
OPTIMAL PREDICTION UNDER ASYMMETRIC LOSS1

By Peter F. Christoffersen and Francis X. Diebold2

Keywords:  Forecasting, loss function, asymmetric loss, nonlinear, heteroskedasticity

1.  INTRODUCTION

A MOMENT'S REFLECTION yields the insight that prediction problems involving asymmetric

loss structures arise routinely, as a myriad of situation-specific factors may render positive errors

more (or less) costly than negative errors.  The potential necessity of allowing for asymmetric

loss has long been acknowledged.  Granger and Newbold (1986), for example, note that

although "an assumption of symmetry about the conditional mean ... is likely to be an easy one

to accept, ... an assumption of symmetry for the cost function is much less acceptable" (p. 125). 

Practitioners routinely echo this sentiment (e.g., Stockman, 1987).

In this paper we treat the prediction problem under general loss structures, building on the

classic work of Granger (1969).  In Section 2, we characterize the optimal predictor for non-

Gaussian processes under asymmetric loss.  The results apply, for example, to important classes

of conditionally heteroskedastic processes.  In Section 3, we provide analytic solutions for the

optimal predictor under two popular analytically-tractable asymmetric loss functions.  In Section

4, we provide methods for approximating the optimal predictor under more general loss

functions.  We conclude in Section 5.

2.  OPTIMAL PREDICTION FOR NON-GAUSSIAN PROCESSES

Granger (1969) studies Gaussian processes and shows that under asymmetric loss the

optimal predictor is the conditional mean plus a constant bias term.  Granger's fundamental

result, however, has two key limitations.  First, the Gaussian assumption implies a constant
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conditional prediction-error variance.  This is unfortunate because conditional heteroskedasticity

is widespread in economic and financial data.  Second, the loss function must be of prediction-

error form; that is,  where  is the h-step-ahead

realization,  is the h-step-ahead forecast (made at time t), and  is the corresponding

forecast error.  More general functions of realizations and predictions are excluded.

Let us begin, then, by generalizing Granger's result to allow for conditional variance

dynamics.  We achieve this most simply by working in a conditionally-Gaussian, but not

necessarily unconditionally-Gaussian, environment, with prediction-error loss.  Subsequently we

shall allow for both conditional non-normality and more general loss functions.

PROPOSITION 1:  If  is a conditionally Gaussian process and

 is any loss function defined on the h-step-ahead prediction error  then the optimal

predictor is of the form  where  depends only on the loss function and

the conditional prediction-error variance 

PROOF:  See Appendix.

The optimal predictor under conditional normality is not necessarily just a constant added

to the conditional mean, because the conditional prediction-error variance may be time-varying. 

Conditionally Gaussian GARCH processes, for example, fall under the jurisdiction of

Proposition 1.  Thus, under asymmetric loss, conditional variance dynamics are important not

only for interval prediction, but also for point prediction.  If loss is asymmetric but conditional

heteroskedasticity is ignored, the resulting point predictions will be suboptimal and may have

dramatically greater conditionally expected loss in consequence.

The result of Proposition 1 that the "adjustment factor" depends only on the conditional

variance depends crucially on conditional normality.  We can dispense with conditional
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normality and still obtain a sharp result, however, which is a straightforward extension of

Proposition 1.

PROPOSITION 2:  If  has conditional mean , and a vector of (possibly time

varying) conditional moments of order two and higher , and  is any loss functiont+h|t

defined on the h-step-ahead prediction error  then the optimal predictor is of the form

 where  depends only on the loss function and .t+h|t

PROOF:  See Appendix.

Note, however, that although Propostion 2 does not require a Gaussian process, it does require

prediction-error loss.  In Section 4 we will relax that assumption as well.

3.  ANALYTIC SOLUTIONS UNDER LINEX AND LINLIN LOSS

Here we examine two asymmetric loss functions ("linex" and "linlin") for which it is

possible to solve analytically for the optimal predictor.  To maintain continuity of exposition, we

work throughout this section with the conditionally Gaussian process  3

For each loss function, we characterize the optimal predictor,  and we

compare its conditionally expected loss to that of two competitors, the conditional mean 

and the pseudo-optimal predictor  where  depends only on the loss functionh

and the unconditional prediction-error variance   The optimal predictor

acknowledges loss asymmetry and the possibility of conditional heteroskedasticity through a

possibly time-varying adjustment to the conditional mean.  The conditional mean, in contrast, is

always suboptimal as it incorporates no adjustment.  The pseudo-optimal predictor is

intermediate in that it incorporates only a constant adjustment for asymmetry; thus, it is fully

optimal only in the conditionally homoskedastic case 

3.1.  Linex Loss
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The "linex" loss function, introduced by Varian (1974) and used by Zellner (1986), is

It is so-named because when a>0, loss is approximately linear to the left of the origin and

approximately exponential to the right, and conversely when a<0.  The optimal h-step-ahead

predictor under linex loss solves

Differentiating and using the conditional moment-generating function for a conditionally

Gaussian variate, we obtain   Similar calculations reveal that the pseudo-

optimal predictor is  where  is the unconditional h-step-ahead

prediction-error variance.

