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Abstract

I selectively survey several key strands of literature on financial risk measurement and manage-
went. | begin by showing why there's a need for financial risk measurement and management
and then | turn to relevant aspects of return distributions and volatility luctuations. with im-
plicit emphasis on market risk for equities. | then treat market risk for bonds, focusing on the

vield curve, with its nuances and special structure. In addition to market risk measuremont

and management, I also discuss aspects of measuring credit risk, operational risk, systemie risk,
and underlying business-cycle risk. 1 nevertheless also stress the limits of statisticnl anualysis

and the associated importance of respecting the unknown and the unknowable
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1 Introduction

In this book 1 collect many of the key papers that contribute to my vision of risk measurement
in its role as the key input to successful risk management. 1 focus mostly on market risk,
but 1 also treat aspects of credit risk. operational risk, systemic risk. business eycle risk,
and the special structure of risks associated with the yield curve. O course any attempt
to distill the financial risk measurement literature into a handful of papers borders on the
absurd, yet I think that the collection coheres well. and tells the right story. | include mostly
well-known papers, but I omit many equally well-known papers, whether to respect space
constraints or to maximize coherence with my chosen themes. Conversely, | also include
several less-well-known papers deserving of wider attention.

This introductory chapter provides an interpretive overview. | begin in section 2 by
emphasizing the need for financial risk management, given that, perhaps surprisingly, tradi-
tional economic theory suggests no need. The key lies in various real-world “details” ignored
by the traditional theory. Those details turn out not to be details at all: rather, they are
now recognized as central to the story. 1 then tell that story in the rest of the chapter. |
emphasize the non-normality of financial asset returns in section 3, and I emphasize their
fluctuating volatility in section 4. 1 focus on the more specialized issues associated with
market risk in bond vields (that is. the yield curve and the factors that drive it) in section
5. | highlight a variety of issues centered around non-market risk, including credit risk,
operational risk, and systemic risk, in section 6. | draw attention to a key macroeconommic
fundamental risk driver. the business cycle, in section 7. | emphasize the limits of statistical

risk measurement in section 8, and 1 offer suggestions for further reading in section Y.

2 There is a Role for Financial Risk Measurement and

Management

Much of modern economics, including financial economics, begius with the famous Arrow-
Debren model of general equilibrium. The classic statement (under conditions of certainty )
is Arrow and Debreu (1954). Arrow (1964), written around the same time as Arrow and
Debren (1954), makes the crucial progression to consideration of general equilibrinm in

risky environments." Arrow effectively shows how to manage risks using the now-famous

TAs noted in Arrow (1964}, “This paper was originally read at the Collogque sur les Fondements et
Applications de la Theorie du Risque en Econometrie of the Centre Nationale de 1o Recherche Scientifique,
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theoretical construct of “Arrow-Debren securities.” The ith such Arrow-Debren security. s;.
pays $1 (say) if contingeney 1 oceurs at time ¢, and $0 otherwise.

Many standard securities have payoffs that vary with certain contingencies and that
therefore might crudely approximate those of certain Arrow-Debren securities. Much of
financial engineering can be interpreted as designing portfolios of Arrow-Debren securities.
or closely-related securities, with desired “payoff profiles.” Put and call options are classic
examples of derivative assets with such state-contingent payoffs. Moreover, precise Arrow-
Debreu securities now trade, under the name of “binary options™ (also sometimes called
digital, or all-or-nothing options). They are growing in popularity and traded on-exchange.?

In a certain sense, Arrow-Debreu securities are the beginning and the end of the hedging
story. Exposure to risk 7 at time ¢ can be hedged immediately by going long or short the
appropriate amount of s;. In the limit, if s, exists for every possible i and ¢ (that is, for
all states and times), one can hedge any risk by holding an appre priate portfolio of Arrow-
Debren securities. But there is a crucial caveat: the possibility and efficacy of Arrow-Debreu
hedging relies on strong assumptions — essentially complete and perfect capital markets
that provide a natural theoretical benchmark but that may of course fail in reality.

In theory Arrow-Debreu hedging can be done by any economic entity (private agents,
firms. governments, ...), and it seems clear that risk-averse private agents may want to
avail themselves of the opportunity. But what about firms? Need they be risk averse?
Put differently, do firms need to engage in risk management, via Arrow-Debreu securities
or any other means? Again working in an idealized setting amounting to perfect capital
markets, Modigliani and Miller (1958) answer this question in the negative, showing that a
firm’s cost of capital is invariant to its risk profile as measured by leverage. The seemingly-
counterintuitive — indeed initially-shocking - Modigliani-Miller result is act ually quite natural
upon reflection. With perfect capital markets, investors can allocate firm risk in any way
desired by holding appropriate portfolios of financial assets; hence neither investors nor firms
need concern themselves with firm capital structure. Put differently, in the Modigliani-Miller
world there is simiply no role for risk management by firms.

A key tension therefore arose in theoretical finance cirea 1958, It was clearly understood
how firms could hedge in principle using Arrow-Debreu securities. but the Modigliani-Miller
theorem said there was no need! The tension is resolved by recognizing that, as with Arrow-

Debreu hedging, the Modigliani-Miller theorem relies on assumptions — again, essentially

Paris, France, on May 13, 1952 and appeared in French in the proceedings of the colloquium, published by
the Centre Nationale under the title, Econométric, 1953.7
“See, for example, http://www.cboe.com/products/indexopts/bsz_spec.aspx.
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perfect capital markets — that fail in reality, due to distortionary taxes, costs of financial
distress, and so on.

Hence, despite its invaluable role as a theoretical benchmark. the Modighani-Miller the-
orem fails. Indeed a large part of the last half-century of corporate finance theory has been
devoted to confronting the failure of Modigliani-Miller, and determining what, if anything,
can be said in more realistic environments with imperfect capital markets. Crucially, the
failure of Modigliani-Miller creates a role for firm-level risk management. Froot and Stein
(1998) is a key contribution in that regard, rigorously illuminating in realistic environments
the roles of hedging, capital structure policy, capital budgeting policy, and crucially, their
joint endogenous determination in equilibrinm.

If finance theorists took some forty vears from Modigliani-Miller to Froot-Stein to appre-
ciate the value of firm-level risk management, finance practitioners understood much more
quickly. In a sense good hedges were always sought, and by the 1960s at least some options
were trading. But even by 1970 option valuation remained rather poorly understood, which
limited the use of options and therefore hindered the growth of options markets. Ironically
and unfortunately, simultancously with this bottleneck in the supply of effective options-
based hedging vehicles. demand shot upward as the Bretton-Woods exchange rate system
began its collapse in the early 1970s, creating the prospect of radically increased exchange
rate risk.

Enter Black and Scholes (1973), who solved the option pricing problem in a single bean-
tiful paper (at least under assumptions now recognized as heroic, involving not only perfect
capital markets, but also specific dynamics and distributions of the underlying spot assets,
the failure of which will concern us for much of the rest of this chapter). The Black-Scholes
timing couldn’t have been better, as the world moved to floating exchange rates in 1973,
the same year that the Black-Scholes paper was published. Firms finally had a key tool to
operationalize Arrow-Debreu hedging in the real world - options, priced rigorously - and the
derivatives industry was born.

The famous “Black-Scholes formula™ relates the value of a European option to the pa-
rameters of the option contract (strike price, time to maturity), prevailing general financial
market conditions (the interest rate), and prevailing spot market couditions (current spot
price. current spot volatility). The Black-Scholes formula for the price of a European call on

a non-dividend-paying stock is:

C'=N(d)S— N(dy)Ke™™ (1)
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where :
& = In(S/K) + (r + a*/2)7
S ot
In(S/K)+ (r —a*/2)7
({2 =

a\T i
and where N(-) is standard normal cdf, 7 is time to maturity, S is underlying spot price, X
is strike price, v is the risk-free rate, and ¢ is the underlying spot return volatility.

