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1.  INTRODUCTION

Financial risk management is a huge field with diverse and evolving components, as 
evidenced by both its historical development (e.g. Diebold, 2012) and current best 
practice (e.g. Stulz, 2002). One such component—probably the key component—is 
risk measurement, in particular the measurement of financial asset-return volatilities and 
correlations (henceforth “volatilities”). Crucially, asset-return volatilities are time vary-
ing, with persistent dynamics. This is true across assets, asset classes, time periods, and 
countries, as vividly brought to the fore during numerous crisis events, most recently 
and prominently the 2007–2008 financial crisis and its long-lasting aftermath. The 
field of financial econometrics devotes considerable attention to time-varying volatility 
and associated tools for its measurement, modeling, and forecasting. In this chapter we 
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suggest practical applications of the new “volatility econometrics” to the measurement 
and management of market risk, stressing parsimonious models that are easily estimated. 
Our ultimate goal is to stimulate dialog between the academic and practitioner commu-
nities, advancing best-practice market risk measurement and management technologies 
by drawing upon the best of both.

1.1  Six Emergent Themes
Six key themes emerge, and we highlight them here. We treat some of them directly 
in explicitly focused sections, while we treat others indirectly, touching upon them in 
various places throughout the chapter, and from various angles.

The first theme concerns aggregation level. We consider both portfolio-level (aggre-
gated, “top-down”) and asset-level (disaggregated, “bottom-up”) modeling, empha-
sizing the related distinction between risk measurement and risk management. Risk 
measurement generally requires only a portfolio-level model, whereas risk management 
requires an asset-level model.

The second theme concerns the frequency of data observations. We consider both 
low-frequency and high-frequency data, and the associated issue of parametric vs. non-
parametric volatility measurement. We treat all cases, but we emphasize the appeal of 
volatility measurement using non-parametric methods used with high-frequency data, 
followed by modeling that is intentionally parametric.

The third theme concerns modeling and monitoring entire time-varying condi-
tional densities rather than just conditional volatilities. We argue that a full conditional 
density perspective is necessary for thorough risk assessment, and that best-practice risk 
management should move—and indeed is moving—in that direction. We discuss meth-
ods for constructing full conditional density forecasts.

The fourth theme concerns dimensionality reduction in multivariate “vast data” 
environments, a crucial issue in asset-level analysis. We devote considerable attention 
to frameworks that facilitate tractable modeling of the very high-dimensional covari-
ance matrices of practical relevance. Shrinkage methods and factor structure (and their 
interface) feature prominently.

The fifth theme concerns the links between market risk and macroeconomic 
fundamentals. Recent work is starting to uncover the links between asset-market 
volatility and macroeconomic fundamentals. We discuss those links, focusing in 
particular on links among equity return volatilities, real growth, and real growth 
volatilities.

The sixth theme, the desirability of conditional as opposed to unconditional risk 
measurement, is so important that we dedicate the following subsection to an extended 
discussion of the topic. We argue throughout the chapter that, for most financial risk 
management purposes, the conditional perspective is distinctly more relevant for moni-
toring daily market risk.
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1.2  Conditional Risk Measures
Our emphasis on conditional risk measurement is perhaps surprising, given that many 
popular approaches adopt an unconditional perspective. However, consider, for example, 
the canonical Value-at-Risk (VaR) quantile risk measure,

where fT (rT+1) denotes the density of future returns rT+1conditional on time-T infor-
mation. As the formal definition makes clear, VaR is distinctly a conditional measure. 
Nonetheless, banks often rely on VaR from “historical simulation” (HS-VaR). The 
HS-VaR simply approximates the VaR as the 100 pth percentile or the Tpth order sta-
tistic of a set of T historical pseudo portfolio returns constructed using historical asset 
prices but today’s portfolio weights.

Pritsker (2006) discusses several serious problems with historical simulation. Perhaps 
most importantly, it does not properly incorporate conditionality, effectively replacing 
the conditional return distribution in (1) with its unconditional counterpart. This defi-
ciency of the conventional HS approach is forcefully highlighted by banks’ proprietary 
P/L as reported in Berkowitz and O’Brien (2002) and the clustering in time of the 
corresponding VaR violations, reflecting a failure by the banks to properly account for 
persistent changes in market volatility.5 The only source of dynamics in HS-VaR is the 
evolving window used to construct historical pseudo portfolio returns, which is of 
minor consequence in practice.6

Figure 1 directly illustrates this hidden danger of HS. We plot on the left axis the 
cumulative daily loss (cumulative negative return) on an S&P500 portfolio, and on the 
right axis the 1% HS-VaR calculated using a 500 day moving window, for a sample 
period encompassing the recent financial crisis (July 1, 2008–December 31, 2009). 
Notice that HS-VaR reacts only slowly to the dramatically increased risk in the fall of 
2008. Perhaps even more strikingly, HS-VaR reacts very slowly to the decreased risk 
following the market trough in March 2009, remaining at its peak through the end of 
2009. This happens because the early-sample extreme events that caused the increase in 
HS-VaR remain in the late-sample 500-day estimation window.

More generally, the sluggishness of HS-VaR dynamics implies that traders who base 
their positions on HS will reduce their exposure too slowly when volatility increases, 
and then increase exposure too slowly when volatility subsequently begins to subside.

(1)p = PrT (rT+1 � −VaR
p

T+1|T ) =
∫ −VaR

p
T+1|T

−∞
fT (rT+1)drT+1,

5 See also Perignon and Smith (2010a).
6 �Boudoukh, Richardson, and Whitelaw (1998) incorporate more aggressive updating into historical simu-

lation, but the basic concerns expressed by Pritsker (2006) remain.
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The sluggish reaction to current market conditions is only one shortcoming of 
HS-VaR. Another is the lack of a properly defined conditional model, which implies 
that it does not allow for the construction of a term structure of VaR. Calculating a 1% 
1-day HS-VaR may be sensible on a window of 500 observations, but calculating a 
10-day 1% VaR on 500 daily returns is not. Often the 1-day VaR is simply scaled by the 
square root of 10, but this extrapolation is typically not valid unless daily returns are i.i.d. 
and normally distributed, which they are not.7

To further illustrate the lack of conditionality in the HS-VaR method consider 
Figure 2. We first simulate daily portfolio returns from a mean-reverting volatility model 
and then calculate the nominal 1% HS-VaR on these returns using a moving window 
of 500 observations. As the true portfolio return distribution is known, the true daily 
coverage of the nominal 1% HS-VaR can be calculated using the return generating 
model. Figure 2 shows the conditional coverage probability of the 1% HS-VaR over 
time. Notice from the figure how an HS-VaR with a nominal coverage probability of 
1% can have a true conditional probability as high as 10%, even though the uncondi-
tional coverage is correctly calibrated at 1%. On any given day the risk manager thinks 
that there is a 1% chance of getting a return worse than the HS-VaR, but in actuality 
there may be as much as a 10% chance of exceeding the VaR. Figure 2 highlights the 
potential benefit of conditional density modeling: The HS-VaR may assess risk correctly 

7 �The i.i.d. return assumption alone is generally not enough because the distribution of returns, for the 
non-Gaussian case, will vary with the VaR horizon of interest; see, e.g. Bakshi and Panayotov (2010).
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Figure 1  Cumulative S&P500 loss (left scale, dashed) and 1% 10-day HS-VaR (right scale, solid), July 
1, 2008–December 31, 2009. The dashed line shows the cumulative percentage loss on an S&P500 
portfolio from July 2008 through December 2009. The solid line shows the daily 10-day 1% HS-VaR 
based on a 500-day moving window of historical returns.
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on average (i.e. unconditionally) while still being terribly wrong at any given time (i.e. 
conditionally). A conditional density model will generate a dynamic VaR that attempts 
to keep the conditional coverage rate at 1% on any given day.

The above discussion also hints at a problem with the VaR risk measure itself. It 
does not say anything about how large the expected loss will be on days when VaR is 
exceeded. Other risk measures, such as expected shortfall (ES), attempt to remedy that 
defect. We define ES as

Because it integrates over the left tail, ES is sensitive to the shape of the entire left tail of 
the distribution.8 By averaging all of the VaRs below a prespecified coverage rate, the 
magnitude of the loss across all relevant scenarios matters. Thus, even if the VaR might 
be correctly calibrated at, say, the 5% level, this does not ensure that the 5% ES is also 
correct. Conversely, even if the 5% ES is estimated with precision, this does not imply 
that the 5% VaR is valid. Only if the return distribution is characterized appropriately 
throughout the entire tail region can we guarantee that the different risk measures all 
provide accurate answers.

Our main point of critique still applies, however. Any risk measure, whether VaR, 
ES, or anything else, that neglects conditionality, will inevitably miss important aspects 

(2)ES
p

T+1|T = p−1

∫ p

0

VaR
γ

T+1|T dγ .

8 �In contrast to VaR, the expected shortfall is a coherent risk measure in the sense of Artzner, Delbaen, Eber, 
and Heath (1999) as demonstrated by, e.g. Föllmer and Schied (2002). Among other things, this ensures 
that it captures the beneficial effects of portfolio diversification, unlike VaR.
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Figure 2  True exceedance probabilities of nominal 1% HS-VaR when volatility is persistent. We simu-
late returns from a realistically-calibrated dynamic volatility model, after which we compute 1-day 
1% HS-VaR using a rolling window of 500 observations. We plot the daily series of true conditional 
exceedance probabilities, which we infer from the model. For visual reference we include a horizontal 
line at the desired 1% probability level.
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of the dynamic evolution of risk. In the conditional analyses of subsequent sections, we 
focus mostly on conditional VaR, but we also treat conditional ES.9

1.3  Plan of the Chapter
We proceed systematically in several steps. In Section 2 we consider portfolio level 
analysis, directly modeling conditional portfolio volatility using exponential smooth-
ing and GARCH models, along with more recent “realized volatility” procedures that 
effectively incorporate the information in high-frequency intraday data.

In Section 3 we consider asset-level analysis, modeling asset conditional covariance 
matrices, again using GARCH and realized volatility techniques. The relevant cross-
sectional dimension is often huge, so we devote special attention to dimensionality-
reduction methods.

In Section 4 we consider links between return volatilities and macroeconomic fun-
damentals, with special attention to interactions across the business cycle.

We conclude in Section 5.

2.  CONDITIONAL PORTFOLIO-LEVEL RISK ANALYSIS

The portfolio risk measurements that we discuss in this section require only a univari-
ate portfolio-level model. In contrast, active portfolio risk management, including VaR 
minimization and sensitivity analysis, as well as system-wide risk measurements, all 
require a multivariate model, as we discuss subsequently in Section 3.

In practice, portfolio-level analysis is often done via historical simulation, as detailed 
above. We argue, however, that there is no reason why one cannot estimate a parsimo-
nious dynamic model for portfolio level returns. If interest centers on the distribution 
of the portfolio returns, then this distribution can be modeled directly rather than via 
aggregation based on a larger, and almost inevitably less well-specified, multivariate 
model.

The construction of historical returns on the portfolio in place is a necessary precur-
sor to any portfolio-level risk analysis. In principle it is easy to construct a time series 
of historical portfolio returns using current portfolio holdings, WT = (w1,T , . . . , wN ,T )′ 
and historical asset returns,10Rt = (r1,t , . . . , rN ,t)

′:

9 �ES is increasingly used in financial institutions, but it has not been incorporated into the international 
regulatory framework for risk control, likely because it is harder than VaR to estimate reliably in practice.

10 �The portfolio return is a linear combination of asset returns when simple rates of returns are used. When 
log returns are used the portfolio return is only approximately linear in asset returns.

(3)rw,t =
N∑

i=1

wi,T ri,t ≡ W ′
T Rt , t = 1, 2, . . . , T .
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In practice, however, historical prices for the assets held today may not be available. 
Examples where difficulties arise include derivatives, individual bonds with various 
maturities, private equity, new public companies, merger companies, and so on. For 
these cases “pseudo” historical prices must be constructed using either pricing models, 
factor models, or some ad hoc considerations. The current assets without historical 
prices can, for example, be matched to “similar” assets by capitalization, industry, lever-
age, and duration. Historical pseudo asset prices and returns can then be constructed 
using the historical prices on the substitute assets.

