, Lunde, and Nason (2011) went even far-
 ther by developing methods for controlling the family- wise error

 rate when performing many Vuong-type tests, allowing them to
 obtain a set of models containing the KLIC-optimal approxi-
 mating model with controlled error rate, the so-called "model
 confidence set."

 5. MORE PROBLEMS WITH
 PSEUDO-OUT-OF-SAMPLE MODEL COMPARISONS

 Several key questions remain. One is whether any pseudo-out-
 of-sample model comparison procedure can compete in terms
 of consistency with the full-sample procedures discussed above.
 The answer turns out to be yes, but simultaneously there are
 simpler procedures with the same asymptotic justification and
 likely-superior finite-sample properties (SIC being one exam-
 ple).

 A second key question - perhaps the key question that
 drives the pseudo-out-of-sample model comparison literature -
 is whether pseudo-out-of-sample procedures can help insure
 against in-sample overfitting, or "data mining," in finite sam-
 ples , quite apart from consistency in large samples. The answer
 is no (and the result is not new).

 5.1 Pseudo-Out-of-Sample Model Comparisons are
 Justified Asymptotically but Have Reduced Power
 in Finite Samples

 I have considered a variety of model comparison situations:
 two-model and many-model, nested and nonnested, finite sam-
 ple and asymptotic. In every case, power considerations pointed
 to the desirability of full-sample procedures. I emphasized,
 moreover, that it is possible to perform model selection in ways
 that are asymptotically robust to data mining. But again, in every
 case, optimal procedures were full-sample procedures. Is there
 no role for pseudo-out-of-sample procedures?

 It turns out that there is some role, at least from an asymptotic

 perspective. That is, despite the fact that they discard data, cer-
 tain pseudo-out-of-sample procedures can be justified asymp-
 totically, because the discarded data become asymptotically ir-
 relevant. Rather than estimating out-of-sample MSE by inflating
 in-sample MSE, such out-of-sample procedures attempt to esti-
 mate out-of-sample MSE directly by mimicking real-time fore-
 casting. The key example is "predictive least squares" (PLS).
 PLS should sound familiar, as it is precisely the foundation on

 which WCM-type procedures are built. First, split the data into
 a pseudo-in-sample period t = 1, . . . , t* and a pseudo-out-of-
 sample period ř = ř* + l,...,7' Then recursively estimate the
 models over ř = í* + l,...,7'at each t predicting t + 1, and
 finally construct for each model

 Z"-',+l yT e2 PLS = Z"-',+l yT e2 1 , (11)
 T-t*

 where êt/t-' is the time-ř one-step-ahead pseudo-forecast error,
 or "recursive residual," and select the model with smallest PLS.

 Wei (1992) established consistency of PLS, but not efficiency,
 and it appears that a procedure cannot be both consistent and
 efficient, as discussed in Yang (2005). So PLS has the asymptotic
 optimality property of consistency, but it is more tedious to
 compute than SIC, which also has that property. Moreover, one
 would expect better finite-sample SIC performance, because
 SIC uses all data. This is important. In a sense PLS invokes
 asymptotic games. Cutting a sample in half is of no consequence
 asymptotically, because half of an infinite sample is still infinite,

 but one would nevertheless expect a clear loss in finite samples.
 Based on the finite-sample power considerations invoked thus

 far, it is hard to imagine why one would do PLS with WCM-type
 inference as opposed to, say, SIC or AIC with Vuong-type in-
 ference. Hansen and Timmermann (2013) made this point very
 clearly in the nested case, showing precisely how the leading re-
 cursive pseudo-out-of-sample procedure of McCracken (2007)
 produces costly power reduction relative to the full-sample Wald
 statistic while simultaneously producing no offsetting benefits.