Perhaps surprisingly at first, the last-mentioned option-price determinant (current spot
volatility) plays an absolutely central role. The intuitive reasoning is simple: the higher is
volatility, the more likely is the spot price to move such that the option is “in the money.,”
and hence the more valuable is the option. That fact, together with the fact that the other
option-price determinants are more-or-less readily and reliably measured, reveals that option
prices — and changes in those prices over time — primarily reflect market views on volatility.
Effectively, volatility is the “commodity” traded in options markets.”

Indeed, by looking at the market price of an option, one can infer the market’s views
about the corresponding path of future spot volatility, at least under the risk-nentral measure
relevant for options pricing, and under the previously-mentioned heroic assumptions needed
for validity of Black-Scholes. Mathematically, because Black-Scholes gives an option’s price
as a function of underlying spot volatility, C' = f(a, ...), we can invert Black-Scholes to find
the volatility that rationalizes the market price of the option. o = f~Y((, ...). This quantity
is often called option-implied volatility, or simply implied volatility. Tmplied volatilities
on broad equity market indexes have emerged as widely-followed “market fear ganges.” A
leading example is the VIX, as described in Whaley (1993). Early implementations (“old
VIX") averaged implied volatilities across strike prices, whereas more recent implementations
("new VIX") infer implied volatility directly from traded options prices. VIX is now heavily
traded on CBOE., as are derivatives on VIX.

3 Asset Returns are Unconditionally Fat-Tailed

Stochastic financial modeling, and in many respects much of the theory of stochastic pro-

cesses more generally, traces to Bachelier (1900), whose amazing doctoral dissertation was

“There are many flavors of “volatility” and we shall use the term rather loosely. with the meauing clear
from context. Depending on the situation. volatility might refer, for example, to conditional variance or
standard deviation, unconditional variance or standard deviation. realized variance or standard deviation.
or options-implied variance or standard deviation.
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largely unnoticed for many decades. In modern parlance and notation, Bachelier proposed
using geometric Brownian motion as a dynamic model of spot price P; that is, he proposed

modeling log price as a diffusion:
dp = pdt + adWV, (2)

where p = [(nP, p is instantaneous drift, o is instantaneous volatility, and dW is an increment
of standard Brownian motion. The discrete-time analog is a geometric random walk witl
Gaussian shocks,

Apy = p+ oz (3a)
g~ itd N(0.1), (3b)

where p, = [nF;, g is per-period drift and o is per-period volatility. In what follows it will
prove convenient to define the continnously-compounded return 7, = Aln Py and to drop the

drift (as it is not central to our concerns), writing
Iy =08 (4a)

sp~atd N(0,1). (4h)

Importantly, Bachelier also explored, both theoretically and empirically, some of the asset-
pricing implications of his geometric diffusion assumption for spot price.

Let us think about Bachelier’s normality assumption (4b), and its implications for mea-
suring volatility, which is a central concept in risk analysis. (We have already seen the
centrality of volatility in the Black-Scholes options pricing formula (1).) The variance of
a random variable measures its spread, or dispersion, around its mean. It is well-known
that Gaussian random variables are completely characterized by their mean and variance.
Henee in Gaussian environments the variance o2 (or its square root, the standard deviation
o) contains all information about volatility. It is the uniquely-relevant and all-encompassing
volatility measure,

The normal-centric worldview enshrined in Bachelier's model implicitly motivated nu-
merous academics and practitioners to equate risk with standard deviation.* A classic risk

1Of course the Bachelier motivation was implicit rather than explicit, as his work went largely unnoticed
for more than halfl a century following its appearance. But Gaussian thinking was very much in the air
through much of the first half of the twentieth century, due to the vibrant work in stochastic process theory
and general probability and statistical theory undertaken then (e.g., sophisticated central-limit theorems).
Indeed central-limit theoremws are responsible for converting the increments of standard Brownian motion in




*

Financial Risk Measurement and Management Xix

measurement /management example is Markowitz (1952) who works in exclusively Gaussian
["mean-variance” ) mode in the context of portfolio risk minimization. The idea is that in-
vestors like expected returns () but dislike risk (@), so that for any given expected return
investors should seek the smallest risk. Related. investors should not focus on finding port-
folios with high expected returns p per se, but rather on finding portfolios with high risk
adjusted expected returns p/a, a quantity closely-related to the so-called Sharpe ratio.

The subsequent and more sophisticated capital asset pricing model (CAPM) of Sharpe
(1964) is similar but adopts a risk adjustment different from that of the Sharpe ratio, rec-
ognizing that the risk of a portfolio concerns not Just its variation, but also its covariation
with a risk factor. In the CAPM one “controls” for risk via linear regression on a market risk
factor, and one measures risk by the corresponding regression coethcient, the famons CAPM
“beta”.® In multi-factor CAPM extensic s, one uses multiple linear regression to control not
only for a market risk factor, but also for a fow additional risk factors. The key insight for
our purposes is that the CAPM and its relatives maintain the thoroughly-Gaussian spirit
of Bachelier, Markowitz and Tobin. In fact the CAPM requires normality in the absence of
restrictive assumptions regarding preferences, as it is based on linear regressions, and linear-
ity of regression functions is a Gaussian phenomenon. Related, linear regression coefficients
like the CAPM beta are simply ratios of covariances to variances, which again are intimately
wed to the Gaussian worldview.

[t should be obvious by now. but it merits repetition, that Bachelier's assumptions (4).
and the linear/Gaussian approach to risk measurement that they implicitly inspired, could
be violated for many reasons. Consider in particular the normality in (4b), as we have thus
far focused on normality and the associated use of standard deviation for risk measurement.
Normality is simply an assumption, Of course it can be derived from the continuous-time
diffusion (2). but (2) is stself an assumption.  For example, even if we maintain all other
aspects of the diffusion (2), simply relaxing the assumption that it is driven exclusively
by standard Brownian motion (as for example if it were driven by a standard Brownian
component and a jump component) will invalidate the normality in (4b).

Mandelbrot (1963) and Fama (1965) recognized all this. subjected Bachelier's model to
empirical scrutiny, rejected it soundly, and emphasized a new theoretical (stable Paretian)
distributional paradigm. They emphasized that real asset returns tend to be symmetrically

distributed, but that their distributions have more probability mass in the center and in

(2) into Gaussian discrete-time shocks in (4b), as the shock over any discrete interval is effectively the sum
of infinitely many smaller shocks in the interyal,
"Specifically, excess portfolio returns are projected, or regressed. on excess market returns
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the tails than does the Gaussian. The “fat tails,” in particular, imply that extreme events

crashes and the like, “black swans” in the memorable prose of Taleb (2007) -~ happen in
real markets far more often than would happen the case under normality. In many respects
those papers mark the end of “traditional” (linear, Gaussian) risk thinking and the beginning
of “modern” (non-linear, non-Gaussian) thinking, even if traditional thinking continues to
appear too often in both academics and industry.

Mandelbrot continued, correctly, to emphasize fat tails for the rest of his career, even
as much of the rest of the finance profession shifted focus instead to possible dependence
in returns, in particular linear serial correlation or “mean reversion” in returus, a violation
of the “iid” part of (4b). Reasonable people can — and do - still debate the existence and
strength of mean reversion in returns, but no reasonable person can deny the existence of
fat tails in distributions of high-frequency returns.

In the relevant non-Gaussian environments emphasized by Mandelbrot and Fama. the
standard deviation loses its status as the uniquely-relevant risk measure. It remains of
some value, as the expected squared deviation of a random variable from its mean always
provides some risk information, for example via bounds like the classic Chebychev inequality,
which remains valid in non-Gaussian environments. But the standard deviation provides
an incomplete summary of risk in non-Gaussian environments, and inappropriate use of
Gaussian thinking can produce seriously nusleading risk assessments. For example, as is
well-known, the probability that a Gaussian random variable assumes a value more than two
standard deviations from its mean is small (approximately five percent ), whereas that same
probability for a fat-tailed random variable can be much larger. Indeed events that ocem
with negligible probability in Gaussian environments (e.g.. 3 @ events) can (and do) oceur
frighteningly often in the fat-tailed environments relevant for financial markets.