We focus our discussion on VaR.11 We begin with a discussion of the direct compu-
tation of portfolio VaR via exponential smoothing, followed by GARCH modeling, and 
more recent realized volatility-based procedures. Not with standing a number of well-
known drawbacks, see, e.g. Stulz (2008), VaR remains by far the most prominent and 
commonly used quantitative risk measure. The main techniques that we discuss are, 
however, easily adapted to allow for the calculation of other portfolio-level risk mea-
sures, and we will briefly discuss how to do so as well.

2.1  Modeling Time-Varying Volatilities Using Daily Data and GARCH
The lack of conditionality in the HS-VaR and related HS approaches discussed above 
is a serious concern. Several procedures are available for remedying this deficiency. 
Chief among these are RiskMetrics (RM) and Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) models, both of which are easy to implement on a port-
folio basis. We discuss each approach in turn.

2.1.1  Exponential Smoothing and RiskMetrics
Whereas the HS-VaR methodology makes no explicit assumptions about the distribu-
tional model generating the returns, the RM filter/model implicitly assumes a very tight 
parametric specification by incorporating conditionality via univariate portfolio-level 
exponential smoothing of squared portfolio returns. This directly parallels the exponen-
tial smoothing of individual return squares and cross products that underlies the basic 
RM approach at the individual asset level.12

11 �Although the Basel Accord calls for banks to report 1% VaRs, for various reasons banks tend to report 
more conservative VaRs; see, e.g. the results in Berkowitz and O’Brien (2002), Perignon, Deng, and Wang 
(2008), and Perignon and Smith (2010a, 2010b). Rather than simply scaling up a 1% VaR based on some 
“arbitrary” multiplication factor, the procedures that we discuss below may readily be used to achieve 
any desired, more conservative, VaR.

12 �Empirically more realistic long-memory hyperbolic decay structures, similar to the long-memory 
type GARCH models briefly discussed below, have also been explored by RM more recently; see, e.g. 
Zumbach (2006). However, following standard practice we will continue to refer to exponential smooth-
ing simply as the RM approach.
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Again, taking the portfolio-level pseudo returns from (3) as the data series of interest 
we can define the portfolio-level RM variance as

where the variance forecast for day t is constructed at the end of day t − 1 using the 
square of the return observed at the end of day t − 1 as well as the variance on day 
t − 1. In practice this recursion can be initialized by setting the initial σ 2

0  equal to the 
unconditional sample variance, say σ̂ 2. Note that repeated substitution in (4) yields an 
expression for the current smoothed value as an exponentially weighted moving average 
of past squared returns:

where:

Hence the name “exponential smoothing”.
In the RM framework, VaR is then simply obtained as

where �−1
p

 is the pth quantile of the standard normal distribution. Although other 
distributions and quantiles could be used in place of the normal—and sometimes are—
the assumption of conditional normality remains dominant. Similarly, the smoothing 
parameter λ may in principle be calibrated to best fit the specific historical returns at 
hand although, following RM, it is typically fixed at a preset value of 0.94 with daily 
returns. Altogether, the implicit assumption of zero mean returns, a fixed smoothing 
parameter, and conditional normality therefore implies that no parameters and/or dis-
tributions need to be estimated.

Extending the approach to longer return horizons, the conditional variance for the 
k-day return in RM is

Hence the RM model can be thought of as a random walk model in variance, insofar 
as the variance scales with the return horizon. More precisely, exponential smoothing is 
optimal if and only if squared returns follow a “random walk plus noise” model—a 
“local level” model in the terminology of Harvey (1989)—in which case the minimum 
MSE forecast at any horizon is simply the current smoothed value.13

(4)σ 2
t = λσ 2

t−1 + (1 − λ)r2
w,t−1,

σ 2
t =

∞∑

j=0

ϕj r
2
w,t−1−j ,

ϕj = (1 − λ)λj .

(5)RM�VaR
p

T+1|T ≡ σT+1�
−1
p ,

(6)Var(rw,t+k + rw,t+k−1 + · · · + rw,t+1|Ft) ≡ σ 2
t:t+k|t = kσ 2

t+1.

13 See Nerlove and Wage (1964).
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Unfortunately, however, the historical record of volatility across numerous asset 
classes suggests that volatilities are unlikely to follow random walks, and hence that the 
flat forecast function associated with exponential smoothing is inappropriate for volatil-
ity. In particular, the lack of mean-reversion in the RM variance calculations implies 
that the term structure of volatility is always flat, which violates both intuition and 
historical experience. Suppose, for example, that current volatility is high by historical 
standards, as was the case during the height of the financial crisis and the earlier part of 
the sample in Figure 1. The RM model will then simply extrapolate the high current 
volatility across all future horizons. By contrast, an empirically more realistic mean-
reverting volatility model would correctly predict that the high volatility observed dur-
ing the crisis would eventually subside.

The dangers of simply scaling the daily variance by the horizon k, as done in (6), are 
discussed further in Diebold, Hickman, Inoue, and Schuermann (1998a). Of course, the 
one-day RM volatility does adjust much more quickly to changing market conditions 
than the HS approach, but the flat volatility term structure is unrealistic and, when taken 
literally, RM does not appear to be a prudent approach to volatility modeling and mea-
surement. Furthermore, it is only valid as a volatility filter and not as a data generating 
process for simulating future returns. Hence we now turn to GARCH models, which 
allow for much richer term structures of volatility and which can be used to simulate 
the return process forward in time.

2.1.2  The GARCH(1,  1) Model
To allow for time variation in both the conditional mean and variance of univariate 
portfolio returns, we write

For simplicity we will henceforth assume a zero conditional mean, µt ≡ 0. This directly 
parallels the RM approach, and it is a common assumption in risk management when 
short (e.g. daily or weekly) return horizons are considered. It is readily justified by the 
fact that the magnitude of the daily volatility (conditional standard deviation) σt easily 
dominates that of µt for most portfolios of practical interest. This is also indirectly mani-
fest by the fact that, in practice, accurate estimation of the mean is typically much more 
difficult than accurate estimation of volatility. Still, conditional mean dynamics could 
easily be incorporated into any of the GARCH models discussed below by considering 
de-meaned returns rw,t − µt in place of rw,t.

The key object of interest is the conditional standard deviation, σt. If it depends 
non-trivially on the currently observed conditioning information, we say that rw,t fol-
lows a GARCH process. Numerous competing parameterizations for σt have been pro-
posed in the literature for best capturing the temporal dependencies in the conditional 
variance of portfolio returns; see, e.g. the list of models and corresponding acronyms 

(7)rw,t = µt + σtzt , zt ∼ i.i.d., E(zt) = 0, Var(zt) = 1.
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in Bollerslev (2010). However, the simple symmetric GARCH(1, 1) introduced by 
Bollerslev (1986) remains by far the most commonly used formulation in practice. The 
GARCH(1, 1) model is defined by

Extensions to higher-order GARCH models are straightforward but usually unnec-
essary empirically, so we concentrate on the GARCH(1,1) throughout most of the 
chapter, while discussing some important generalizations in the following section.

Perhaps surprisingly, GARCH is closely related to exponential smoothing of squared 
returns. Repeated substitution in (8) yields

so the GARCH(1,1) process implies that current volatility is an exponentially weighted 
moving average of past squared returns. Hence GARCH(1,1) volatility measurement is 
related to RM volatility measurement.

There are, however, crucial differences between GARCH and RM. First, the 
GARCH parameters, and hence ultimately the GARCH volatility, are estimated using 
rigorous statistical methods that facilitate probabilistic inference. By contrast, the param-
eters used in exponential smoothing are set in an ad hoc fashion. More specifically, the 
vector of GARCH parameters, θ = (ω, α, β), is typically estimated by maximizing the 
log-likelihood function,

This likelihood function is based on the assumption that zt in (7) is i.i.d. N (0, 1). 
However, the assumption of conditional normality underlying the (quasi-) likelihood 
function in (9) is merely a matter of convenience. If the conditional return distribution 
is non-normal, the resulting quasi MLE generally still produces consistent and asymp-
totically normal, albeit not fully efficient, parameter estimates, see, e.g. Bollerslev and 
Wooldridge (1992). The log-likelihood optimization in (9) can only be done numeri-
cally. However, GARCH models are parsimonious and specified directly in terms of 
univariate portfolio returns, so that only a single numerical optimization is needed.14

(8)σ 2
t = ω + αr2

w,t−1 + βσ 2
t−1.

σ 2
t = ω

1 − β
+ α

∞∑

j=1

β j−1r2
t−j ,

(9)ln L(θ; rw,T , . . . , rw,1) ∝ −
T∑

t=1

[
ln

(
σ 2

t (θ)
)
− σ−2

t (θ)r2
w,t

]
.

14 �This optimization can be performed in a matter of seconds on a standard desktop computer using 
standard software such as Excel, as discussed by Christoffersen (2003). For further discussion of inference 
in GARCH models, see also Andersen, Bollerslev, Christoffersen, and Diebold (2006a).
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Second, and crucially from the vantage point of financial market risk measurement, 
the covariance stationary GARCH(1, 1) process has dynamics that eventually produce 
reversion in volatility to a constant long-run value. This enables interesting and realistic 
forecasts and contrasts sharply with the RM exponential smoothing approach in which, 
as discussed earlier, the term structure of volatility is forced to be flat. To see the mean 
reversion that GARCH enables, rewrite the GARCH(1, 1) model in (8) as

where σ 2 ≡ ω/(1 − α − β) denotes the long-run, or unconditional daily variance, or 
equivalently as

Hence the forecasted deviation of the conditional variance from the long-run variance 
is a weighted average of the deviation of the current conditional variance from the 
long-run variance, and the deviation of the squared return from the long-run variance. 
RM’s exponential smoothing creates a parallel weighted average, with the key differ-
ence that exponential smoothing imposes α + β = 1, whereas covariance stationary 
GARCH(1,1) imposes α + β < 1. Finally, we can rearrange (11) to write

where the last term on the right has zero mean. Hence, the mean reversion of the condi-
tional variance (or lack there of) is governed by (α + β). So long as (α + β) < 1, which 
must hold for the covariance stationary GARCH(1,  1) processes of empirical relevance, 
the conditional variance is mean reverting, with the speed of mean reversion governed 
by (α + β).

The mean-reverting property of GARCH volatility forecasts has important impli-
cations for the volatility term structure. To construct the volatility term structure cor-
responding to a GARCH(1,1) model, we need the k-day-ahead conditional variance 
forecast. By repeated substitution in (12), we obtain

Under our maintained assumption that returns have conditional mean zero, the variance 
of the k-day cumulative return is simply the sum of the corresponding 1- through k-
day ahead variance forecasts. Simplifying this sum, it may be informatively expressed as

(10)σ 2
t = (1 − α − β)σ 2 + αr2

w,t−1 + βσ 2
t−1,

(11)(σ 2
t − σ 2) = α(r2

w,t−1 − σ 2) + β(σ 2
t−1 − σ 2).

(12)(σ 2
t − σ 2) = (α + β)(σ 2

t−1 − σ 2) + ασ 2
t−1(z

2
t−1 − 1),

(13)σ 2
t+k|t = σ 2 + (α + β)k−1(σ 2

t+1 − σ 2).

(14)σ 2
t:t+k|t = kσ 2 + (σ 2

t+1 − σ 2)

(
1 − (α + β)k

1 − α − β

)
.
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Hence, in contrast to the flat volatility term structure associated with the RM forecast 
in (6), the GARCH volatility term structure is upward or downward sloping depending 
on the level of current conditional variance compared to long-run variance.

To summarize the discussion thus far, we have seen that GARCH is attractive rela-
tive to RM because it moves from ad hoc exponential smoothing to rigorous yet simple 
likelihood-based probabilistic modeling, and because it allows for the mean reversion 
routinely observed in actual financial market volatilities. In addition, and crucially, the 
basic GARCH(1,  1) model is readily extended in a variety of important and empiri-
cally useful directions, to which we now turn.