 5.2 Pseudo-Out-of-Sample Model Comparisons Do Not
 Provide Finite-Sample Insurance Against Overfitting

 SIC and PLS asymptotically guard against in-sample
 overfitting - by which I mean tailoring fitted models to in-
 sample idiosyncrasies, effectively fitting noise rather than sig-
 nal, and hence producing spuriously well-fitting models that
 then fail in out-of-sample forecasting - deflating in-sample
 MSEs with degree-of-freedom penalties harsher than those as-
 sociated with traditional F and related tests. (F and related tests
 were not designed for large-scale model selection, and they have
 poor properties (even asymptotically) when used in that way, as
 do the closely related strategies of model selection by maxi-
 mizing Ř1 or minimizing S2. Indeed max Ř2 model selection

 is equivalent to min S 2 model selection, where S 2 = Ý=-k

 = YZk e' • Hence, its form matches the "penalty x MSE"
 form of SIC in Equation (10), but with penalty y¡^. Consistency

 requires the much harsher penalty factor t(t) associated with
 SIC.)

 It is crucial to note, however, that all procedures under con-
 sideration, even those that achieve robustness to data mining
 asymptotically, are subject to strategic data mining in finite sam-
 ples. This point was first made and elaborated upon by Inoue
 and Kilian (2004) and Inoue and Kilian (2006). Their message
 was true then and is true now. There is little more to say.

 Introducing additional considerations, moreover, generally
 worsens matters for PLS/WCM. Consider, for example, an en-
 dogenous sample split point, t*. Then pseudo-out-of-sample
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 methods actually expand the scope for data mining in finite
 samples, as emphasized by Rossi and Inoue (2012) and Hansen
 and Timmermann (201 1), because one can then also mine over
 ť.

 Achieving robustness to data mining in finite samples requires

 simulation methods that model the data mining, as in the "reality
 check" of White (2000). Note that one can model mining on split
 point as well, in addition to mining variables for a given split
 point, as in the bootstrap model confidence set procedure of
 Hansen, Lunde, and Nason (2011). They developed methods
 robust to choice of in/out split point, but only at the cost of
 (additional) power loss. Finally, in any event there is always the
 issue of specifying the universe of models over which mining
 takes place; problems arise if it is too large or too small.

 6. WHITHER PSEUDO-OUT-OF-SAMPLE MODEL
 COMPARISON?

 The discussion thus far has cast pseudo-out-of-sample model
 comparisons in a bad light. Hence, I now proceed to ask whether
 there is any role for pseudo-out-of-sample model comparison.
 The answer is at least a cautious yes - or maybe even an em-
 phatic yes - for several reasons.

 6.1 Interaction With Structural Break Testing

 Quite apart from model comparison tests, pseudo-out-of-
 sample methods are a key tool for flagging structural change as,
 for example, with CUSUM and related procedures. The reason
 is simple: structural change produces real-time forecast break-
 down. That will always remain true, so there will always be a
 role for recursive methods in diagnosing structural change.

 Many open issues remain, of course, even for full-sample
 procedures. Recent work, for example, has begun to tackle the
 challenging problem of model comparison in the presence of
 possible structural change, as in Giacomini and Rossi (2010)
 and Giacomini and Rossi (2013). It is not yet clear where that
 work will lead, but there would seem to be a larger role for
 pseudo-out-of-sample procedures.

 6.2 Pseudo-Out-of-Sample Model Comparison With
 Enforced "Honesty"

 Let us not forget that true out-of-sample forecast comparisons

 remain an invaluable gold standard for finite-sample model com-
 parison. The problem of course is that in time series, where the
 data through time T are generally public information at time T,
 one can strategically overfit on any pseudo-out of sample pe-
 riod t = t* + 1, . . . , 7' Hence, truly honest time-series model
 comparisons must use as-yet-unrealized data, and waiting for
 10 or 20 years is hardly appealing or realistic (although it does
 emphasize the desirability of performing ongoing reliability and
 replication studies).

 In cross-sections, however, the prognosis may be better. First,
 at least in principle, one can gather new cross-section observa-
 tions at any time. Second, even when new observations are not
 gathered, there may be significant scope for the data-collection
 group truly to "hold out" a subsample to be used for subsequent
 predictive comparisons, as, for example, with Kaggle and related

 competitions. (See http://www.kaggle.com/.) Schorfheide and
 Wolpin (2013) explored such possibilities in the context of esti-
 mating treatment effects using competing structural models.