Hence the Mandelbrot-Fama findings make one skeptical about relying on exclusively
on standard deviation for risk assessment. and other approaches have been proposed. For
example, extreme-value theory has proved helpful by producing measures of tail fatness in
the extreme tails of distributions, and related quantities derived from them, as discussed
extensively in Embrechts et al. (1997).

Another nseful additional risk measure is so-called “value at risk.” which is the quantile of
a distribution, typically an extreme quantile related to a tail event. 1% value-at-risk (VaR),
for example, is just the first percentile of a payoff or return distribution; that is, 1% VaR is
that value such that the probability of a greater loss is just 1%. VaR has achieved notable

popularity in applied finance, particularly in industry and regulation, and Duffie and Pan
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(1997) provide an nsightful introduction.

But even such seemingly-innocuous measures as VaR (say) can wreak havoe when used
exclusively. First, and obviously, note that a single VaR (1%, say) is an incomplete risk
sumimary, as complete risk assessment would necessitate monitoring VaR at a variety of
levels, which in the limit wounld trace the entire distribution. That is, one ultimately wants
to examine and characterize not just parts of distributions, but entire distributions.”

Second, and less obviously, VaR is also an incoherent risk summary, in the sense that
it violates certain axioms that reasonable risk measures should arguably satisfy, as shown
by Artzner et al. (1999). Unfortunately, however, there is no all-encompassing uniguely-
relevant risk measure for non-Gaussian situations. One can and should attempt to assess
distributions in a variety of ways, examining a variety of risk measures, each iusufficient
individually but hopefully aggregating to a well-informed risk assessment.

In closing this section, it is instructive to connect to the Black-Scholes formula (1) for
a final take on the perils of uncritical Gaussian thinking. The validity of the Black-Scholes
formula requires two sets of heroie assumptions. The first concerns perfect capital markets,
with continuous trading possibilities. The second concerns the underlying spot price St ITron-
ically, Black-Scholes is completely predicated on the maintained assumption that S follows
precisely the Bachelier process (4a)-(4b)! As we have emphasized, the Bachelier model fails,
due to non-normality of shocks and other, related, reasons that we will discuss shortly. Hence
the Black-Scholes formula fails, mis-pricing options in systematic ways across strike prices.”

The bottom line is sobering indeed: Although Gaussian assumptions often produce sim-
ple. intuitive models, and similarly simple, elegant formulas that serve as useful theoretical
benchmarks, their uncritical use in real-world financial risk management is often ill-advised.
Real financial asset returns are generally fat-tailed, not Gaussian, so that Gaussian models
tend to understate true risk, resulting in mis-priced spot and derivative assets. mis-allocated

portfolios, and inadequate risk management strategies,

4 Asset Returns are Conditionally Heteroskedastic

Thus far we have worked in 22d environments. In that case conditional moments are constant
and equal to unconditional moments, and hence there is no need to distinguish them. In

particular, we have emphasized the unconditional non-normality first noticed by Mandelbrot,

“See Diebold et al. (1998) for background and references on full-density risk assessment and forecasting.
"See, for example, Christoffersen (2012), chapter 10.
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We could write a generalized Bachelier model as
= 0&, (5a)

s~ d(0, 1), (5b)

where = is not necessarily Gaussian.

But time-varving volatility (conditional variance) also turns out to be a key feature of fi-
nancial asset return data, and risk measurement and management are intrinsically concerned
with tracking volatility movements. This leads us to distinguish conditional from uncondi-
tional distributions, and in particular, conditional from unconditional variance. With this

in mind, we can write a differently-generalized Bachelier model as
Iy = 045 (Oa)

sp ~tid N(0,1). (Gh)

In particular, we now allow for volatility dynamics but we maintain Gaussian shocks. Dif-
ferent volatility models correspond to different assumptions about the dynamics of the con-
ditional variance, of. The Gaussian shock distribution may seem incongruous with the fat
tails emphasized in section 3, but interestingly and importantly, it is not. as will be shown

shortly.

4.1 ARCH and GARCH

The autoregressive conditional heteroskedasticity (ARCH) model of Engle (1982) was a key
breakthrough. ARCH models are tailor-made for time-series environments, in which one
often sees volatility clustering, such that large changes tend to be followed by large changes,
and small by small, of either sign. That is, one often sees persistence, or serial correlation,
in volatility, quite apart from persistence (or lack thereof) in conditional mean dynamics,
'he ARCH process approximates volatility dynamics in an autoregressive fashion; hence the

name autoregressive conditional heteroskedasticity. The ARCH(1) model. for exatple, is:
o, = W+ ar_,. (7)

ARCH processes achieve for conditional variance dynamics precisely what standard autore-

gressive processes achieve for conditional mean dynamics.
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ln practice the persistence in return volatility is typically so strong that finite-order
(let alone first-order) ARCH processes are inadequate.  However, the generalized ARCH
(*GARCH") model of Bollerslev (1986) solves the problem. The GARCH(1.1) model is

0; = w+arf, + Bal,, (8)

and it has emerged as a canonical benchmark. It simply angments the ARCH(1) process
with a direct conditional variance lag. GARCH(1,1) processes achieve for conditional vari-
ance dynamics precisely what ARMA(L,1) processes achieve for conditional mean dynamics,
Indeed just as an ARMA(1.1) process is AR(>), back-substitution in (8) reveals that the
GARCH(1.1) is ARCH(>c). In particular, current volatility is an exponentially weighted
moving average of the entire history of past squared returns.

We are now in a position to make a crucially important observation: conditional variance
dynamics fatten unconditional distributional tails. Hence, for example, even if = in (6) is
Gaussian, the unconditional distribution of returns will be fat-tailed when the conditional
variance evolves in serially-correlated fashion as with ARCH or GARCH. The unconditional
fat tails arise because volatility clustering generates disproportionate activity in the center
(tranqguil times) and tails (volatile times) of the unconditional distribution. If in addition =
is fat-tailed, then the unconditional distribution of returns will be even more fat-tailed.

The insight that conditional variance dynamics fatten unconditional distributional tails
has an interesting history. Mandelbrot (1963) offered volatility clustering as an “explanation”
of fat unconditional tails but didn't pursue it. Engle (1982) pursued a particular model of
volatility clustering and showed that it did indeed imply fat tails, but he emphasized the
volatility clustering. In any event, the key point is that unconditional fat tails and conditional
volatility clustering are not independent phenomena, requiring independent explanations.
Instead the GARCH model makes clear that they are intimately-related, two sides of the

same coitt,

4.2 Stochastic Volatility

In the GARCH model, conditional variance is a deterministic function of conditioning in-
formation. That may seem odd at first, but it's not; indeed conditional moments typically

are deterministic functions of conditioning information.® It is, however, certainly possible

*T'he linear regression model. for example. is a deterministic model of the conditional mean. given by
E(y/X) = z8.
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to allow for a separate stochastic shock to volatility, working with a two-shock rather than
one-shock model, which takes us to the so-called stochastic volatility (SV) model. The SV(1)

model, for example, is given by:"

ol = exp(fo + hy) (9a)
hy = phy—y + 1 (9b)
m ~ iid N(0,a7). (9¢)

The stochastic volatility model (6),(9) was proposed and applied empirically by Taylor
(1982). The term “stochastic volatility” is a bit odd, insofar as GARCH conditional variance
is also a stochastic process, but the usage is ubiquitous and so we [ollow suit.

Taking absolute values and logs, we can re-write the SV model as:
2in|ry| = 8o + hy + 2n|z,| (10a)

hy = phy—y + 1. (10bh)

This is a non-Gaussian state-space systemn, because the measurement error 2ln|s,| can not be
Gaussian if £, Gaussian. Hence parameter estimation and volatility extraction require filters
more sophisticated than the Kalman flter (e.g., the particle filter); see for example Andrieu
et al. (2010), Note that any such extractions will be smoothed versions of the volatility
proxy (here based on absolute returns) just as in the GARCH case (there based on squared
returns).