2.1.3  Extensions of the Basic GARCH Model
One important generalization of the basic GARCH(1,  1) model involves the enrich-
ment of the dynamics via higher-order specifications to obtain GARCH(p,  q) models 
with p � 1, q � 1. Indeed, Engle and Lee (1999) show that the GARCH(2,  2) is of 
particular interest because, under certain parameter restrictions, it implies that condi-
tional variance dynamics may be decomposed into long-run and short-run components,

where the long-run component, qt, is a separate autoregressive process,

Of course, this “component GARCH” model is a very special version of a component 
model, and one may argue that it is not a component model at all, but rather just a 
restricted GARCH(2,  2).

More general component modeling is easily undertaken, however, allowing for 
additive superposition of independent autoregressive-type components, as in Gallant, 
Hsu, and Tauchen (1999), Alizadeh, Brandt, and Diebold (2002), Christoffersen, Jacobs, 
Ornthanalai, and Wang (2008), all of whom find evidence of component structure in 
volatility. Under appropriate conditions, such structures may be shown to approximate 
very strong dependence, i.e. “long-memory”, in which shocks to the conditional vari-
ance decay at a slow hyperbolic rate, see, e.g. Granger (1980), Cox (1981), Andersen and 
Bollerslev (1997), and Barndorff-Nielsen and Shephard (2001).

Exact long-memory behavior can also easily be incorporated into the GARCH 
modeling framework to more closely mimic the dependencies observed with most 
financial assets and/or portfolios; see, e.g. Bollerslev and Mikkelsen (1999).15  

(15)(σ 2
t − qt) = α(r2

w,t−1 − qt−1) + β(σ 2
t−1 − qt−1),

(16)qt = ω + ρqt−1 + φ(r2
w,t−1 − σ 2

t−1).

15 �The basic RiskMetrics approach has also recently been extended to allow the smoothing parameters ϕj 
used in filtering the returns to exhibit a fixed pre-specified hyperbolic slow long-memory type decay; see 
Zumbach (2006). However, the same general set of drawbacks pertaining to the basic RM filter remain.
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As discussed further below, properly incorporating these types of long-memory depen-
dencies generally also results in more accurate volatility forecasts over long horizons.

To take a second example of the extensibility of GARCH models, note that all of 
the models considered so far, including the RM filter, imply symmetric response to 
positive and negative return shocks. However, equity markets, and particularly equity 
indexes, often seem to display a strong asymmetry, whereby a negative return boosts 
volatility by more than a positive return of the same absolute magnitude. The standard 
GARCH model is readily extended to capture this effect by simply including a separate 
term for the past negative return shocks, as in the so-called threshold-GARCH model 
proposed by Glosten, Jagannathan, and Runkle (1993),

where I (·) denotes the indicator function. For well-diversified equity portfolios γ is 
typically estimated to be positive and highly statistically significant. In fact, the asym-
metry in the volatility appears to have increased over time and the estimate for the 
conventional ARCH coefficient, α in (17) is often insignificant with recent data, so that 
the dynamics appear to be driven exclusively by the negative shocks.

Other popular asymmetric GARCH models include the EGARCH model of 
Nelson (1991), in which the logarithmic conditional variance is a function of the “raw” 
and absolute standardized return shocks, and the NGARCH model of Engle and Ng 
(1993). In the NGARCH(1,1) model,

where asymmetric response in the conventional direction occurs for γ > 0.
In parallel to the RM-VaR defined in (5), a GARCH-based one-day VaR may cor-

respondingly be calculated by simply multiplying the one-day volatility forecast from 
any GARCH model by the requisite quantile in the standard normal distribution,

This GARCH-VaR, of course, implicitly assumes that the returns are conditionally 
normally distributed. This is a much better approximation than assuming the returns 
are unconditionally normally distributed, and it is entirely consistent with the fat tails 
routinely observed in unconditional return distributions.

As noted earlier, however, standardized innovations zt from GARCH models some-
times have fatter tails than the normal distribution, indicating that conditional normal-
ity is not acceptable. The GARCH-based approach explicitly allows us to remedy this 
problem, by using other conditional distributions and corresponding quantiles in place 

(17)σ 2
t = ω + αr2

w,t−1 + γ r2
w,t−1I (rw,t−1 < 0) + βσ 2

t−1,

(18)σ 2
t = ω + α

(
rw,t−1 − γ σt−1

)2 + βσ 2
t−1,

(19)GARCH�VaR
p

T+1|T ≡ σT+1�
−1
p .
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of �
−1
p , and we will discuss various ways for doing so in Section 2.3 below to further 

enhance the performance of the simple GARCH-VaR approach. Note also that in 
contrast to the RM-based VaRs, which simply scale with the square-root of the return 
horizon, the multi-day GARCH-based VaRs explicitly incorporate mean reversion in 
the forecasts. They cannot be obtained simply by scaling the VaRs in (19). Again, we will 
discuss this in more detail in Section 2.3.

For now, to illustrate the conditionality afforded by the GARCH-VaR, and to con-
trast it with HS-VaR, we plot in Figure 3 the VaRs from an NGARCH model and 
RiskMetrics (RM). The figure clearly shows that allowing for GARCH (or RM) con-
ditionally makes the VaRs move up and, equally importantly, come down much faster 
than the HS-VaRs. Moreover, contrasting the two curves, it is evident that allowing 
for asymmetry in a rising market desirably allows GARCH-VaR to drop more quickly 
than RM-VaR. Conversely, the GARCH-VaR rises more quickly than RM-VaR (and 
VaRs based on symmetric GARCH models) in falling markets. Several studies by Engle 
(2001, 2004, 2009b, 2011) have shown that allowing for asymmetries in the conditional 
variance can materially affect GARCH-based VaRs.

The procedures discussed in this section were originally developed for daily or 
coarser frequency returns. However, high-frequency intraday price data are now readily 
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available for a host of different assets and markets. We next review recent research on so-
called realized volatilities constructed from such high-frequency data, and show how to 
use them to provide even more accurate assessment and modeling of daily market risks.

2.2  Intraday Data and Realized Volatility
Higher frequency data add little to the estimation of expected returns. At the same 
time, however, the theoretical results in Merton (1980) and Nelson (1992) suggest that 
higher frequency data should be very useful in the construction of more accurate vola-
tility models, and in turn expected risks. In practice, however, the statistical modeling of 
high-frequency data is notoriously difficult, and the daily GARCH and related volatil-
ity forecasting procedures discussed in the previous section have been shown to work 
poorly when applied directly to high-frequency intraday returns; see, e.g. Andersen and 
Bollerslev (1997) and Andersen, Bollerslev, and Lange (1999). Fortunately, extensive 
research efforts over the past decade have shown how the rich information inherent in 
the now readily available high-frequency data may be effectively harnessed through the 
use of so-called realized volatility measures.

To formally define the realized volatility concepts, imagine that the instantaneous 
returns, or logarithmic price increments, evolve continuously through time according 
to the stochastic volatility diffusion

where µ(t) and σ(t) denote the instantaneous drift and volatility, respectively, and W (t) 
is a standard Brownian motion.16 This directly parallels the general discrete-time return 
representation in Eqn (7), with rw,t ≡ p(t) − p(t − 1) and the unit time interval normal-
ized to a day. Just as the conditional mean in (7) can be safely set to zero, so too can the 
drift term in Eqn (20). Hence, in what follows, we set µ(t) = 0.

Following Andersen and Bollerslev (1998b), Andersen, Bollerslev, Diebold, and 
Labys (2001b), and Barndorff-Nielsen and Shephard (2002), the realized variation (RV) 
on day t based on returns at the Δ intra-day frequency is then formally defined by

where pt−1+j�  ≡  p
(
t − 1 + j�

)
 denotes the intraday log-price at the end of the jth 

interval on day t, and N (�) ≡ 1/�. For example, N (�) = 288 for 5-min returns in a 

(20)dp(t) = µ(t) dt + σ(t) dW (t),

16 �The notion of a continuously evolving around-the-clock price process is, of course, fictitious. Most finan-
cial markets are only open for part of the day, and prices are not continuously updated and sometimes 
jump. The specific procedures discussed below have all been adapted to accommodate these features and 
other types of market microstructure frictions, or “noise”, in the actually observed high-frequency prices.

(21)RVt (�) ≡
N (�)∑

j=1

(
pt−1+j� − pt−1+(j−1)�

)2
,
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24-h market, corresponding to � = 5/(24 · 60) ≈ 0. 00347, while 5-min returns in a 
market that is open for six-and-half hours per day, like the US equity markets, would 
correspond to N (�) = 78 and � = 5/(6. 5 · 60) ≈ 0. 01282. The expression in (21) 
looks exactly like a sample variance for the high-frequency returns, except that we do 
not divide the sum by the number of observations, N (�), and the returns are not cen-
tered around the sample mean.

Assume for the time being that the prices defined by the process in (20) are continu-
ously observable. In this case, letting Δ go to zero, corresponding to progressively finer 
sampled returns, the RV estimator approaches the integrated variance of the underlying 
continuous-time stochastic volatility process on day t, formally defined by:17

Hence, in contrast to the RM- and GARCH-based volatility estimates discussed above, 
the true ex-post volatility for the day effectively becomes observable. And it does so in an 
entirely model-free fashion regardless of the underlying process that actually describes 
σ(t).

In practice, of course, prices are not available on a continuous basis. However, with 
prices for many assets recorded, say, every minute, a daily RV could easily be computed 
from 1-min squared returns. Still, returns at the 1-min frequency are likely affected by 
various market microstructure frictions, or noise, arising from bid–ask bounces, a discrete 
price grid, and the like.18 Of course, even with 1-min price observations on hand, we 
may decide to construct the RV measures from 5-min returns, as these coarser sampled 
data are less susceptible to contamination from market frictions. Clearly, this involves a 
loss of information as the majority of the recorded prices are ignored. Expressed differ-
ently, it is feasible to construct five different sets of (overlapping) 5-min intraday return 
sequences from the given data, but in computing the regular 5-min based RV measure 
we exploit only one of these series—a theme we return to below.

The optimal choice of high-frequency grid over which to measure the returns obvi-
ously depends on the specific market conditions. The “volatility signature plot” of 
Andersen, Bollerslev, Diebold, and Labys (2000b) is useful for guiding this selection. It 
often indicates the adequacy of 5-min sampling across a variety of assets and markets, as 
originally advocated by Andersen and Bollerslev (1998a).19 Meanwhile, as many markets 

17 �More precisely, �−1/2(RVt(�) − IVt) → N (0, 2IQt), where IQt ≡
∫ 1

0 σ 4 (t − 1 + τ) dτ 
and the convergence is stable in law; for a full theoretical treatment, see, e.g. Andersen, Bollerslev, and 
Diebold (2010a).

(22)IVt =
∫ t

t−1

σ 2 (τ ) dτ .

18 �Brownlees and Gallo (2006) contain a useful discussion of the relevant effects and some of the practical 
issues involved in high-frequency data cleaning.

19 See also Hansen and Lunde (2006) and the references therein.
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have become increasingly liquid it would seem reasonable to resort to even finer sam-
pling intervals with more recent data although, as noted below, the gains from doing so 
in terms of the accuracy of realized volatility based forecast appear to be fairly minor.

One way to exploit all the high-frequency returns, even if the RV measure is based 
on returns sampled at a lower frequency, is to compute an alternative RV estimator using 
a different offset relative to the first return of the trading day, and then combine them. 
For example, if 1-min returns are given, one may construct a new RV estimator using 
an equal-weighted average of the five alternative regular 5-min RV estimators available 
each day. We will denote this estimator AvgRV below. The upshot is that the AvgRV 
estimator based on 5-min returns is much more robust to microstructure noise than the 
single RV based on 1-min returns.

In markets that are not open 24 h per day, the change from the closing price on 
day t − 1 to the opening price on day t should also be accounted for. This can be done 
by simply scaling up the trading day RV by the proportion corresponding to the miss-
ing over-night variation, or any of the other more complicated methods advocated in 
Hansen and Lunde (2005). As is the case for the daily GARCH models discussed above, 
corrections may also be made for the fact that days following weekends and holidays 
tend to have proportionally higher than average volatility.