 6.3 Nonstandard Loss Functions

 I have emphasized that even "large" samples the question re-
 mains as to why one would want to implement comparatively
 tedious split-sample procedures when simpler procedures like
 information criteria are available. One reason is that split-sample
 procedures are typically more easily adapted to compare models
 under nonstandard loss functions, such as asymmetric and multi-
 step. Indeed the original DM article worked throughout with
 very general loss functions. Of course it emphasized forecast
 rather than model comparisons, but the point is that if one wants

 to use DM for model comparison, the set of admissible loss func-
 tions is very large. Most full-sample model-comparison proce-
 dures, in contrast, are tied closely to one-step-ahead quadratic
 loss.

 6.4 Comparative Historical Predictive Performance

 Quite apart from testing models, pseudo-out-of-sample model
 comparisons may be useful for learning about comparative pre-
 dictive performance during particular historical episodes. Sup-
 pose, for example, that using a full-sample Vuong test one finds
 that M' KLIC-approximates the DGP significantly better than
 M2. It may nevertheless be of great interest to go farther, as-
 sessing pseudo-out-of-sample predictive performance period-
 by-period via recursive methods, with particular attention (say)
 to performance over different business cycles. Such analyses
 may help to dig into the reasons - the "whens and whys and
 hows" - for Mi's predictive superiority. Rapach, Strauss, and
 Zhou (2010), for example, used out-of-sample predictive meth-
 ods to argue that stock market returns can be forecast during
 recessions but not during expansions.

 "Regular" full-sample model residuals may also inform
 about particular episodes, but they do so in a less-compelling
 way. Pseudo-out-of-sample residuals (recursive, rolling, split-
 sample, etc.) are in much closer touch with questions along the
 lines of "what was believed and projected, at what time, using
 information available at the time," which are often important in
 macroeconomics and financial economics.

 For example, in assessing financial market efficiency it is of
 interest to know whether agents could have used publicly avail-
 able information in real time to out-perform a benchmark asset
 pricing model. The issue is naturally framed in terms of out-of-
 sample forecasting: Could investors have used the information
 and predictive technologies available in real time to make in-
 vestment decisions that produce excess risk-adjusted returns?
 (See, among many others, Granger and Timmermann 2004.)

 An important caveat arises, however. Accurate and informa-
 tive real-time comparisons require using period-by-period "vin-
 tage" data, in contrast to simply using the most recent vintage
 as if it had been available in real time. This is rarely done in
 the pseudo-out-of-sample model comparison literature. It is of
 course irrelevant for data not subject to revision, such as various
 financial series, but tremendously relevant for variables sub-
 ject to revision, such as most macroeconomic series. (For an
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 overview, see Croushore 2006.) Moreover, incorporating vin-
 tage data causes (even more) complications if one wants to do
 inference, as emphasized by Clark and McCracken (2009).

 6.5 Pseudo-Out-of-Sample Procedures Might Have
 Better, if Still Imperfect, Finite-Sample Performance

 An overarching theme of this article has been that pseudo-out-

 of-sample model comparisons are wasteful insofar as they come
 at a potentially high cost (reduced power) with no compensating
 benefit (all known procedures, including pseudo-out-of-sample
 procedures, can be "tricked" by data mining in finite samples).
 The finite-sample possibility arises, however, that it may be

 harder, if certainly not impossible, for data mining to trick
 pseudo-out-of-sample procedures than to trick various popu-
 lar full-sample procedures. Consider, for example, information
 criteria in linear regression environments, whose penalties are
 functions of k, the number of included regressors. For any fixed
 k , the penalty is irrelevant because it is identical across all k-
 variable models, so such criteria will always select the most
 heavily mined model. Pseudo-out-of-sample procedures, in con-
 trast, have the potential to be much more discriminating. In fas-

 cinating unpublished work, Hansen (2010) rigorously examined
 and verified that intuition in some leading environments. Addi-
 tional work along Hansen's lines may prove highly valuable.