Although GARCH and SV are similar in many respects, there are also important differ-
ences. The key distinetion is that, in the parlance of Cox (1981), GARCH is “observation-
driven” whereas SV is “parameter-driven.” Observation-driven GARCH refers to the fact
that GARCH volatility is driven by observed data (the history of r7), whereas parameter-
driven SV refers to the fact that SV volatility is driven by latent shocks (the history of
).

SV's parameter-driven structure makes it comparatively easy to analyze, using the large
amount of powerful theory available for state-space models. SV models are, however, chal-
lenging - or at least comparatively tedious — to estimnate, as MCMC methods like the particle

filter are required to evaluate the likelihood or explore the posterior. The situation is reversed

“Note that the exponential in the SV formulation automatically keeps of positive, whereas, for example
GARCH(1,1) requires the parameter constraints w, o, 3 > (0.
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for GARCH models. GARCH models are trivial to estimate, becanse they are specified di-
rectly in terms of one-step conditional densities, and the likelihood can always be written in
terms of those densities, so evalnation of the GARCH likelihood is simple.

SV has an interesting and rather deep economic motivation. It embodies time deforma-
tion: that is, the idea that “economic time” and “calendar time” need not move together in
financial markets. In particular, although calendar time evolves at a constant rate, economic
time may speed up or slow down depending on information flow into the market. The vary-
ing speed of economic time, corresponding to varying speed of information flow, produces
stochastic volatility in calendar-time returns. Calendar-time volatility is high when economic
time is running quickly (i.e., when more information is flowing into the market), and low
when economic time is running slowly.

The time deformation perspective traces at least to Clark (1973). Let exp(n) be a
non-negative random variable governing the number of trades per period of calendar time.
Then the continuonsly-compounded return per period of calendar time (ry) is the sum of
the exp(n,) intra-period returns. That is, r, = Z:’l'“"' ri, where (say) r, ~ iid(0, x). This
implies that o7 = & exp(n), so that ry has conditional heteroskedasticity linked to trading
volume. Note that this fits precisely the form of the stochastic volatility model (6).(9) with
A = In k and p = 0 so that volatility is stochastic but not persistent.

Volatility fluctuates in the Clark model in a fashion linked to trading volume, but not in
a persistent fashion, because Clark takes volume to be iid. Hence the Clark model is perhaps
best thought of as “endogenizing” unconditional fat tails via time deformation. rather than
as producing interesting volatility dynamies. It is a simple extension, however, to allow for
serial correlation in volume. We write volume as exp(liy) where hy = phy_y + 1, in which
case volatility becomes persistent, given by af = x exp(hy), and of course unconditional tails

remain fat. This is precisely the stochastic volatility model (6).(9) with 3y = In x.

4.3 Realized Volatility

Previously we introduced models of discrete-time (e.g., daily) conditional variance, effec-
tively E(r?|$2,_;). where the precise contents of 4,y depended on the precise model studied
(e.g.. GARCH, SV). That is, we studied conditional expectations of discrete-time squared
returns. Now we study not expectations, but realizations, from a related but somewhat
different perspective.  We work in continuous time, with continuously-evolving volatility.

and we estimate the total quadratic variation over a discrete interval, in a sense dispensing

with volatility forecasts in exchange for highly-accurate “nowcasts”™. This realized volatility
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facilitates superior risk measurement, which can translate into superior risk management.
Moreover, as we shall show, it can also be used to improve discrete-time conditional variance
models.

Consider a stochastic volatility diffusion
dp = o(t)dWV, (L1)

where as previously p denotes log price and dW is an increment of standard Brownian motion.
The change relative to the Bachelier diffusion (2) is that we now allow the instantancous
volatility to be time-varying, writing o(). A key object of interest for risk measurement, risk
management, asset pricing and asset allocation is the so-called integrated volatility (quadratic

variation) over a discrete interval like a day:

IV, = /l a’(7)dr. (12)
Ji-1
IV is a function of the latent instantancous volatility, a(t), which would seem to make precise
estimation of /V difficult or impossible.
However, following work such as Audersen et al. (2001), Barndorff-Nielsen and Shephard
(2002), and Andersen et al. (2003), which builds on the theoretical insights of Merton (1980).
we can use high-frequency intra-day data to obtain a highly-accurate estimator of 7V, called

realized volatility (RV). RV on day ¢ based on returns at intra-day frequency A is

N(A)

Z (I't—l«;A‘l’r—|-|J_|»3): N (13)

J=1

RV; (A)

where p_y.;a = p(t — 1+ jA) denotes the intra-day log-price at the end of the jthinterval
on day t, and N (A) = 1/A. In principle, RV can be made arbitrarily accurate for IV by
sampling intra-day returns finely enough. That is, as A — (1, corresponding to progressively
more finely-sampled returns, RV, — [V,. Hence, the true ex-post daily (say) volatility
effectively becomes observable, and it does so in an entirely model-free fashion regardless of
the underlying process for a(t).

Note that the squared daily return is just a particularly bad version of RV,_, with sam-
pling only once per day. To see why sampling only once per day is inadequate, consider a
day with large price fluctuations on whicl, by chance, opening and closing prices are equal.

Then the daily return (and hence squared return) is zero, and one would erroneously assess
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low volatility for that day based on the squared daily return. In contrast, RV based on
high-frequency intra-day sampling would capture the high volatility.

The RV-1V framework can be generalized to allow for jumps. That is, following Barndortf-
Nielsen and Shephard (2004), the stochastic volatility diffusion (11) can be generalized to

include compound Poisson jumps,
dp = a(t)dW + 8(t)dq(t), (14)

where g(t) is a counting process with (possibly) time-varying intensity governing jump ar-
rivals, where 0(f) = p(t) — p(t—) refers to the size of the discrete jumps. In the compound
Poisson case, RV remains consistent for 7V, but IV now has a jump and a non-jump com-
ponent. Barndortf-Nielsen and Shephard (2004) develop a modified version of RV (so-called
bi-power variation) that is consistent for the non-jump part of IV, thereby allowing jump
and non-jump parts of IV to be disentangled "

Because of its superior accuracy relative to IV proxies like daily absolute or squared
returns, RV can be used to improve the performance of SV and GARCH models. It can be
used in SV to replace the noisier volatility proxy || in (10). as emphasized by Barndorff-
Nielsen and Shephard (2002). It can be used in GARCH to replace the noisier volatility
proxy r7 in (8), producing a “GARCH-RV™ model,

0,2 =w+ ziaf_, +vRV;_;. (15)

Hansen et al. (2012) augment the GARCH-RV model with a model for forecasting RV,

thereby producing a “closed system™ that can be used to forecast volatility at any horizon.

4.4 Extensions and Applications

Multivariate extensions are straightforward, vet tremendously important for financial risk
measurement, financial risk management, asset pricing, and portfolio allocation. The key
issue is how to enforee parsimony while maintaining fidelity to the data. Fortunately it turns
out to be possible. In this section we sketch the rudiments of some popular approaches. and

we discuss application to portfolio allocation.

WSee ulso Andersen et al. (2007).
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4.4.1 Multivariate

The multivariate generalization of the Bachelier model with time-varying volatility (6) is
R =02, (16)

Z' ~s i!(l.\!((', .’).

where the N x 1 vector R contains returns, the N x N matrix Sl,’ /% is one of the “square-roots”
(e.g.. the Cholesky factor) of the covariance matrix €2, and the N x 1 vector Z contains
shocks.

Without additional restrictions on €, (16) rapidly becomes unwieldy as N grows. Hence
much literature has focused on restrictions on €2, that simultaneously achieve parsimony
yet maintain fidelity to the data. For example, Diebold and Nerlove (1989) invoke factor

structure with orthogonal idiosvnchratic factors, so that € may be written as
O = BQmB + &, (17)

where B is a matrix of factor loadings, Qg is a low-dimensional time-varying common-factor
covariance matrix. and ¥ is a constant diagonal idiosynchratic-factor covariance matrix.
Much subsequent literature has followed suit.