Several other realized volatility estimators have been developed to guard against the 
influences of market microstructure frictions. In contrast to the simple RVt(�) estimator, 
which formally deteriorates as the length of the sampling interval Δ approaches zero if the 
prices are observed with error, these other estimators are typically designed to be consistent 
for IVt as � → 0, even in the presence of market microstructure noise. Especially promi-
nent are the realized kernel estimator of Barndorff-Nielsen, Hansen, Lunde, and Shephard 
(2008), the pre-averaging estimator of Jacod, Li, Mykland, Podolskij, and Vetter (2009), and 
the two-scale estimator of Aït-Sahalia, Mykland, and Zhang (2011). These alternative esti-
mators are generally more complicated to implement than the AvgRV estimator, requiring 
the choice of additional tuning parameters, smoothing kernels, and appropriate block sizes. 
Importantly, the results in Andersen, Bollerslev, and Meddahi (2011a) show that, when used 
for volatility forecasting, the simple-to-implement AvgRV estimator performs on par with, 
and often better than, these more complex RV estimators.20

To illustrate, we plot in Figure 4 the square root of daily AvgRVs (in annualized 
percentage terms) as well as daily S&P 500 returns for January 1, 1990 through 
December 31, 2010. Following the discussion above, we construct AvgRV from a 1-min 
grid of futures prices and the average of the corresponding five 5-min RVs.21  

20 �Note, however, that while the AvgRV estimator provides a very effective way of incorporating ultra high-
frequency data into the estimation by averaging all of the possible squared price increments over the fixed 
non-trivial time interval � > 0, the AvgRV estimator is formally not consistent for IV  as � → 0.

21 We have 1-min prices from 8:31 am to 3:15 pm each day. We do not adjust for the overnight return.
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Looking at the figure, the assumption of constant volatility is clearly untenable from a 
risk management perspective. The dramatic rise in the volatility in the fall of 2008 is 
also immediately evident, with the daily realized volatility reaching an unprecedented 
high of 146.2 on October 10, 2008, which is also the day with the largest ever recorded 
NYSE trading volume.

Time series plots such as that of  Figure 4, of course, begin to inform us about aspects 
of the dynamics of realized volatility. We will shortly explore those dynamics in greater 
detail. But first we briefly highlight an important empirical aspect of the distribution of 
realized volatility, which has been documented in many contexts: realized volatility is 
highly right-skewed, whereas the natural logarithm of realized volatility is much closer 
to Gaussian. In Figure 5 we report two QQ (Quantile–Quantile) plots of different vola-
tility transforms against the normal distribution. The top panel shows the QQ plot for 
daily AvgRV in standard deviation form, while the bottom panel shows the QQ plot for 

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
0

50

100

150
Daily Annualized Realized Volatility (% )

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
−15

−10

−5

0

5

10

15
Daily close−to−close Returns (% )

Figure 4  S&P500 daily returns and volatilities (Percent). The top panel shows daily S&P500 returns, 
and the bottom panel shows daily S&P500 realized volatility. We compute realized volatility as the 
square root of AvgRV, where AvgRV is the average of five daily RVs each computed from 5-min squared 
returns on a 1-min grid of S&P500 futures prices.
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daily AvgRV in logarithmic form. The right tail in the top panel is obviously much fatter 
than for a normal distribution, whereas the right tail in the bottom panel conforms 
more closely to normality.  This approximate log-normality of realized volatility is often 
usefully exploited, even if it provides only a rough approximation, based on empirical 
observation rather than theoretical derivation.22

22 �Indeed, as noted by Forsberg and Bollerslev (2002), among others, RV cannot formally be log-normally 
distributed across all return horizons, because the log-normal distribution is not closed under temporal 
aggregation.
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Figure 5  S&P500: QQ plots for realized volatility and log realized volatility. The top panel plots the 
quantiles of daily realized volatility against the corresponding normal quantiles. The bottom panel 
plots the quantiles of the natural logarithm of daily realized volatility against the corresponding nor-
mal quantiles. We compute realized volatility as the square root of AvgRV, where AvgRV is the average 
of five daily RVs each computed from 5-min squared returns on a 1-min grid of S&P500 futures prices.
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2.2.1  Dynamic Modeling of Realized Volatility
Although daily RV is ultimately only an estimate of the underlying true integrated vari-
ance, it is potentially highly accurate and thus presents an intriguing opportunity. By 
treating the daily RVs, or any of the other high-frequency-based RV measures, as direct 
ex post observations of the true daily integrated variances, the RV approach permits 
the construction of ex ante volatility forecasts using standard ARMA time series tools. 
Moreover, recognizing the fact that the measures are not perfect, certain kinds of mea-
surement errors can easily be incorporated into this framework. The upshot is that if 
the frequency of interest is daily, then using sufficiently high-quality intraday price data 
enables the risk manager to treat volatility as effectively observed. This is fundamentally 
different from the RM filter and GARCH style models discussed above, in which the 
daily variances are inferred from past daily returns conditional on the specific structure 
of the filter or model.

To further help motivate such an approach, we plot in Figure 6 the autocorrelation 
function (ACF) of daily AvgRV and daily returns. The horizontal lines in each plot show 
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Figure 6  S&P500: sample autocorrelations of daily realized variance and daily return. The top panel 
shows realized variance autocorrelations, and the bottom panel shows return autocorrelations, for 
displacements from 1 through 250 days. Horizontal lines deNote 95% Bartlett bands. Realized variance 
is AvgRV, the average of five daily RVs each computed from 5-min squared returns on a 1-min grid of 
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the Bartlett two-standard-deviation bands around zero. The ACFs are strikingly different; 
the realized variance ACF is always positive, highly statistically significant, and very slowly 
decaying, whereas the daily return ACF is insignificantly different from zero. The excep-
tionally slow decay of the realized variance ACF suggests long-memory dynamics, in turn 
implying that equity market volatility is highly forecastable. This long-memory property 
of RV is found across numerous asset classes; see, for example, Andersen et al. (2001b) for 
evidence on foreign exchange rates and Andersen, Bollerslev, Diebold, and Ebens (2001a) 
for comparable results pertaining to individual equities and equity-index returns.

Simple AR type models provide a natural starting point for capturing these depen-
dencies. Let RVt denote any of the high-frequency-based realized volatility measures 
introduced above. As an example, one could specify a simple first-order autoregressive 
model for the daily volatility series,

This, and any higher-order AR models for RVt can easily be estimated by a standard 
OLS regression package.

One could go farther and endow integrated variance with AR(1) dynamics, and 
recognize that RVt contains some measurement error, since in real empirical work the 
underlying sampling cannot pass all the way to continuous time. Then RVt would equal 
an AR(1) process plus a measurement error, which yields an ARMA(1,1) model if the 
two are independent:

Estimation of this model formally requires use of nonlinear optimization techniques, 
but it is still very easy to do using standard statistical packages.

Although the simple short-memory AR(1) model above may be adequate for short-
horizon risk forecasts, the autocorrelation function for AvgRV shown in Figure 6 clearly 
suggests that when looking at longer, say monthly, forecast horizons, more accurate 
forecasts may be obtained by using richer dynamic models that better capture the long-
range dependence associated with slowly decaying autocorrelations. Unfortunately, 
however, when |β1| < 1 the AR(1) process has short memory, in the sense that its auto-
correlations decay exponentially quickly. On the other hand, when β1 = 1 the process 
becomes a random walk (1 − L)RVt = β0 + νt, and has such strong memory that cova-
riance stationarity and mean reversion are both lost. A useful middle ground may be 
obtained by allowing for fractional integration,23

(23)RVt = β0 + β1RVt−1 + νt .

RVt = β0 + β1RVt−1 + α1νt−1 + νt .

23 �The fractional differencing operator (1 − L)d
 is formally defined by its binomial expansion; see, e.g. 

Baillie, Bollerslev, and Mikkelsen (1996) and the discussion therein pertaining to the so-called fractional 
integrated GARCH (FIGARCH) model.

(24)(1 − L)dRVt = β0 + νt .
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This long-memory model is mean reverting if 0 < d < 1 and covariance stationary if 
0 < d < 1/2. Fractional integration contrasts to the extremely strong integer integra-
tion associated with the random walk (d = 1) or the covariance-stationary AR(1) case 
(d = 0). Crucially, it allows for long-memory dynamics in the sense that autocorrela-
tions decay only hyperbolically, akin to the pattern seen in Figure 6.

Long-memory models can, however, be somewhat cumbersome to estimate and 
implement. Instead, a simpler approach may be pursued by directly exploiting longer 
run realized volatility regressors. Specifically, letting RVt−4:t and RVt−20:t denote the 
weekly and monthly realized volatilities, respectively, obtained by summing the corre-
sponding daily volatilities. Many researchers, including Andersen, Bollerslev, and Diebold 
(2007a), have found that the so-called heterogenous autoregressive, or HAR-RV, model, 
originally introduced by Corsi (2009),

provides a very good fit for most volatility series. As shown in Corsi (2009), the HAR 
model may be viewed as an approximate long-memory model. In contrast to the exact 
long-memory model above, however, the HAR model can easily be estimated by OLS. 
Even closer approximations to exact long-memory dependence can be obtained by 
including coarser, say quarterly, lagged realized volatilities on the right-hand side of the 
equation. A leverage effect, along the lines of the GJR-GARCH model discussed above, 
can also easily be incorporated into the HAR-RV modeling framework by including 
on the right-hand side additional volatility terms interacted with dummies indicating 
the sign of rt−1, as in Corsi and Reno (2010).

The HAR regressions can, of course, also be written in logarithmic form

The log specification conveniently induces approximate normality, as demonstrated in 
Figure 5 above. It also ensures positivity of volatility fits and forecasts, by exponentiating 
to “undo” the logarithm.24

Armed with a forecast for tomorrow’s volatility from any one of the HAR-RV or 
other time series models discussed above, say R̂VT+1|T, a one-day VaR is easily com-
puted as

(25)RVt = β0 + β1RVt−1 + β2RVt−5:t−1 + β3RVt−21:t−1 + νt ,

(26)log RVt = β0 + β1 log RVt−1 + β2 log RVt−5:t−1 + β3 log RVt−21:t−1 + νt .

24 �Note however that forecasts of RVt+1 obtained by exponentiating forecasts of log RVt+1 are generally 
biased, due to the nonlinearity of the exp(·) transformation. Although we will not pursue it here, one 
could perform a bias correction, which would depend on the possibly time-varying variance of νt. A 
similar problem applies to the EGARCH model briefly discussed above.

(27)RV�VaR
p

T+1|T = R̂VT+1|T �−1
p ,
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where �−1
p  refers to the relevant quantile from the standard normal. Andersen, 

Bollerslev, Diebold, and Labys (2003a) use this observation to construct RV-based VaRs 
with properties superior to GARCH-VaR. We will discuss this approach in more detail 
in Section 2.3.2.

To illustrate, we show in Figure 7 the GARCH-VaR from Figure 3 together with 
the HAR-VaR based on (27) constructed using the simple linear HAR-RV specifica-
tion in (25). The figure shows that HAR-VaR reaches its peak before GARCH-VaR. 
Equally important, the HAR-VaR drops back to a more normal level sooner than the 
GARCH-VaR after the trough in the market on March 2009. Intuitively, by using the 
more accurate RV measure of current volatility, the model is able to more quickly adjust 
to the changing market conditions and overall level of market risk. Of course, the com-
monly employed RM-VaR in Figure 3 is even slower to adjust than the GARCH-VaR, 
and the HS-VaR in Figure 1 adjusts so slowly that it remains at its maximum sample 
value at the end of 2009.