 7. CONCLUSION

 The DM test was intended for comparing forecasts; it has
 been, and remains, useful in that regard. The DM test was not
 intended for comparing models. Unfortunately, however, much
 of the subsequent literature uses DM-type tests for comparing
 models, in pseudo-out-of-sample environments. In that case,
 simpler yet more compelling full-sample model comparison
 procedures exist; they have been, and should continue to be,
 widely used. The hunch that pseudo-out-of-sample analysis is
 somehow the "only," or "best," or even necessarily a "good" way
 to provide insurance against in-sample overfitting in time-series
 model comparisons proves largely false. On the other hand,
 pseudo-out-of-sample analysis remains useful from several per-
 spectives, including, and perhaps most importantly, provid-
 ing direct information about comparative historical predictive
 performance.

 The basic conclusion, as I see it, is three-fold:

 1. If you insist on performing pseudo-out-of-sample model
 comparisons, then proceed if you must, but recognize that
 traditional DM tests, with traditional DM N( 0, 1) critical
 values, are likely fine (subject to Assumption DM, of course,
 but as I have stressed, Assumption DM is empirically verifi-
 able and typically reasonable).

 2. But : Think hard about why you are performing pseudo-out-
 of-sample model comparisons. They are typically costly in
 terms of power loss, and their benefits are typically unclear.
 In particular, they do not guarantee finite-sample protection
 against data mining in finite samples. In general, full-sample
 model comparison procedures appear preferable.

 3. But also : Respect the counterbalancing optimistic Section 6,
 and follow the evolving literature. Although I have said more

 negative than positive about pseudo-out-of-sample model
 comparisons, my inclusion of Section 6 was very much in-
 tentional. It is entirely possible that additional research into
 pseudo-out-of-sample model comparisons may reveal addi-
 tional benefits that flow from their use.
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 Comment

 Atsushi Inoue

 Department of Economics, Vanderbilt University, Nashville, TN 37235 (atsushi.inoue@vanderbilt.edu)

 While it is known that pseudo-out-of-sample methods are not
 optimal for comparing models, they are nevertheless often used
 to test predictability in population. In this comment, I elaborate
 on the often complicated relationship between in-sample and
 pseudo-out-of-sample inference. I develop an in-sample likeli-
 hood ratio test that has a pseudo-out-of-sample flavor to it.

 First, consider the predictive models, yt = st and yt =
 ¡X + £ř, where et is known to have a standard normal distri-
 bution for simplicity. We are interested in testing Ho : /x = 0.
 As Diebold (2014) points out, the pseudo-out-of-sample method
 is not optimal for testing /x = 0 (see Inoue and Kilian 2004).
 By the Neymann-Pearson lemma, the in-sample likelihood ra-
 tio test is most powerful. Even in the presence of a break to
 which Diebold alludes as a possible reason for the pseudo-out-
 of-sample method, one can still conduct an in-sample likelihood
 ratio test. For example, consider

 yt = SI (t > [zT]) + et. (1)

 When the break occurs within the observed sample, t =
 1, . . . , 7, one can define an in-sample likelihood ratio test for
 testing yt = st against (1), which is most powerful by the
 Neymann-Pearson lemma (see, e.g., Rossi 2005).

 Below I will consider an alternative environment in which

 an in-sample likelihood ratio test is closely related to pseudo-
 out-of-sample inference. Consider the simple time-varying-
 parameter model:

 y' = M (Ç) +£r. (2)

 where /x : [0, 1] - oo is a smooth function of time. While
 [ytij= i is a triangular array by construction, we omit the de-
 pendence of y on T to simplify the notation. Robinson (1989)
 and Cai (2007) developed nonparametric estimation methods
 for such time-varying-parameter models. In related work, Gia-
 comini and Rossi (2013) developed a test for nonnested model
 comparisons using the local Kullback-Leibler information cri-
 terion in this environment.

 The local log-likelihood function for the parameter /x(/ / T) is
 defined as

 T

 - I- log(27 r) ¿ Kw(s - t)
 s='

 T 2

 ~ ' ¿ (y* ~ ß (?)) 2 Kw<-S ~ *-3)

 where Kw(x) = (1/ W)k(x/W), k(-) is a kernel function and W
 is the bandwidth (Fan, Farmen, and Gijbels 1998). To establish
 a link between the resulting nonparametric estimator and the
 rolling regression estimator, I focus on the following asymmetric
 flat kernel:

 - if - W < jc < 0
 Kw(x) = ■ W (4)

 0 otherwise.
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