An alternative approach proceeds by noting that a conditional covariance matrix may
always be decomposed into a conditional correlation matrix pre- and post-multiplied by a

diagonal matrix of conditional standard deviations,
Sl, — D¢ F, D'. (18)

Motivated by this decomposition, Bollerslev (1990) first proposed treating the conditional
correlations as constant, [, = I, so that the dynamics in €y are driven solely by the univariate
volatility dynamies D,. The dynawic conditional correlation (DCC) model of Engle (2002)
generalizes Bollerslev's approach to allow for time-varying conditional correlations, while
still maintaining a simple dynamic structure motivated by GARCH(1,1).
Multivariate modeling of realized volatility (i.e., large realized covariance matrices) presents

special challenges, as for example there is no guarantee that separately-estimated realized
variances and covariances, when assembled, will produce into a positive-semidefinite realized

covariance matrix. Regularization methods have proved useful there, as in Hautsch et al.
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(2012) and Lunde et al. (2011).

4.4.2  Volatility Overlays in Dynamic Portfolio Allocation

Thus far our discussion of time-varying volatility has implicitly emphasized risk measure-
ment, asset pricing and risk management. First, the implicit emphasis on risk measurement
is obvious, insofar as model-based tracking of time-varying volatility clearly requires models
that admit time-varying volatility. Second, the implicit emphasis on asset pricing (in par-
ticular, options pricing) follows from our recognition that, although Black-Scholes requires
a constant-volatility environment, real financial markets feature time-varving volatility, so
that Black-Scholes must fail. And indeed it does fail. Appropriate pricing with time-varying
volatility depends on its precise form, and tidy closed-form expressions are typically un-
available. Instead, Monte Carlo methods must be used, as discussed in Glasserman (2003)
and Christoffersen (2012). Finally, the implicit emphasis on risk management follows from
the above-discussed implicit emphasis on options pricing, as options are a key tool of risk
management,

Time-varying volatility can also play crucial role in portfolio management. As is well-
known, optimal portfolio shares depend on variances and covariances of the assets in the
portfolio. In particular, if an investor wants to minimize portfolio return volatility subject
to achieving target return g, she must solve min,, w'Sw subject to w’u = p,, where w is the
vector of portfolio shares, p is the conditional mean vector of returns, and £ is the conditional
covariance matrix of returns. If ¥ is time-varying, then so too are optimal portfolio shares,
which then solve min,, w;Xw subject to wip = p,. This leads to the idea of volatility
timing. or volatility overlays. in which portfolio shares are adjusted dynamically to reflect
movements (and anticipated movements) in volatility. A key question is how much risk-
adjusted excess return is gained from volatility timing. Fleming et al. (2001) find large gains
from volatility timing using GARCH-type conditional covariance matrices, and Fleming et al.

(2003) find even larger gains when using projections of realized covariance matrices.

5 Bond Market Risks are Special

Here we focus on bond markets rather than equity markets. The focus is still market risk
as opposed to credit risk, however. because we consider “riskless” (government) bonds.'!

Bond markets are special because bond yield modeling is intrinsically multivariate, and with

"hater in section 6.2 we confront the credit risk associated with defaultable bonds,
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a special multivariate structure. That is, in bond markets one is concerned not just with
individual vields, but with many yields simultancously — the entire yield curve. The vields
that make up the yield curve, moreover, are not evolving independently: rather, they are
linked through their dependence on underlying common factors. For a broad overview, see
Diebold and Rudebusch (2013).

5.1 Empirically-Tractable Modeling

At any time, one sees a large set of yields and may want to fit a smooth curve. Nelson and
Siegel (1987) fit the curve

— p—AT == —Ar
y(r) =6+ % L + 33 s e ). (19)
AT /\T

Note well that the Nelson-Siegel model as presently introduced is a static madel, fit to the

cross section of vields. At first pass, moreover, the Nelson-Siegel functional form seems
rather arbitrary — a less-than-obvious choice for approximating an arbitrary yield curve.
But Nelson-Siegel turns out to have some very appealing features.

First, Nelson-Siegel desirably enforces some basic constraints from financial economic
theory: for example, the implied discount curve is constrained to approach zero as maturity
grows. Second, it provides a parsimonious approximation, which is desirable because it
promotes smoothness (vields tend to be very smooth functions of maturity), it guards against
in-sample overfitting (which is important for producing good forecasts), and it promotes
empirically tractable and trustworthy estimation (which is always desirable).

Third, despite its parsimony, the Nelson-Siegel form also provides a fexible approxima-
tion. Flexibility is desirable because the yield carve assumes a variety of shapes at different
times. Inspection reveals that, depending on the values of the four parameters (31, 32, 33, A),
the Nelson-Siegel curve can be flat, increasing, or decreasing linearly, inereasing or decreasing
at increasing or decreasing rates, U-shaped, or M-shaped.

Fourth. from a mathematical approximation-theoretic viewpoint, the Nelson-Siegel form
is far from arbitrary. The forward rate curve corresponding to the Nelson-Siegel yield curve
is a constant plus a Laguerre function. Laguerre functions are polynomials multiplied by
exponential decay terms and are well-known mathematical approximating functions for non-
negative variables,

Now consider dynamic aspects of the vield curve. Bond yields tend to move noticeably

together, with factor structure. This classic recognition traces to Litterman and Scheinkman
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{(1991), and it is echoed repeatedly in the subsequent literature. Typically three factors,
which turn out to be interpretable as level, slope and curvature, are all that one needs to
explain most. variation in sets of government bond yields.

The dynamic factor structure in bond yields is captured by the so-called “dynamic Nelson-
Diegel” (DNS) model of Diebold and Li (2006). The DNS model is

: 1 — (.—Ar (- 6.-,\1' e '
.‘/t(T) — I’" + lj'n ‘T‘ + J"" T - . (2())

where 7 is maturity, ¢ is time, and 3y, 3, and Gy are latent level, slope and curvature
factors. Operationally, the DNS model (20) is nothing more than the Nelson-Siegel model
(19) with time-varving parameters. The interpretation, however, is deep: DNS distills the
vield curve into three latent factors (g, 8. and 3y), the dynamics of which determine
entirely the dynamics of y for any 7, and the coefficients (“factor loadings™) on which
determine entirely the cross section of y(7) for any £. Hence DNS is a dynamic factor model,
in which a high-dimensional set of variables (in this case, the many vields across maturities)
is actually driven by much lower-dimensional state dynamics (in this case the three latent
vield factors).

DNS blends several appealing ingredients, as discussed above, And its dvnamic factor
structure is very convenient statistically, as it distills seemingly- intractable high-dimensional
yvield dynamies into easily-handled low-dimensional state dynamics.'® Hence DNS has been
popular among financial market participants, central banks, and empirically-inclined aca-

demic economists.

5.2 Arbitrage-Free Modeling

Vasicek (1977) is the classic early-vintage arbitrage-free model, with the instantaneous short

rate determined by a stochastic differential equation,
dry = k969 — ry)dt + adW .

where @ denotes the risk-neutral measure.  The longer-maturity yields then feature risk
premia constrained in just the right way such that arbitrage possibilities vanish. As we have

seen, however, multi-factor models are necessary for capturing vield curve dynamics. Hence

2Of course, if one simply assumed factor structure but the data did not satisfy it, one would simply have a
misspecified model. Fortunately. however. and again as emphasized since Litterman and Scheinkman (1991),
bond yields do display factor structure.
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if Vasicek's ingenious construction launched a now-massive literature on arbitrage-free vield
curve modeling, it nevertheless proved too restrictive, as it is effectively a single-factor model.