As discussed above, VaR and other risk measures are often computed for a two-
week horizon. The risk manager is therefore interested in a 10-day volatility forecast. 
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Figure 7  10-day 1% HAR-VaR and GARCH-VaR, July 1, 2008–December 31, 2009. The dashed line 
shows 10-day 1% HAR-VaR based on the HAR forecasting model for 10-day realized volatility. The solid 
line shows 10-day 1% GARCH-VaR. When computing VaR the 10-day returns divided by the expected 
volatility are assumed to be normally distributed.
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Another advantage of the RV-based approach, and the HAR-RV model in particular, 
is that it can easily be adapted to deliver the required multi-period variance forecasts. 
Specifically, consider the modified HAR-RV regression,

An RV-based VaR can now easily be computed via

where

denotes the 10-day forecast obtained directly from the modified HAR-RV model in 
(28). Hence, in contrast to GARCH models, there is no need to resort to the use of 
complicated recursive expressions along the lines of the formula for σ 2

t:t+k|t for the 
GARCH(1,1) model in (14). The modified HAR-RV model in (28) builds the appro-
priate mean reversion directly into the requisite variance forecasts.25

2.2.2  Realized Volatilities and Jumps
The continuous-time process in (20) formally rules out discontinuities in the underly-
ing price process. However, financial prices often exhibit “large” movements over short 
time intervals, or “jumps”. A number of these jumps are naturally associated with read-
ily identifiable macroeconomic news announcements, see, e.g., Andersen, Bollerslev, 
Diebold, and Vega (2003b) and Andersen, Bollerslev, Diebold, and Vega (2007b), but 
many others appear idiosyncratic or asset specific in nature. Such large price moves 
are inherently more difficult to guard against, and the measurement and management 
of jump risk requires the use of different statistical distributions and risk management 
procedures from the ones needed to measure and manage the Gaussian diffusive price 
risks implied by the price process in (20).

In particular, taking into account the possibility of jumps in the underlying price 
process, the realized variation measures discussed above no longer converge to the inte-
grated variance. Instead, the total ex-post variation is given by

where IVt as before, in (22), accounts for the variation coming from the continuous, or 
smooth, price increments over the day, and

(28)RVt:t+9 = β0 + β1RVt−1 + β2RVt−5:t−1 + β3RVt−21:t−1 + νt:t+9.

RV�VaR
p

T+10|T = R̂VT+1:T+10|T �−1
p ,

R̂VT+1:T+10|T = β̂0 + β̂1RVT + β̂2RVT−4:T + β̂3RVT−20:T ,

25 Note however that a new HAR-RV model must be estimated for each forecast horizon of interest.

(29)QVt = IVt + JVt ,

(30)JVt =
J t∑

j=1

J2
t,j ,
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measures the variation due to the Jt jumps that occurred on day t; i.e.,  
Jt,j , j = 1, 2, . . . , Jt.  This does not invalidate AvgRV, or any of the other RV estimators 
discussed above, as an ex post measure for the total daily quadratic variation, or QVt. It 
does, however, suggest the use of more refined procedures for separately estimating QVt 
and IVt, and in turn JVt.

Several alternative volatility estimators that are (asymptotically) immune to the 
impact of jumps have been proposed in the literature. The first was the bipower varia-
tion estimator of Barndorff-Nielsen and Shephard (2004b),

where �pt−1+j� ≡ pt−1+j� − pt−1+(j−1)�. The idea behind the bipower variation esti-
mator is intuitively simple. When Δ goes to zero the probability of jumps arriving both 
in time interval j� and (j + 1)� goes to zero along with the absolute value of the non-
jump returns. Jumps in the product |�pt−1+j�||�pt−1+(j+1)�| will therefore vanish 
asymptotically. Consequently, BPVt(�) will converge to the integrated variance IVt, as 
opposed to QVt, for Δ approaching zero, even in the presence of jumps.26 In contrast, 
the key terms in the realized variance estimator, namely the intraday squared returns (
�pt−1+j�

)2
, will include the price jumps as well as the “smooth” continuous price 

variation. The RVt(�) estimator therefore always converges to QVt for Δ approaching 
zero.

The BPVt (�) estimator is subject to the same type of microstructure frictions that 
plague the RVt (�) estimator at ultra-high sampling frequencies. Thus, even if a 1-min 
grid of prices is available, it might still be desirable to use coarser, say 5-min, returns 
in the calculation of BPVt (�) to guard against market microstructure noise. A simple 
average of the five different BPVt (�)’s could then be used to compute an improved 
AvgBPV  estimator.

Although the BPVt (�) estimator is formally consistent for IVt in the idealized set-
ting without market microstructure noise, the presence of large jumps can result in non-
trivial upward biases in practice. Motivated by this observation, Andersen, Dobrev, and 
Schaumburg (2012) recently proposed an alternative class of jump-robust estimators, the 
neighborhood truncation measures. The simplest version takes the form,

(31)BPVt (�) = π

2

N (�)

N (�) − 1

N (�)−1∑

j=1

|�pt−1+j�||�pt−1+(j+1)�|,

26 �The π/2 normalization arises from the fact that the expected value of an absolute standard normal ran-
dom variable equals (π/2)1/2, while the ratio involving N (�) provides a finite-sample adjustment for 
the loss of one term in the summation.

MinRVt (�) = π

π − 2

(
N (�)

N (�) − 1

) N (�)−1∑

j=1

min
{
|�pt−1+j�|, |�pt−1+(j+1)�|

}2
.
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The intuition behind the MinRV estimator is similar to that for the original BPV esti-
mator. When Δ goes to zero, the probability of jumps arriving in two adjacent time 
intervals of length Δ goes to zero, so the minimum is unaffected by jumps. The main 
difference is that the jump is now fully neutralized, even at a given discrete sampling 
frequency, in the sense that the jump size has no direct impact on the estimator. Hence 
the finite sample distortion of the MinRV estimator is significantly less than that of BPV 
estimator.27 By this same reasoning, a related jump-robust MedRV estimator may be 
constructed from the properly scaled square of the median of three adjacent absolute 
returns cumulated across the trading day, see Andersen, Dobrev, and Schaumburg (2012) 
for details.

Another intuitively simple approach for estimating IVt, first explored empirically by 
Mancini (2001), is to use truncation, the idea being that the largest price increments are 
the ones associated with jumps. Specifically, by only summing the squared return below 
a certain threshold,

the resulting estimator again consistently estimates only the continuous variation pro-
vided that the threshold T  converges to zero at an appropriate rate as Δ goes to zero. 
Since the continuous variation changes over time, and in turn the likely magnitude 
of the corresponding continuous price increments, it is also important to allow the 
threshold to vary over time, both within and across days. This choice of time-varying 
threshold can be somewhat delicate to implement in practice; see, e.g. Bollerslev and 
Todorov (2011b) and the discussion therein.

Regardless of which of these different IVt estimators is used, we obtain an empiri-
cally feasible decomposition of the total daily variation into the part associated with 
the “small”, or continuous, price moves, and the part associated with the “large”, and 
generally more difficult to hedge, price moves, or jumps. Even if the risk manager is not 
interested in this separation per se, this decomposition can still be very useful for the 
construction of improved VaRs and other related risk measures.

In particular, it is often the case that the variation associated with jumps tends to be 
much more erratic and less predictable than the variation associated with the continu-
ous price component. As such, the simple HAR-RV type forecasting models discussed 
above may be improved by allowing for different dynamics for the two different sources 

27 �This is true as long as there are no adjacent jumps at the sampling frequency used. Both estimators suffer 
from significant upward biases if adjacent jumps are present. This has led to additional procedures that 
enhance the robustness properties even further; see the discussion in Andersen, Dobrev, and Schaumburg 
(2011b).

TVt (�) =
N (�)∑

j=1

�p2
t−1+j�I

(
�pt−1+j� < T

)
,
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of daily variation. Such an approach was first pursued by Andersen, Bollerslev, and 
Diebold (2007a), who found that the HAR-RV-CJ model,

indeed produces even better RV forecasts than the HAR-RV model in (25), which 
implicitly restricts the αi and βi coefficients in (32) to be identical. Instead, by allowing for 
“α effects” and “β effects” in the HAR-RV-CJ model, we capture the fact that the varia-
tion associated with jumps is less persistent and predictable than the continuous variation.

Further refinements allowing for leverage effects and/or other asymmetries and 
nonlinearities could easily be incorporated into the same HAR-RV modeling frame-
work by including additional explanatory variables on the right-hand side. But the 
simple-to-estimate HAR-RV-CJ model typically does a remarkably good job of effec-
tively incorporating the empirically most relevant dynamic dependencies of the intraday 
price data into the daily and longer-run volatility forecasts of practical interest.

2.2.3  Combining GARCH and RV
So far we have presented GARCH and RV-based procedures as two distinct approaches. 
There are, however, good reasons to combine the two. The ability of RV to rapidly 
deliver precise information regarding the current level of volatility, along with the ability 
of GARCH to appropriately smooth noisy volatility proxies make such a combination 
appealing. Another advantage of combined models is the ability to integrate the RV 
process naturally within a complete characterization of the return distribution, thus 
allowing the RV dynamics to become a natural and direct determinant of the time 
variation in risk measures such as VaR and expected shortfall. The following section will 
elaborate on those features of the approach.

The simplest way of combining GARCH and RV is to include the RV measure as 
an additional explanatory variable on the right-hand side of the GARCH equation,

This is often referred to as a GARCH-X model.28 Estimating this model typically 
results in a statistically insignificant (ARCH) coefficient, α so that the model effectively 
reduces to

(32)
RVt = β0 + β1IVt−1 + β2IVt−5:t−1 + β3IVt−21:t−1

+ α1 JVt−1 + α2 JVt−5:t−1 + α3 JVt−21:t−1 + νt ,

(33)σ 2
t = ω + αr2

w,t−1 + βσ 2
t−1 + γ RVt−1.

28 �Professor Robert F. Engle in his discussion of Andersen et al. (2003a) at the 2000 Western Finance 
Association meeting in Sun Valley, Idaho, was among the first to empirically explore this idea. Related 
analysis appears in Engle (2002b). Lu (2005) provides another early comprehensive empirical study of 
GARCH-X type models.

(34)σ 2
t = ω + βσ 2

t−1 + γ RVt−1.



Financial Risk Measurement for Financial Risk Management 1155

Intuitively, the high-frequency-based RV measure affords a superior estimate of the true 
ex-post daily variation compared to the daily (de-meaned) squared returns, in turn driv-
ing out the latter as an explanatory variable for tomorrow’s volatility. As such, whenever 
high-frequency-based RV measures are available, it is always a good idea to use the 
GARCH-X model instead of the conventional GARCH(1,1) model based solely on 
daily return observations.29

The GARCH-X model defined by (7) and (33) or (34) directly provides one-day 
volatility forecasts. The calculation of longer-run k-day forecasts σ

2
t+k|t necessitates a 

model for forecasting RVt+k as well. This could be accomplished in an ad hoc fashion by 
simply augmenting the GARCH-X model with any one of the HAR-RV type models 
discussed in the previous sections. The so-called Realized GARCH class of models 
developed by Hansen, Huang, and Shek (in press) provides a more systematic approach 
for doing exactly that.

As an example, consider the specific Realized GARCH model defined by (7) and

where νt denotes a random error with the property that Et(νt) = 0, and the τ(zt) func-
tion allows for a contemporaneous leverage effect via the return shock zt in (7).30 
Substituting the equation for σ 2

t  into the equation for RVt shows that the model implies 
an ARMA representation for the realized volatility, but other HAR-RV type structures 
could, of course, be used instead. Note also that unlike regular GARCH, the Realized 
GARCH model has two separate innovations. However, because RVt is observed, esti-
mation of the model can still be done using bivariate maximum likelihood estimation 
techniques that closely mirror the easily implemented procedures available for regular 
GARCH models.

The Multiplicative Error Model (MEM) of Engle (2002b) and Engle and Gallo 
(2006) constitutes another framework for combining different volatility proxies (e.g. 
daily absolute returns, daily high–low ranges, RVs, IVs, or option-implied volatilities) 
into the estimation of a coherent multivariate model for return variances.31 It is natural 

29 �In a related context, Visser (2011) has recently shown how the accuracy of the coefficient estimates in 
conventional daily GARCH models may be improved through the use of intraday RV-based measures 
in the estimation.