Proposition 1 shows that the optimal predictor under conditional normality is the

conditional mean plus a function of the conditional prediction-error variance.  Under linex loss,

the function is a simple linear one, depending on the degree of asymmetry of the loss function, as

captured in the parameter a.   The reason is simple--when a is positive, for example, positive4

prediction errors are more devastating than negative errors, so a negative conditionally expected

error is desirable.  The optimal amount of bias depends on the conditional prediction-error

variance of the process; as it grows, so too does the optimal amount of bias, in order to avoid

large positive prediction errors.  Effectively, optimal prediction under asymmetric loss

corresponds to conditional-mean prediction of a transformed series, where the transformation

reflects both the loss function and the higher-order conditional moments of the original series. 
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For example, the optimal predictor of y  under conditional normality and linex loss,t+h

 is the conditional mean of x , where t+h
5

Inserting the optimal, pseudo-optimal, and conditional mean predictors into the

conditionally expected loss expression, we see that the conditionally-expected linex losses are

  and  respectively.  By

construction, the conditionally expected loss of the optimal predictor is less than or equal to that

of any other predictor.  Interestingly, however, it is not possible to rank the pseudo-optimal as

superior to the conditional mean predictor.  Tedious but straightforward algebra reveals that, for

sufficiently small values of  (depending non-linearly on the values of a and ), the

conditionally expected loss of the conditional mean will be smaller than that of the pseudo-

optimal predictor.  In very low volatility times, the conditionally optimal amount of bias is very

small, resulting in a lower conditionally expected loss for the conditional mean than for the

pseudo-optimal predictor, the bias of which is optimal in "average" times, but too low in low-

volatility times.

The situation is illustrated in Figure 1, in which we plot conditionally expected linex loss

as a function of  for each of the three predictors.  The conditionally expected loss of the

optimal predictor is linear in  and is of course always lowest.  The losses of the pseudo-

optimal and the optimal predictors coincide when   As  falls below  the

loss of the conditional mean intersects the loss of the pseudo-optimal predictor from above.  As

 gets close to zero, the optimal predictor incorporates progressively smaller corrections to

the conditional mean, so the conditionally expected losses of the optimal and conditional mean

predictors coincide.

3.2.  Linlin Loss
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a yt h ŷt h , if (yt h ŷt h) > 0
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(yt h ŷt h)f(yt h t)dyt h b
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(yt h ŷt h)f(yt h t)dyt h .
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The "linlin" loss function,

so-called because of its linearity on each side of the origin, was used by Granger (1969) and is

the loss function underlying quantile regression.  The optimal predictor solves

The first-order condition is  which is equivalent to

 where  is the conditional c.d.f. of y  and  is thet+h

conditional density of y .t+h

In the conditionally Gaussian case we have from Proposition 1 that

where  is the N(0,1) c.d.f.  It follows that the conditionally optimal amount of bias is

 so that   Similar calculations reveal6

that the pseudo-optimal predictor is 

Now let us compute conditionally expected linlin loss for the optimal, pseudo-optimal

and conditional mean predictors.  Recall the formulae for the truncated expectation,
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Et(L(yt h ŷt h)) (a b) t h t/ 2 .
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and substitute them into the expected loss expression to obtain

But under conditional normality,

where  and  is the N(0,1) p.d.f.  Substituting into the conditionally

expected loss expression, we obtain (after some algebraic manipulation)

For the optimal predictor,  yielding an expected loss of

  For the pseudo-optimal predictor, 

yielding an expected loss of

For the conditional mean predictor,  yielding an expected loss of 

  Qualitatively, the situation is identical to that shown in

Figure 1 for the linex case.

4.  APPROXIMATING THE OPTIMAL PREDICTOR

The analytic results above rely on simple loss functions.  In general, however, it is not

possible to solve analytically for the optimal predictor.  Here we develop an approximately

optimal predictor via series expansions.  The approach is of interest because it frees us from two

potentially restrictive assumptions -- conditional normality and prediction-error loss.

For the moment maintain the conditional normality assumption, and assume that the

optimal predictor exists and is unique,  where  is at least twice
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continuously differentiable.  Then we can take a second order Taylor series expansion around the

unconditional (and time invariant) moments  and 

Rewrite this as

where  and   Because the function  is

generally unknown, so too are the  functions.  But  and  are known, and the

minimization that defines  can be done over a very long simulated realization of length N,

  Under regularity conditions given in the Appendix, the

following proposition is immediate.