In a landmark paper, Duffie and Kan (1996) relax the Vasicek single-factor constraint.,
They work in an affine diffusion environment with a filtered probability space (2, F, (F), @).
The state vector, X,. is defined on a set M C R™ and governed by the stochastic differential
equation

dX, = K9(t) (0%(t) — X,) dt + B(t) D( X, t)dW,?, (21)

where W€ is a standard Brownian motion in R", the information about which is contained
in the filtration (). The drifts and dynamics 69 : [0,7] — R" and K9 : [0.7] = R"™"
are bounded. continuous functions. Similarly, the volatility matrix X : [0, 7] = R™" is a
bounded. continuous function. The matrix D : M x [0, 7] — R™" is diagonal,

VA M O)X ... 0
0 coe () + ()X,

where 8'(1) denotes the ith row of the matrix

D(xy,t) =

SHt) ... 8Mb)
or(t) ... ()

and 7 : [0,7] = R" and 6 : [0, 7] = R"*" are bounded, continuous functions.

The preceding precise mathematical statement of Duffie-Kan state dynamics is a bit
tedious. but its intuition and importance are immediate. The admissible Duffie-Kan state
dimension and dynamics are very rich, and much richer than in the Vasicek model. Duffie
and Kan then proceed to specify the instantancous risk-free rate as an affine function of the
state variables X,

re=polt) + I’l“)'f\'r- (22)

where py = [0,7] = R and py : [0.7] = R™ are bounded, continuous functions. One can then

show that zero-coupon bond prices are exponential-affine functions of the state variables,

o )

exp (B(t,T) X, +C(t.T)).

P(t,T)
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where B(t, 1) and C'(t,T') are the solutions to the system of ordinary differential equations

iB(t, T s v L earaT N G FReN.
‘fi_" = g+ (KQ)B(L, T) - 52;& B(t.T)B(t,T)'S),,(¥)
=

dC(t,T)dt = py — B(t, 1) - %Z(E'B(I.’I')B(!. TYZ);47,
=1
with B(T,T) = 0 and C(7,7) = 0. In addition, the exponential-affine zero-coupon bond
pricing functions imply that zero-coupon vields are
ct.T)
T—-t°

N | ) an . BTy
y(t, 1) = ﬁlubf“(!.l}— T—1

X, — (24)
In particular, vields at all maturities are affine functions of the state variables, just as with
the instantaneous risk-free rate.

Duffie-Kan blends several appealing ingredients. Its rich state dynamics make it very
general, its coustruction precludes arbitrage, and its affine structure makes for elegant sim-

plicity. Hence it has been extremely popular with theoretically-inelined acadermics,

5.3 Simultaneously Empirically-Tractable and Arbitrage-Free Mod-
eling

Christensen et al. (2011) produce a model that is both empirically-tractable and arbitrage-
free, by showing that DNS factor loadings emerge in the Duffie-Kan affine arbitrage-free
framework for a particular specification of state dynamics and instantancous short rate.
They call the resulting arbitrage-free version of DNS “arbitrage-free Nelson-Siegel” (AFNS).

AFNS proceeds as follows. Consider a Duffie-Kan model with three state variables, with
instantaneous short rate given by

re= X} + X2, (25)
and with risk-neutral (Q) dynamics given by

dx;} 00 o0 oy X} g o1 oy dw e
axt =[]0 A =A 0 |- | X2 ||dt+ ]| o2y o022 o2 dW29 |, (26)
dX} 00 A 0y X3 o3y Oy Oy aw e




Ruaviy Financial Risk Measurement and Management

where A > 0. Then zero-coupon bond prices ave

T
P(,T) = ER ((-xp (—/ r.,{lu)) (27)
t

=exp (B'(t.T)X} + B*(t.T)X} + B*t.T)X} + C(t.T)).

where BY(1,T), B*(t,T), B*(t,T) and C(t, 1) are governed by a system of ordinary differen-
tial equations derived and solved by Christensen et al. The implied zero-coupon bond vields

are
| —eMT-0 | — e~ MT=1) -0 vs  C.T)
=y %t | =y © Xy =g

This is of precisely DNS form, with a simple “yield-adjustment term” appended.

y(t, T) = X} + (28)

A key insight is that, although AFNS clearly imposes significant restrictions on dynamics
under the Q-measure, it places no restrictions on dynamics under the physical measure (P-
measure),  Indeed the only P-measure difference between DNS and AFNS is the AFNS
o)

T=t"
AFNS is that it maintains the empirical tractability of DNS while simultaneonsly imposing

yield-adjustment term — which depends only on maturity, not on time. The beauty of

the theoretical appeal of absence of arbitrage.

6 Rare Event Risks are Special Too

Thus far we have focused primarily on what might be called “normal-time market risk™ in
equity and bond markets. By definition, most times are normal times, so a large amount of
professional attention has focused on normal-time market risk. There are, however, many
other key financial risks to measure and manage. They are typically associated not with nor-
mal times. but rather with abnormal times  rare events ranging, for example, from extreme
market movements, to information system failures, to bond defaults, to global financial col-
lapse. Because there are (again by definition) comparatively few historical occurrences of
such rare events, they are harder to model statistically. Yet they are also disproportionately
important, because of the havoe wreaked when they do occur, so they must not be neglected.
Recent years have witnessed progress in varying degrees. Here we focus on extreme market

risk events, credit risk events, operational risk events, and systemic risk events.
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6.1 Extreme Market Movements

Standard mutivariate volatility models, such as those iutroduced earlier in section 1.4.1.
work well for describing relationships (e.g., correlations) near the center of the joint return
distribution; that is, for describing relationships during normal times. But relationships may
differ during crises, due to herd behavior as everyone runs for the exit simultancously, In
particular, correlations may increase during crises, so that portfolio diversification is lost
when it is most needed.

Multivariate extreme value theory offers hope for describing cross-asset relationships
“in the tails,” during crises, whereas such tail relationships are often not well-captured
by standard parametrie distributions or correlation measures. Longin and Solnik (2001).
for example, define and compute extreme correlations between monthly U.S. equity index
returns and a number of foreign country indexes. The correlation between extreme negative
returns tends to be much larger the correlation between large positive returns. Such strong
correlation between negative extremes is a key risk management concern.

6.2 Credit Risk, Operational Risk, and Risk Aggregation

One important non-market risk is credit risk, as treated in the Merton (1971) model. Yields
on defaultable bonds have a risk-free yield component and a premium for default risk. That
is. credit spreads are driven by bond default probabilities, Merton’s key insight is that
defanlt probabilities, and hence risk premia, depend on net asset values (asset value less the
value of outstanding debt): if a firm’s net asset value gets too low, it will find it optimal to
default on its debt. Empirically, net asset value is unobserved, but observed equity value is
a useful proxy. Low equity valuations become more likely when equity volatility is high, so
increases in equity volatility should widen credit spreads. Empirical studies do indeed find
strong links between credit spreads and equity volatility, as for example in Campbell and
Tacksler (2003).

Another important non-market risk is operational risk. It is distinet from credit risk, but
it shares the key feature of rare event arrivals. Operational risk is in certain respects a catch-
all for various non-market, non-credit risks, including but not limited to losses from rogue
traders, system failures, property damage, ete. It is not clear that such rare risk events
are amenable to the same sorts of statistical treatment as, say, those that drive market
risk. Work by de Fontnouvelle et al. (2006), however, provides some cause for optimism.
A key issue is that short samples of historical data for any single firm are subject to the
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“peso problem™; that is, important operational risks may have been present but not realized
historically, just by luck.*® deFontnouvelle et al. confront such data biases and propose
statistical methods for modeling the frequency and severity of operational losses. Among
other things, they argue that there may be scope for pooling operational loss data across
firms, using a log-exponential distribution.

Confronting different risks — market, credit, operational — forces one also to confront
their aggregation, a difficult challenge as they are surely not independent. This leads to the
challenging problem of so-called “enterprise risk measurement and management.” Rosenberg
and Schuermann (2006) tackle it by using methods like those surveyed already in this chapter
to arrive at marginal distributions for various risk exposures, and then invoking various

copulas to arrive at a full joint distribution.