(35)σ 2
t = ω + βσ 2

t−1 + γ RVt−1,

(36)RVt = ωX + βXσ 2
t + τ (zt) + νt ,

30 �A closely related class of two-shock Realized GARCH models, in which the return volatility is a weight-
ed average of the GARCH and RV volatilities, has recently been proposed by Christoffersen, Feunou, 
Jacobs, and Meddahi (2011b). Their affine formulation has the advantage that option valuation can be 
done via Fourier inversion of the conditional characteristic function. Non-affine approaches to option 
valuation using RV have also been pursued by Corsi, Fusari, and LaVecchia (2011) and Stentoft (2008).

31 �This approach has also been used by Brownlees and Gallo (2011) to compare different volatility measures 
and their uses in risk management.
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to use this same framework to extend the GARCH-X model to allow for the construc-
tion of multi-day volatility forecasts.

In particular, building on the MEM structure, Shephard and Sheppard (2010) pro-
pose an extension of the basic GARCH-X model in (33), in which the conditional 
mean of realized volatility, µRV,t ≡ Et−1(RVt), is defined recursively by the equation,

Shephard and Sheppard (2010) refer to this model as a High-frEquency bAsed VolatilitY 
model, or “HEAVY” model. Like the Realized GARCH class of models, HEAVY 
models have the advantage that they adapt to new information and market condi-
tions much more quickly than the regular daily GARCH models. In contrast to the 
simple GARCH(1,1) model, for which the k-period variance forecasts in (13) converge 
monotonically to their long-run average values, the HEAVY model defined by (33) and 
(37) also might show momentum effects, so that the convergence of the multi-period 
variance forecasts to the long-run unconditional variance is not necessarily monotonic. 
This point is nicely illustrated by the volatility forecasts during the recent financial 
crises reported in Shephard and Sheppard (2010), which show how the model some-
times predicts rising volatility even when the current volatility is exceptionally high by 
historical standards.

Risk managers, of course, typically care not only about the dynamics of volatility 
but also more generally about the dynamics of the entire conditional distribution of 
portfolio returns. Movement in conditional variance is a key driver of movement in the 
conditional distribution, but only in the unlikely case of conditional normality is the 
entire story. Hence we next discuss how GARCH and realized variance may be used in 
broader modeling of entire return distributions.

2.3  Modeling Return Distributions
We have emphasized—and continue to emphasize—the potentially seriously misleading 
nature of unconditional risk analyses. Here we stress the similarly potentially seriously 
misleading nature of Gaussian risk analyses. There are four cases to consider, correspond-
ing to the reliance on unconditional/conditional information and the use of Gaussian/
non-Gaussian distributions.

Risk measurement in an unconditional Gaussian framework would be doubly 
defective, first because of the deficiencies of the unconditional perspective, and second 
because financial returns are simply not unconditionally Gaussian, as has been well 
known at least since the classic contributions of Mandelbrot (1963) and Fama (1965). 
For that reason, even crude approaches like historical HS-VaR, although maintaining 
an unconditional perspective, dispense with normality by building an approximation to 
the unconditional distribution from historically observed returns.

(37)µRV,t = ωRV + αRVRVt−1 + βRVµRV,t−1.
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Figure 8 serves to illustrate the strong unconditional non-normality in returns, as 
it displays a QQ plot for daily S&P500 returns from January 2, 1990 to December 31, 
2010. That is, it plots quantiles of the standardized returns against quantiles of the stan-
dard normal distribution. If the returns were unconditionally normally distributed, the 
points would fall along the 45-degree line. Clearly, the daily returns are not normally 
distributed.

Now consider the conditional case. Note that in specifying the general conditional 
variance model (7) we made no assumptions as to the conditional distribution of 
returns. That is, we made no assumptions as to the distribution of returns standardized 
by their conditional variance; i.e., the distribution of zt in (7). But in converting objects 
like GARCH conditional variances into GARCH-VaR, for example, we did invoke 
conditional normality. At least four points are worth making.

First, conditional normality can be, and sometimes is, an acceptable assumption. 
Conditional normality does not imply unconditional normality, and indeed volatility 
dynamics “fatten” the tails of unconditional distributions relative to their conditional 
counterparts, so that conditionally Gaussian models sometimes match the unconditional 
fat tails present in the data. Put differently, distributions of returns standardized by their 
conditional volatilities can be approximately Gaussian, even if returns are clearly uncon-
ditionally non-Gaussian.

Second, conditional normality is not necessarily an acceptable assumption. Sometimes, 
for example, the unconditional distribution of returns might be so fat-tailed that the 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 R
et

ur
ns

 D
iv

id
ed

 b
y 

A
ve

ra
ge

 V
ol

at
ili

ty

Figure 8  QQ plot of S&P500 returns. We show quantiles of daily S&P500 returns from January 2, 1990 
to December 31, 2010, against the corresponding quantiles from a standard normal distribution.
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volatility model cannot fatten conditionally Gaussian tails enough to match the uncon-
ditional distribution successfully.

Third, beyond fat unconditional tails, there may be other unconditional distributional 
features, such as skewness, that could never be captured under any symmetric conditional 
density assumption such as Gaussian, independent of the conditional variance model 
used. Matching the unconditional density in general requires flexible conditional vari-
ance and conditional density specifications.

Fourth, our goal in flexibly specifying the conditional density is not merely to rep-
licate the unconditional density successfully. Rather, for risk measurement and manage-
ment purposes the conditional density is the object of direct and intrinsic interest. That 
is, best-practice risk measurement and management often requires an estimate of the 
entire conditional distribution of returns, not just insufficient statistics like its condi-
tional variance, conditional VaR, or conditionally expected shortfall. Hence we need a 
flexible specification of the conditional density.

Empirical analyses typically find that, although standardization by GARCH and 
related volatilities promotes normality, the standardized returns remain non-normal. 
The nature of the non-normality of standardized returns, moreover, varies systematically 
across asset classes. For example, standardized returns from mature foreign exchange 
markets are typically symmetric but leptokurtic, while standardized returns on aggregate 
equity indexes are typically skewed.

To illustrate we show in Figure 9 a Gaussian QQ plot for S&P500 returns 
standardized by the time-varying volatilities from the asymmetric NGARCH(1,1) 
model previously used in calculating the VaRs in Figure 3. The QQ plot reveals that 
the NGARCH-standardized returns conform more closely to normality than do 
the raw returns of Figure 8. It also reveals, however, that the left tail of the return 
distribution remains far from Gaussian. In particular, there are too many large 
negative returns relative to what one would expect if the standardized returns were 
Gaussian.

As the VaR itself refers to a specific quantile, this QQ plot in effect provides an 
assessment of the normal NGARCH-based VaRs defined in (19) across all possible 
coverage rates, p. In particular, judging by the coherence of the positive quantiles, the 
figure suggests that the normal-NGARCH-VaR approach works reasonably well at 
moderate coverage rates for a well-diversified portfolio representing a short position 
on the market index. On the other hand, for a diversified portfolio that is long on the 
market index, the approach only works if the desired coverage rate is relatively large, 
say in excess of about 15% or a value of around negative one in the figure. Moving 
further into the tail, the normal approximation deteriorates quite badly, rendering the 
corresponding normal-based VaRs unreliable. Of course, the corresponding conditional 
expected shortfall defined in (2) depends on the entire left tail, and will consequently 
be badly biased across all coverage rates due to the poor tail approximation.
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Now consider standardizing the returns not by a GARCH or related model-based 
conditional volatility, but rather by realized volatility. Figure 10 shows a Gaussian QQ 
plot for daily S&P500 returns standardized by AvgRV.  In contrast to the poor fit for the 
left tail evident in the QQ plot for the GARCH-standardized returns of Figure 9, the 
QQ plot for the AvgRV-standardized returns in Figure 10 is remarkably close to nor-
mality throughout the support, including in the left tail. This striking empirical result 
was first systematically documented for exchange rates in Zhou (1996) and Andersen, 
Bollerslev, Diebold, and Labys (2000a), and extended to equity returns in Andersen et 
al. (2001a); see also the recent work by Andersen, Bollerslev, Frederiksen, and Nielsen 
(2010b) and the many references therein.32

It is worth stressing that the QQ plots in Figures 9 and 10 rely on the identical daily 
S&P500 return series, but simply use two different volatility measures to standardize 
the raw returns: a GARCH-based estimate of σt and the realized volatility AvgRV

1/2
t . 

Putting things into perspective, the conditional non-normality of daily returns has long 
been seen as a key stylized fact in market risk management; see, e.g. Christoffersen (2003). 
Thus, identifying a volatility measure that produces approximately normally distributed 

32 �Andersen, Bollerslev, and Dobrev (2007c) explores the theoretical basis for this relationship and provides 
a detailed examination of the empirical fit for daily S&P500 returns.
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Figure 9  QQ plot of S&P500 returns standardized by NGARCH volatilities. We show quantiles of 
daily S&P500 returns standardized by the dynamic volatility from a NGARCH model against the cor-
responding quantiles of a standard normal distribution. The sample period is January 2, 1990 through 
December 31, 2010. The units on each axis are standard deviations.



Torben G. Andersen et al.1160

standardized returns is both surprising and noteworthy. Of course, the realized volatility 
used in the standardization in Figure 10 is based on high-frequency data over the same 
daily time interval as the return, while the GARCH volatility used in Figure 9 is a true 
one-day-ahead prediction.

Against this background on the very different distributional properties of unstan-
dardized, GARCH-standardized and RV-standardized returns, in this section we discuss 
how to use the different standardizations and resulting distributions to construct accu-
rate predictive return distributions. An important part of that discussion, particularly in 
the GARCH-standardized case, involves specification of empirically realistic (i.e., non-
Gaussian) conditional return distributions.

2.3.1  Procedures Based on GARCH
The GARCH dynamic directly delivers one-day ahead volatility forecasts. In order to 
complete the daily predictive return distribution, one simply needs to postulate a distri-
bution for the zt return shock in (7). Although the normal assumption may work well 
in certain cases, as Figure 9 makes clear, it often underestimates large downside risks. As 
such, it is important to consider alternatives that allow for fat tails and/or asymmetries 
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Figure 10  QQ plot of S&P500 returns standardized by realized volatilities. We show quantiles of daily 
S&P500 returns standardized by AvgRV against the corresponding quantiles of a standard normal 
distribution. The sample period is January 2, 1990 through December 31, 2010. The units on each axis 
are standard deviations.
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in the conditional distribution. Specifically, in the case of VaR we are looking for ways 
to more accurately assess the cut-off κ−1

p  in

instead of simply relying on �−1
p  from the standard normal distribution.33 Of course, 

doing this for all values of p ∈ [0, 1] essentially amounts to mapping out the entire 
conditional return distribution.

Perhaps the most obvious approach is to look for a parametric distribution that is 
more flexible than the normal. One example is the (standardized) Student-t distribution, 
which relies on only one additional degrees-of-freedom parameter in generating sym-
metric fat tails. Such an approach was first pursued by Bollerslev (1987), who showed 
how the likelihood function for the normal-GARCH model in (9) is readily extended 
to the GARCH-t case, thus allowing for the estimation of the degrees-of-freedom 
parameter (along with the other GARCH parameters) that best describes the return 
distribution, and in turn the requisite κ−1

p  for calculating the VaR in (38).
This approach works reasonably well when the conditional return distribution is 

close to symmetric. However, as illustrated by the QQ plots discussed above, equity 
portfolios are often severely left skewed. The Generalized Error Distribution (GED), 
first employed in this context by Nelson (1991), explicitly allows for asymmetries, as do 
some of the different generalizations of the Student-t distribution suggested by Hansen 
(1994) and Fernandez and Steel (1998), among others. Alternatively, following Engle 
and Gonzalez-Rivera (1991) the whole density for zt may be approximated using more 
flexible semiparametric procedures.