PROPOSITION 3:  As N ,  where  is the best predictor within

the  family, with respect to the metric 

PROOF:  See Appendix.

A number of remarks are in order.  First, the h-step-ahead conditional expectation and the

corresponding conditional variance may be computed conveniently using the Kalman filter

recursions.  Second, if loss is in fact of prediction-error form, L(e ), one may set  = 1 and  =t+h 1 3

 = 0 a priori, due to Proposition 1.  Third, it is clear that higher-order expansions in  and5

 may be entertained and may lead to improvements.  Fourth, conditional non-normality may

be handled with expansions involving more than the first two conditional moments (e.g.,

involving conditional skewness and kurtosis).  Fifth, and related, parametric economy can be
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achieved in conditionally non-Gaussian cases using the autoregressive conditional density

framework of Hansen (1994).  Hansen's framework exploits parametric conditional mean and

variance functions but allows for higher-order conditional dynamics by letting the normalized

variable  follow a distribution with possibly time varying

"shape" parameters, such as a t-distribution with time-varying degrees of freedom (and variance

standardized to 1).  Sixth, in both the conditionally Gaussian and conditionally non-Gaussian

cases, one is of course not limited to series expansions; other nonparametric functional

estimators may be used.

5.  SUMMARY AND CONCLUDING REMARKS

This paper is part of a research program aimed at allowing for general loss structures in

estimation, model selection, prediction, and forecast evaluation.  Recently a number of authors

have made progress toward that goal, including Weiss (1994) on estimation, Phillips (1994) on

model selection, and Diebold and Mariano (1995) on forecast evaluation.  Here we focused on

prediction and analyzed the optimal prediction problem under asymmetric loss.  We computed

the optimal predictor analytically in two leading tractable cases and showed how to compute it

numerically in less tractable cases.

A key theme is that the conditionally optimal forecast is biased, and that the conditionally

optimal amount of bias is time-varying in general and depends on higher-order conditional

moments.  Thus, even for models with linear conditional-mean structure, the optimal predictor is

in general nonlinear, thereby providing a link with the broader nonlinear time series literature.

Interestingly, some important recent work in dynamic economic theory is very much

linked to the idea of prediction under asymmetric loss discussed here.  Building on Whittle

(1990), Hansen, Sargent and Tallarini (1993) set up and motivate a general-equilibrium economy
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ŷt h
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with "risk sensitive" preferences resulting in equilibria with certainty-equivalence properties. 

Thus, the prediction and decision problems may be done sequentially--but prediction is done

with respect to a distorted probability measure that yields predictions different from the

conditional mean.

University of Pennsylvania

APPENDIX

PROOF OF PROPOSITION 1:  We seek the predictor that solves

(Here and throughout,  denotes )  Without loss of generality we can write

 and  so that

Because  depends on  but not  so too does the  that solves the

minimization problem depend on  but not    Q.E.D.

PROOF OF PROPOSITION 2:  Precisely parallels that of Proposition 1.   Q.E.D.

PROOF OF PROPOSITION 3:  Following Amemiya (1985), we require three conditions:

(1)  , a compact subset of .0
k

(2)  is continuous in  for all y=(y ,...,y ) and is a1+h N+h
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measurable function of y for all .

(3)  N L ( ) converges to a nonstochastic continuous function L( ) in probability-1
N

uniformly in  as , and L( ) attains a unique global minimum at .0

Under the conditions,  converges in probability to  by the argument of0

Amemiya (1985, p. 107).  Thus,  converges in probability to  by continuity of

 Q.E.D.
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1. This paper is a heavily-revised and shortened version of parts of Christoffersen and Diebold

(1994), which may be consulted for additional results, discussion, and examples. 
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3. As will be made clear, however, although conditional normality is crucial to our derivation of

the optimal predictor under linex loss, it may readily be discarded under linlin loss.

4. Note that as  the conditionally optimal amount of bias approaches zero.  Quadratic loss

obtains as , because if a is small one can replace the exponential part of the loss function by

the first two terms of its Taylor series expansion, yielding the approximation 

5. Because y  is conditionally normal with  x  is conditionally normal witht+h t+h

6. Note that with linlin loss (in contrast to linex loss) it is very easy, even for non-Gaussian

conditional distributions, to find the optimal predictor -- just draw the conditional c.d.f. and read

the value on the x-axis corresponding to a/(a+b).  More formally,  so 

is simply the (a/(a+b))th conditional quantile.  When a=b, of course,  is the conditional

median.

FOOTNOTES



Figure 1
Conditionally Expected Linex Loss of 

Conditional Mean, Pseudo-Optimal, and Optimal Predictors

Notes to Figure:  The Linex loss parameters are set to a=1 and b=2.  The unconditional variance

is fixed at 1.