6.3 Systemic Risk

There is no single definition of systemic risk, and I will shortly introduce several, but the
defining characteristic is that systemic risk — one way or another - involves market-wide
movements, Professional attention has turned to systemic risk only recently. following the
financial erisis and recession of 2007-2009. Most related research is unpublished, and much is
ongoing: hence it wounld be premature to attempt to select particular papers for this volume,

In light of this situation, I now discuss systemic risk and its measurement at some length.

6.3.1 Marginal Expected Shortfall and Expected Capital Shortfall

Marginal expected shortfall (MES) for firm j is
-“”':-5';:'."1‘:;' = Er [rjz+1|C (rmier+1)] s (29)

where 1, .y denotes the overall market return, and C (r,,4¢ r-1) denotes a systemice event,
such as the market return falling below some threshold €. M ESY™ tracks the sensitivity
of firm j's return to a market-wide extreme event, thereby providing a simple market-based
measure of firm §'s fragility.

Ultimately, however. we are interested in assessing the likelihood of firm distress. and the
fact that a firm’s expected return is sensitive to market-wide extreme events — that is. the

fact that its MES is large - does not necessarily mean that market-wide extreme events are

B addition, small losses may be under-reported for strategic reasons. Firms would, of course. like to
nvoid reporting large losses as well, but small losses are easier to conceal,
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likely to place it in financial distress. Instead, the distress likelihood should depend not only
on MES, but also on how much capital the firm has on hand to buffer the effects of adverse
market moves,

These distress considerations raise the idea of expected capital shortfall (£C'S), which is
closely related to, but distinet from. MES. ECS is the expected additional capital needed
by firm j in case of a systemic market event. Clearly FC'S should be related to MES. and
Acharya et al. (2010) indeed show that in a simple model the two are linearly related,

ECS)me = agj + ayyMESI™ (30)

where ag; depends on firm j's “prudential ratio” of asset value to equity as well as its debt
composition, and ay; depends on firm j's prudential ratio and initial capital.
Building on the theory of Acharya et al. (2010), Brownlees and Engle (2011) propose

e 3 v kt . - s
and empirically implement E(.S’Tlrnr as a measure of firm j's systemic risk exposure to the

market at time 7', with overall systemic risk then given by 2?:1 EC 'S:}“T: 'r Implementation
of MES (and hence ECS) requires specification of the systemic market event C (7 741).
or more simply a market return threshold €. Values of €' = 2% and €' = 40% have, for

example, been suggested for one-day and six-month returns. respectively.

6.3.2 CoVaR and ACoVaR

In the previous section we introduced MES and ECS, which measure firm systemic risk
exposure by conditioning firm events on market events. Here we introduce C'oVaR, which
works in the opposite direction. measuring firm systemic risk contribution by conditioning
market events on firm events.

We have already introduced the intuitive concept of value at risk. Now let us flesh it out
with some mathematical precision. Firm j's l-step-ahead conditional Va R at level p is the

value of VaRy” . that solves

Pry (r,,r.l < —VaRl ,,T) =p. (31)

Similarly, following Adrian and Brunnermeier (2011), one may define firm j's 1-step-ahead

“CoVaR" at level p conditional on a particular outcome for firm ¢, say C(r,r+1), as the
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value of CoVaRy', ; that solves
Pry (rJ,,,, < —CoVaRy ;| Clrirs ,) —p. (32)

Because C (1, 741) is not in the time-7" information set, CoVaR will be different from the
regular time-1" conditional VaR. The leading choice of conditioning outcome, C(riz+1), 18
that firm i exceeds its VaR, or more precisely that ripsy < —VaRy. . Assuch, CoVaR
is well-suited to measure tail-event linkages between financial institutions.

A closely-related measure, ACoVa 'rl‘»n‘r (read “Delta CoVaR"). is of part icular interest.

It measures the difference between firm-j VaR when firm-i is “heavily” stressed and firm-)

VaR when firm i experiences “normal” times. More precisely,

A(.’o\f'(llf',r'Lii.l. =(CoVa R#E';l;m —CoVa [{,’r‘:';#"‘ (33)
where (?ub’al{.’rl:"l'l';(" denotes firm-j VaR when firm i's return breaches its VaR, and (“oVuR’T'f:I
denotes firm-j VaR when firm 's return equals its median.

A direct extension lets us progress to the more interesting case of firm ¢'s overall systemic
risk contribution, as opposed to just firm i's contribution to firm j. We simply set j = mkt.
so that A(."o\r'alqufz‘l'.,. then measures the difference between market VaR conditional on
firt i experiencing an extreme return, and market VaR conditional on firm 7 experiencing a

mikti

normal return. Henee ACoVaRy ) measures the contribution of firm i to overall systemic
. N v Tkt
risk, 3,0, ACoVaRy | ip.

6.3.3 Network Connectedness

Connectedness would appear central to modern risk measurement and management. and
indeed it is. 1t features prominently in key aspects of market risk (return connectedness and
portfolio concentration), credit risk (default connectedness). counter-party and gridlock risk
(bilateral and multilateral contract ual connectedness), and not least, systemic risk (system-
wide connectedness). Connectedness would also appear central to understanding underlying
fundamental macroeconomic risks, in particular business cycle risk (intra- and inter-country
real activity connectedness).

The MES and CoVaR approaches discussed above address certain aspects of connect-
edness, as they track association between individual-firm and overall-market movements.
Although they and various other systemic risk measures are certainly of interest, they mea-

sure different things, raising the issue of whether one could construct a unified framework
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for conceptualizing and measuring systemic risk.

Interestingly, modern network theory provides just such a framework, as developed in
Diebold and Yilmaz (2011)." The simplest network is composed of N nodes, where any
given pair of nodes may or may not be linked. We represent the network algebraically by an
N x N symmetric adjacency matrix A of zeros and ones. A = [a;;]. where a;; = 1 if nodes
i and j are linked, and a,; = 0 otherwise. Because all network properties are embedded
in A, any sensible connectedness measure must be based on A, The most important and
popular, by far. are based on the idea of a node’s degree, given by the number of its links
to other nodes &; = 3 | ij, 88 well as aspects of the degree distribution across nodes. The
total degree .0, (or mean degree #X,d,) is the key network connectedness measure.

The network structure sketched above is, however, rather too simple to describe the
network connections of relevance in financial risk management. Generalization in two key
directions is necessary, First, links may be of varying strength, not just 0-1. Second, links
may be of different strength in different directions (e.g.. firm ¢ may impact firm j more than
firm j impacts firm 2). Note, for example, that the systemic risk measures introduced above
are weighted and directional. For example, ('o\-'al{.’r““ i tracks effects from 7 to j, whereas
CoV alﬂ,‘:’;” tracks effects from j to i, and in general CoVa IiLUT # CoVaRy, .

It is a simple matter, however, to characterize directed, weighted networks in a parallel
fashion. To allow for directionality, we allow the adjacency matrix A to be non-svimmetric,
and to allow for different relationship strengths we allow A to contain weights a,; € [0, 1]
rather than simply 0-1 entries. Node degrees are now obtained by summing weights in [0, 1]
rather than simply zeros and ones. In addition, and importantly, there are now “to-degrees”
and “from-degrees,” corresponding to row sums and column sums, which generally differ
since A is generally non-symmetric. The from-degree of node i is 67" = 5B ; @y, and the
to-degree of node j is 8} = 37, a;;. The total degree is 6 = Lofrm — ;6.

Crucially, the from- and to-degrees (and of course the total degree) measure aspects of
systemic risk. The from- and to-degrees measure systemic risk with respect to particular
firms. From-degrees measure exposures of individual firms to systemice shocks from the net-

. . S cdlmkt s S v
work. in a fashion analogous to M [’S#an- lo-degrees measure contributions of individual

. s » . - Y17 At P
firms fo systemic network events, in a fashion analogous to ACoV aR','.'_l",.. I'he total degree
aggregates firm-specific systemic risk across firms, providing a measure of total system-wide

systemic risk.