Rather than postulating a particular parametric density, one can also simply approxi-
mate the quantiles of non-normal distributions via Cornish–Fisher type expansions. 
This approach was first advocated in the context of GARCH modeling and forecasting 
by Baillie and Bollerslev (1992). The only inputs needed for estimating κ

−1
p  are the 

unconditional sample skewness and kurtosis statistics for the standardized returns.34

Meanwhile, a common problem with most GARCH models, regardless of the inno-
vation distribution, is that the specific distribution is not preserved under temporal 
aggregation; see, e.g. the discussion in Drost and Nijman (1993) and Meddahi and 
Renault (2004). For example, even if the standardized daily returns from a GARCH(1,1) 
model were normal, the implied weekly returns would not be. In turn, this implies that 
the term structure of VaRs is not closed under temporal aggregation either. Instead, the 

(38)VaR
p

T+1|T ≡ σT+1κ
−1
p ,

33 �The 1996 amendment to the 1988 Basel Accord somewhat arbitrarily recommends the use of a multi-
plicative factor of at least −3.0 in the construction of a 1% VaR, relative to the �−1

0.01 = −2. 33 implied 
by the standard normal distribution; see also the discussion in Chan, Deng, Peng, and Xia (2007).

34 �More accurate approximations may in theory be obtained by including higher-order unconditional 
sample moments in the Cornish–Fisher expansion, but this does not always produce satisfactory results.
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multi-period VaRs need to be computed via Monte Carlo simulations or other numeri-
cal methods, as exemplified by Guidolin and Timmermann (2006).35 This also means 
that the Cornish–Fisher and related approximations, which only provide partial charac-
terizations of the underlying daily return distribution in the form of specific quantiles, 
generally will not suffice for answering questions regarding the distribution of tempo-
rally aggregated returns. Below, we discuss a viable approach that effectively combines a 
parametric volatility model with a data-driven conditional distribution. First, however, 
we discuss how realized volatilities, if available, may be used in the calculation of even 
more accurate predictive return distributions by effectively incorporating the intraday 
information into the distributional forecasts.

2.3.2  Procedures Based on Realized Volatility
The basic idea underlying the construction of RV-based predictive return distributions 
is to treat the time series of RVs as stochastic. Hence, in contrast to the GARCH-based 
procedures, which seek to describe the predictive distribution through an appropriately 
specified univariate distribution for the standardized returns, the RV-based procedures 
necessitate, at a minimum, a bivariate random distribution for the returns and the real-
ized volatilities.

This relatively new approach to risk measurement was first suggested by Andersen 
et al. (2003a). The approach is directly motivated by the empirical regularities pertaining 
to the RV measures highlighted above. First, as discussed in Section 2.2, simple time 
series models for the realized volatilities, like the HAR-RV specification, generally result 
in more accurate volatility forecasts than do the conventional GARCH models based 
on daily data only.36 Second, as shown in Section 2.3, the distributions of daily returns 
standardized by the same-day RVs typically appear close to Gaussian. Taken together, 
this suggests a mixture-of-distributions type approach for characterizing the time T + 1 
return distribution, in which the predictive distribution for RVT+1 serves as the mixture 
variable.37

Specifically, assuming that the standardized return is normal, rT+1/RV
1/2
T+1 ∼ N (0, 1),  

and that the distribution of the time T + 1 realized volatility conditional on time T  

35 �The affine GARCH models suggested by Heston and Nandi (2000) and Christoffersen, Heston, and 
Jacobs (2006), when combined with the methods of Albanese, Jackson, and Wiberg (2004), also allow for 
relatively easy-to-compute term structures for VaR, but some numerical calculations are still required.

36 �This empirical regularity may also be justified through more formal theoretical arguments, as to why the 
simple reduced form RV-based procedures often work better than structural model-based approaches in 
practice; see, Andersen, Bollerslev, and Meddahi (2004); Andersen, Bollerslev, and Meddahi (2011a); and 
Sizova (2011).

37 �There is a long history, dating back to Clark (1973), of using mixture-of-distributions to describe the 
unconditional distribution of returns. What is fundamentally different in the RV-based approach is to 
treat the mixing variable as directly observable and predictable.
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information is log-normal, the resulting normal log-normal mixture distribution for the 
time T + 1 returns may be expressed as

where µℓ,T+1 and σ 2
ℓ,T+1

 denote, respectively, the time T  conditional mean and vari-
ance of log (RVT+1). For example, postulating a HAR-RV type model for logRV with 
homoskedastic errors, we obtain,

and σ 2
ℓ,T+1 = σ 2

v , respectively.38

The simple HAR-RV model for the conditional mean µℓ,T+1 could, of course, be 
extended in several directions. For instance, as noted above, when modeling large equity 
portfolios, asymmetries, or “leverage effects”, are often statistically significant. Also, in 
their actual empirical implementation Andersen et al. (2003a) use a long-memory 
ARFIMA model for logRV in place of the HAR-RV formulation. This makes little 
difference for the maximum ten-day forecast horizons considered in their analysis, but 
it could be important to do so in the calculation of longer run, say quarterly (∼66 days 
ahead) or annual (∼252 days ahead), distributional forecasts.

The mixture distribution described above treats σℓ,t as constant. However, it is 
natural to think about the volatility-of-volatility as being time varying with its own 
GARCH dynamics. Such an approach has been pursued empirically by Maheu and 
McCurdy (2011), who report that allowing for temporal variation in σℓ,t does not 
actually result in materially different predictive return distributions. Going one step fur-
ther, Bollerslev, Kretschmer, Pigorsch, and Tauchen (2009a) develop a joint conditional 
density model for the returns, the “smooth” volatility, and the variation due to jumps {
rt, log (BPVt), log (RVt = /BPVt)

}
. In that model the predictive distribution for the 

returns is therefore obtained through a more complicated normal mixture involving 
two separate mixing variables the basic idea remains the same.

This continues to be an active area of research, and it is too early to say which of 
the different approaches will be the “winner”. It is evident, however, that any of the 
relatively simple RV-based procedures described above almost invariably generate more 
accurate predictive return distributions than the traditional GARCH-based distribu-
tional forecast, especially over relatively short one-day to one-week horizons.

fT (rT+1) = 1

2πσ 2
ℓ,T+1

∫ ∞

0

y−3/2 exp

{
−

r2
T+1

2y
− 1

2σ 2
ℓ,T+1

(
ln (y) − µℓ,T+1

)2

}
dy,

µℓ,T+1 = β0 + β1 log(RVT ) + β2 log(RVT−4:T ) + β2 log(RVT−20:T ),

38 �Although it is not possible to express the density function in closed form, it is easy to calculate numeri-
cally by repeated simulations from a normal distribution with a random variance drawn from a log-
normal distribution with the requisite mean and variance.
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2.3.3  Combining GARCH and RV
Just as the GARCH and RV concepts may be formally combined in the construction of 
volatility forecasts, they may be similarly combined to produce distributional forecasts. 
The procedures discussed in the previous section, of course, also utilize the realized 
volatility measures in the construction of the forecasts. However, they generally do not 
provide a direct link between the GARCH conditional variance σt and the realized 
volatility measures.

Forsberg and Bollerslev (2002) provides a first attempt at doing that. Their 
RV-GARCH style model is based on the assumption that RV is conditionally Inverse 
Gaussian distributed39

together with a GARCH-style process for the conditional expectation of RV,

Further assuming that the RV-standardized returns are normally distributed, results in 
the predictive normal inverse Gaussian (NIG) distribution with conditional variance 
σT+1,

Closely related RV-GARCH type models have also been developed and used in the 
context of option pricing by Christoffersen et al. (2011b), Corsi, Fusari, and LaVecchia 
(2011), and Stentoft (2008).

The more recent Realized GARCH and HEAVY models discussed in Section 2.2.3 
take this approach one step further by providing a coherent joint modeling framework 
for {rt , σt , RVt}, where, importantly, the conditional variance of the returns, σ 2

t , is not 
identical to the conditional expectation of RVt. These models directly deliver one-day 
volatility and return distribution forecasts. In contrast to the GARCH-X style models 
and some of the RV-based procedures discussed above, multi-day distributional forecasts 
may also readily be computed using numerical simulation techniques.

These and other related GARCH-RV forecasting approaches are still being explored 
in the literature. Given the significant improvements afforded by incorporating the 
intraday information into the GARCH volatility forecasts through the RV measures, 

39 �The Inverse Gaussian distribution closely approximates the log-normal distribution for the realized 
volatility depicted in Figure 5 above.

fT (RVT+1) ∼ IG
(
σ 2

T+1, η
)

,

ET (RVT+1) = σ 2
T+1 = ω + αr2

w,T + βσ 2
T .

fT
(
rw,T+1

)
=

∫
fT

(
rw,T+1|RVT+1

)
fT (RVT+1) dRVT+1 ∼ NIG

(
σ 2

T+1, η
)

.
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especially during rapidly changing market conditions, we expect these procedures to 
play an increasingly important role as the field moves forward.

2.3.4  Simulation Methods
In the discussion above, we have often pointed to the use of numerical simulation tech-
niques as a way to calculate quantiles or distributions that are not available in closed 
form. These techniques differ in terms of their underlying assumptions ranging from 
fully parametric to essentially non-parametric.

Bootstrapping, or Filtered Historical Simulation (FHS), assumes a parametric model 
for the second moment dynamics, and then bootstraps from the standardized returns to 
build up the required distribution. At the portfolio level this is easy to do. First calculate 
the standardized pseudo portfolio returns as,

using one of the variance models discussed above. Then, in order to calculate a one-day-
ahead VaR, one simply uses the order statistic for the standardized returns combined 
with the volatility forecast to construct,40

This same idea could also be used to numerically calculate the VaR for parametric dis-
tributions where the quantiles are not readily available, by repeatedly drawing zw,t from 
the specific distribution.

The construction of multi-day VaRs is more time consuming, but conceptually 
straightforward. It requires simulating future paths from the volatility model using the 
standardized returns sampled with replacement as the innovations. This approach has 
been exploited by Diebold, Schuermann, and Stroughair (1998b), Hull and White 
(1998), and Barone-Adesi, Bourgoin, and Giannopoulos (1998), among others, and we 
refer to these studies for further details concerning its practical implementation.41

The FHS methodology was originally developed in a GARCH setting. However, 
for some of the RV-based procedures discussed above, one would naturally use RV or its 
expected value to standardize the portfolio returns. In these situations the standardized 
returns should be sampled from

(39)ẑw,t = rw,t/σ̂t , t = 1, 2, . . . , T ,

40 For the expected shortfall in (2) one would simply average over the draws that exceed zw(T + 1)p.

FHS − VaR
p

T+1 ≡ σT+1ẑw((T + 1)p).

41 Pritsker (2006) also provides additional evidence on the effectiveness of the FHS approach.

ẑw,t = rw,t/
√

RVt , t = 1, 2, . . . , T .
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or

Of course, if the underlying model is based on a specific distributional assumption 
about the RV-standardized returns, that distribution should be used in lieu of the non-
parametric bootstrap. Also, for RV-based GARCH models and related procedures, one 
might need to perform a bootstrap from the supposedly i.i.d. bivariate innovations for 
RV and returns, but the basic idea remains the same.

2.3.5  Extreme Value Theory
The different parametric and non-parametric procedures discussed above for character-
izing the conditional return distribution, including the simulation based bootstrap proce-
dures, are designed to work well for the center of the distribution and VaRs with relatively 
large coverage rates, say in excess of 5%. In many situations, however, one is primarily 
interested in the tails of the distributions and the risks associated with extremely large 
price changes. Extreme Value Theory (EVT) provides a formal statistical framework for 
meaningfully estimating the tails based on extrapolating from the available observations. 
McNeil, Frey, and Embrechts (2005) provide an excellent survey of these techniques and 
their application in quantitative risk management, and we merely highlight some of the 
key ideas here; early important work in this area also includes Diebold, Schuermann, and 
Stroughair (1998b), Longin (2000), and McNeil and Frey (2000).

Standard EVT is based on the assumption of i.i.d. observations. This may be a good 
approximation for many applications in actuarial science, but financial returns and large 
absolute price changes, in particular, are obviously not i.i.d. through time. However, in 
parallel to the FHS approach discussed immediately above, EVT may easily be com-
bined with dynamic volatility models by applying the EVT-based approximations to 
the estimated return shocks ẑw,t = rw,t/σ̂t rather than the returns themselves. Since the 
return shocks are much closer to being i.i.d. than are the returns, this makes the applica-
tion of EVT much more reasonable. Having estimated the tails for ẑw,t, these are easily 
transformed to tails or extreme quatiles of the raw returns by scaling with σ̂t.