HSee also Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012).
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7 The Business Cycle is a Key Risk Fundamental

The risk models that we have discussed thus far are inherently “reduced form.” They “ex-
plain” risk statistically, largely in an autoregressive fashion, as exemplified by the canonical
GARCH family. Fortunately, even if the models fail to provide a deep structural understand-
ing of financial risks, they are nevertheless powerful and useful in a variety of contexts. We
have obviously emphasized risk measurement and management, with applications to portfo-
lio allocation, spot and derivative asset pricing. Ultimately, however, we aspire to a deeper
structural understanding. That is, we aspire to understand the conuections between returns
and macroeconomic fundamentals.

Asset prices are risk-adjusted discounted claims on fundamental streams, so prices and
their properties should ultimately depend on expected fundamentals and associated funda-
mental risks. The business cycle is probably the most important macroeconomic fundamental
of all. Hamilton and Lin (1996) provide a fine statement of the link between the business
cycle and equity return volatility. Building on important early work by Schwert (1989), they
use regime-switching models of real growth and equity returns, allowing for both high and
low real growth states and high and low equity return volatility states, to show that return
volatility is significantly higher in recessions. Hence high volatility during bad times is not
just a one-off Great Depression phenomenon, but rather a regularly-recurring business cycle
l)ll(‘ll()“ll‘ll()ll.

Indeed business cycle effects run throughout all financial market risks, as emphasized in
Andersen et al. (2013). For example, the business cycle is related to the equity premium
(e.g., Campbell and Diebold (2009)), aud to the slope factor of the defanlt-free yield curve
(e.g.. Diebold et al. (2006). The business cycle is also related to the risky vield curve, via two
channels. First, it is related to default-free yields, as just mentioned. Second, it is related
to default risk. That is, for a variety of reasons, debt defaults are more likely in recessions.
One route is through the channels emphasized in the earlier-introduced Merton model. The
Merton model suggests that credit risk is linked to equity volatility, but as we discussed
above, equity volatility is linked to the business cycle. Hence the Merton model suggests
that the business cycle is linked not ouly to equity market risk, but also to the credit risk of
defaultible bonds.

The business eycle is also related to systemic risk. We have already discussed M ES (and
Diebold-Yilmaz “connectedness from”) and CoVaR (and Diebold-Yilmaz “connectedness
to”). and their aggregate across all firms, which is identical whether “from” or “to". Such

aggregate systemic risk is very much related to the business cycle, because in recessions,
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particularly in severe recessions, the financial stability of all firms is weakened.

This raises the idea of “stress testing,” and the centrality of business cycle scenarios in
stress tests. That is, it is sometimes informative also to consider risk measures that condition
not on historical returns, but rather on assumed scenarios for particular risk factors, We
might, for example, be interested in the firm-specific effects of a market-wide “business cycle”
shock. This could be a “country-wide™ business cvele shock, or a “global” business cyele
shock as in Aruoba et al, (2011).

Note that the conditioning involved in ECS is closely related to the idea of stress tests.
Indeed the thought experiment embodied in ECS is a stress test, with a very important
and natural stress (a large market event) being tested. The same is true of CoVar, where
the stress is failure of a particular firm. Both scenarios are potentially linked to the business
eycle.  Of course this raises the issue of “which stresses to test” (key among which are
various macroeconomic shocks) and how to assign probabilities to them. In a prescient
paper, Berkowitz (1999) grapples with that issue, and Rebonato (2010) provides gnidance
from the vantage point of Bayesian networks.

Ultimately of conrse the business cyele does not uniquely “canse” financial crises, and
financial crises do not uniquely cause macroeconomic crises. Instead. the relationship is
complicated, surely with bi-directional causality and feedback. Monetary policy, moreover,
may play a key role. Allen and Gale (2000), for example, highlight the role of money and

credit in the determination of asset price bubbles, with systemic implications.

8 Beware the Limits of Statistics

In this chapter I have surveyed a variety of issues in risk measurement. all of which feed
into risk management, asset pricing and asset allocation. As shown, the literature ranges
from the highly developed and sophisticated (e.g.. equity market risk). to the much less well-
developed (e.g., various event risks). And the least-well-understood risks are also potentially
the most important, as they are the ones that can bring down firms, and entire financial
systems, as opposed to pushing earnings up or down by a few percentage points. At the
same time, great progress has been made, and there is hope.

This chapter and this book focus on that progress. Simultaneously, however, 1 hasten
to emphasize the limits to statistical modeling. In that vein, Diebold et al. (2010) adopt
a taxonomy introduced by Ralph Gomory (1995). in which he classifies knowledge into

the known, the unknown and the unknowable, for which they adopt the acronym Kul’.
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One way to think of Kul/ is as risk (K) (possible outcomes known, probabilities known),
uncertainty (u) (outcomes known, probabilities unknown). and ignorance (I7) (both outcomes
and probabilities unknown).

Perhaps the broadest lesson is recognition of the wide applicability of Kul” thinking, and
the importance of each of K and u and U, Kul thinking spans all types of financial risk,
with the proportion of ul’ increasing steadily as one moves through the spectrum of market,
credit, operational and systemic risks. In addition, Kul7 thinking spans risk measurement
and management in all segments of the financial services industry, including investing, asset
management, banking, insurance, and real estate. Finally, Kul” thinking spans both the
regulated and the regulators: regulators’ concerns largely match those of the regulated (risk
measurement and management ), but with an extra layer of concern for systemic risk.

The existing risk management literature focuses largely on K. In part that's reasonable
enough: K risks are plentiful and important. But in part that’s also silly, like the old joke
of “looking for one’s lost car keys only under the lamp post, becanse that's where the light
is.” That is, a large fraction of real-world risk management challenges clearly fall not in the
domain of K. but rather in the domain of u and /. Indeed a cynic might assert that, by
focusing on K, the existing literature has made us expert at the least-important aspects of
financial risk management. | believe that such assertions are outlandish; K situations are
clearly of rontine relevance and great importance. But 1 also believe that u and U are of
equal relevance and importance, particularly insofar as many of the killer risks, which can
bring firms down, lurk there.

One way to proceed is to attempt to expand the domain of A via new research, a noble
undertaking, but one subject to clear limits. Hence one can not escape confronting v and (7.
The important issues in the world of « and {7 are more economic (strategic) than statistical,
and crncially linked to incentives: How to write contracts (design organizations, formulate
fiscal and monetary policies, draft regulations, make investments....) in ways that create
incentives for best-practice proactive and reactive risk management of all types of risks,
including (and especially) u and U risks. 1 look forward to the evolution of financial risk

management toward confronting K and w and U7 equally.

9 Additional Reading

Many more extensive or more specialized treatments exist, and T recommended them for

further study. I list only books, but the books of course contain references to thousands of
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Journal articles.

Cootner (1964)’s classic collection of classic papers is as useful now as when it was
published long ago. Recent survey papers include Andersen et al. (2006) and Andersen et al.
(2013).  Christoffersen (2012) provides a broad and insightful texthook treatment. Nore
specialized book-length treatments include Arrow and Hahn (1971) (general equilibrivm with
risk): Rebonato (2004) (hedging and derivatives pricing): Markowitz (1959) (mean-variance
portfolio analysis); Fama (1976) (CAPM and much else): Mandelbro (199T) (fat-tailed
return distributions); Embrechts et al. (1997) (extreme-value methods): Jorion (2007) (value
at risk): Engle (1995), Shephard (2005), and Tavlor (2007) (volatility ); Dacorogna et al.
(2001) and Hautsch (2012) (high-frequency data and realized volatility); Glasserman (2003)
(Monte Carlo methods in options pricing); Connor et al. (2010) (portfolio management):
Engle (2002) (multivariate volatility): Diebold and Rudebuscl (2013) (bond markets and
the yield curve): Singleton (2006) (empirical asset pricing); Duffie and Singleton (2003)
and Lando (2004) (credit risk); Rebonato (2010) (stress testing): Allen and Gale (2007)
(systemic risk): Aliber and Kindleberger (2005) (crowd behavior); Diebold et al. (2010)
(Kul framework — the known. the unknown and the unknowable): and not least Taleh

(2007) (healthy skepticism of almost everything).
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