EVT has the advantage that each tail of the distribution can be modeled separately. 
But it has the limitation that it only describes the tails of the distribution and not the 
entire distribution. It is therefore not possible to simulate data from an EVT distribution 
unless further assumptions are made. One way to proceed is to use EVT in the tails com-
bined with FHS for characterizing the center of the distribution. Assume for example 
that EVT captures well the 2% most extreme positive shocks and the 3% most extreme 
negative shocks. Return shocks can then be simulated by first drawing a trinomial vari-
able that comes up {−1, 0, +1} with probabilities {. 03, . 95, . 02}. When the trinomial 
comes up 0 then a shock is drawn randomly (with replacement) from the sample of ẑw,t 

ẑw,t = rw,t/
√

Et−1 [RVt], t = 1, 2, . . . , T .
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with the left 3% and right 2% extremes removed. When the trinomial comes up −1 then 
a shock is drawn from the left-tail EVT distribution. Similarly, a draw is made from the 
right-tail EVT distribution when the trinomial comes up +1. This same idea may also 
be used in “stress testing” the portfolio, by increasing the probabilities assigned to the 
tails, in turn generating a disproportionate number of draws from the extreme part of 
the distribution.

Portraying prices as evolving in continuous time, the extreme price increments are 
naturally thought of as “jumps”. The discussion in Section 2.2.2 above outlines several 
ways for disentangling the jumps on an ex-post basis with the help of high-frequency 
intraday data. Following the recent work of Bollerslev and Todorov (2011b), the high-
frequency filtered jumps may in turn be used in the estimation of the corresponding 
jump tail distribution and the probability of observing an extreme price change. Work 
along these lines is still in its infancy. However, we conjecture that in parallel to the 
gains in predictive accuracy afforded by the use of realized volatility measures relative 
to GARCH type models estimated with daily data only, similar gains may be available 
through the proper use of the high-frequency data for more accurately estimating the 
jump tails and the extremes of the return distributions.

3.  CONDITIONAL ASSET-LEVEL RISK ANALYSIS

Our discussion up until now has focused on dynamic volatility models for univariate 
returns. These methods are well suited for portfolio-level risk measures such as aggre-
gate VaR and ES. However, they are less well suited for providing input into the active 
risk management process. If, for example, the risk manager wants to know the sensitivity 
of the portfolio VaR to a simultaneous increase in stock market volatility and asset cor-
relations, as typically occurs in times of market stress, then a multivariate model is 
needed. Active risk management, such as portfolio VaR minimization, also requires a 
multivariate model that provides a forecast for the entire covariance matrix.42 Bank-
wide VaR is also made up of many desks with multiple traders on each desk, and any 
sub-portfolio analysis is not possible with the aggregate portfolio-based approach. 
Similarly, multivariate models are needed for calculating sensitivity risk measures and 
answering questions such as: “If I add an additional 1,000 shares of Apple to my port-
folio, how much will my VaR increase?” 

In this section we therefore consider the specification of models for the full N

-dimensional conditional distribution of asset returns. To set out the notation, let �t 
denote the N × N  covariance matrix of the N × 1 vector of asset returns Rt. The 
covariance matrix will have 1

2
N (N + 1) distinct elements, but structure needs to be 

42 �Brandt, Santa-Clara, and Valkanov (2004) provide an alternative and intriguing approach for dimension 
reduction by explicitly parameterizing the portfolio weights as a function of observable state variables, 
thereby sidestepping the need to estimate the full covariance matrix.
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imposed to guarantee that the covariance matrix forecasts are positive definite (pd), 
or even positive semi-definite (psd). A related, and equally important, practical issue 
involves the estimation of the parameters governing the dynamics for the 1

2
N (N + 1) 

individual elements.
We begin with a brief discussion of models and methods based on daily data. We 

then discuss how high-frequency data and realized variation measures may be incorpo-
rated into the construction of better covariance matrix and multivariate distributional 
forecasts. A notable aspect of our treatment is our inclusion and emphasis on methods 
that are applicable even when N  is (relatively) large. This contrasts with much of the 
extant literature, which focuses on relatively low-dimensional models.43

3.1  Modeling Time-Varying Covariances Using Daily Data and GARCH
The natural multivariate generalization of the RM variance dynamics in (4) provides 
a particularly simple approach to modeling large dimensional covariance matrices. It 
assumes that the dynamics of all the variances and covariances are driven by a single 
scalar parameter λ,

In parallel to the univariate case, the recursion may be initialized by setting �0 equal to 
the sample average coverage matrix.44

The simple structure of (40) guarantees that the estimated covariance matrices are 
psd, and even pd if the initial covariance matrix, �0, is pd, as the sum of a psd and pd 
matrices is itself pd. Letting �0 equal the sample coverage matrix, it will be pd as long 
as the sample size T  exceeds the number of assets N  and none of the assets are trivial 
linear combinations of others, thus rendering the RM covariance matrix forecasts pd 
as well.

At the same time, however, the RM approach is clearly very restrictive, imposing 
the same degree of smoothness on all elements of the covariance matrix. Moreover, 
covariance matrix forecasts generated by the multivariate RM approach inherit the 
implausible scaling properties of the univariate RM forecasts in Section 2.1, and will in 
general be suboptimal for the reasons discussed in the univariate context.

This, in turn, motivates a direct extension of the univariate GARCH approach to a 
multivariate setting. In particular, extending the expression in (7) to a vector setting, the 

43 �See Bauwens, Laurent, and Rombouts (2006) for a survey of multivariate GARCH models, and Chib, 
Omori, and Asai (2009) for a survey of multivariate stochastic volatility models, involving daily data and 
moderate dimensions.

(40)�t = λ�t−1 + (1 − λ)Rt−1R′
t−1.

44 �As previously noted, empirically more realistic dependence structures have also been explored by RM, but 
following standard convention, we will continue to refer to exponential smoothing as the RM approach.
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generic representation for a multivariate return process with time-varying conditional 
first- and second-order moments becomes

where I  denotes the identity matrix, and the N × N  matrix �1/2
t  is one of the “square-

root” representations, e.g. the Cholesky decomposition, of the covariance matrix �t. We 
refer to any specification in which �t is a non-trivial function of the time t − 1 informa-
tion set as a multivariate GARCH model. As with the univariate models discussed 
above, we will assume for simplicity that the daily means are all zero, or Mt = 0.45

The most obvious extension of the popular univariate GARCH(1,1) model in (8) 
then takes the form

where the vech, or “vector-half ”, operator converts the unique upper triangular 
elements of a symmetric matrix into a 

1
2
N (N + 1) × 1 column vector, and the A 

and B matrices are both of dimension 1
2
N (N + 1) × 1

2
N (N + 1). In parallel to the 

expression for the univariate model in (10), the long-run forecasts from the multi-
variate GARCH(1,1) model in (42) converge to vech(�) = (I − A − B)−1vech(C),  
provided the eigenvalues of A + B are all less than unity and the inverse of the 
(I − A − B)−1vech(C) matrix exists. This model-implied unconditional covariance 
matrix can be quite sensitive to small perturbations in A and B. As such, it is often desir-
able to restrict the matrix C to ensure that the long-run forecasts from the model are 
well behaved and converge to sensible values.

“Variance targeting” provides a powerful tool for doing that, in effect, “disciplin-
ing” multivariate volatility models. This idea was first suggested by Engle and Mezrich 
(1996), who proposed replacing the C matrix in the multivariate GARCH(1,1) model 
above with

This in turn ensures that the covariance matrix forecasts converge to their uncondi-
tional sample analog. Of course, if the risk manager has other information pertaining to 

(41)Rt = Mt + �
1/2
t Zt Zt ∼ i.i.d., E(Zt) = 0, Var(Zt) = I,

45 �This assumption is quite innocuous, and does not materially affect the inference over daily horizons. For 
models defined over longer return horizons, simply replace Rt with the de-meaned returns Rt − Mt in 
all of the expressions below.

(42)vech(�t) = vech(C) + B vech(�t−1) + A vech(Rt−1R′
t−1),

vech(C) = (I − A − B) vech

(
1

T

T∑

t=1

RtR
′
t

)
.
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some of the elements in the covariance matrix, this may be used in a similar manner in 
fixing the relevant values in C.

Variance targeting also helps in the implementation of multivariate volatility models 
more generally, by reducing the number of parameters to be estimated. The most gen-
eral version of the multivariate GARCH(1,1) model in Eqn (42), for example, has 
O(N 4) parameters. More precisely, there are N 4/2 + N 3 + N 2 + N/2 parameters; 
hence, for example, for N = 100 there are 51,010,050 parameters! Estimating this many 
free parameters is obviously infeasible.46 The “diagonal GARCH” parameterization, 
originally proposed by Bollerslev, Engle, and Wooldridge (1988), helps by restricting the 
A and B matrices to be diagonal. The number of parameters is still O(N 2), however, and 
full-fledged estimation of the diagonal model is generally deemed computationally 
infeasible for systems much larger than N = 5.

Going one step farther, we obtain the most draconian version of the diagonal 
GARCH(1,1) model by restricting the A and B matrices to be scalar,

This, of course, closely mirrors the RM approach discussed above, with the important 
difference that the long-run covariance matrix forecasts converge to the non-degener-
ate matrix � = (1 − α − β)−1C (provided that α + β < 1). Estimation of this model 
may again be further simplified through the use of covariance targeting, replacing the 
C matrix by

leaving only the two scalar parameters, α and β, to be determined.47

Even so, estimation can still be very cumbersome in large dimensions due to the 
need to invert the N × N  covariance matrix �t for every day in the sample in order to 
evaluate the likelihood function, which, of course, must be done numerous times during 
a numerical optimization. In an effort to circumvent this problem, Engle, Shephard, and 
Sheppard (2008) suggested replacing the regular likelihood function in the optimization 
of the model by a Composite Likelihood (CL) based on summing the log-likelihoods 
of pairs of assets,

46 �Without further restricting the structure of the model, there is also no guarantee that covariance matrix 
forecasts produced by the model are actually psd.

(43)�t = C + β�t−1 + α(Rt−1R′
t−1).

C = (I − α − β)
1

T

T∑

t=1

RtR
′
t ,

47 �This model also readily ensures that �t and the corresponding forecasts are psd, as long as α > 0 and 
β > 0.

(44)CL(α, β) =
T∑

t=1

N∑

i=1

N∑

j>i

log f (α, β; Ri,t , Rj,t),
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where log f (α, β; Ri,t , Rj,t) denotes the bivariate normal density for asset pair Ri,t and 
Rj,t. Each pair of assets yields a valid (but inefficient) likelihood for α and β, but by 
summing over all pairs the resulting CL-estimator becomes “ relatively efficient”. In 
contrast to the standard likelihood function, the CL approach requires the inversion of 
2 × 2 matrices only, albeit a total of N (N + 1)/2 for each day in the sample, but that, 
of course, is easy to do even in high-dimensional situations.

Still, the assumption that all of the variances and covariances have the same speed of 
mean reversion, as dictated by the α and β scalar parameters, is obviously very restrictive. 
As such, more flexible procedures may be needed in describing the temporal variation 
in �t in an empirically realistic fashion, especially when considering disperse types of 
assets or asset classes. One approach that has proven especially useful is to focus on 
modeling the correlations rather than the covariances.

3.1.1  Dynamic Conditional Correlation Models
A conditional covariance matrix may always be decomposed into a conditional cor-
relation matrix pre- and post-multiplied by the diagonal matrix of conditional standard 
deviations,

Motivated by this decomposition, Bollerslev (1990) first proposed treating the condi-
tional correlations as constant, Ŵt = Ŵ, so that the dynamic dependencies in �t are driven 
solely by the temporal variation in the conditional variances. The resulting Constant 
Conditional Correlation (CCC) GARCH model has the advantage that it is easy to esti-
mate, even in large dimensions, in essence requiring only the estimation of N  univariate 
models. Specifically, for each of the individual assets, one may first estimate an appropriate 
univariate GARCH model. These models may differ from asset to asset, thus allowing for 
much richer, possibly asymmetric and long-memory style, dependencies than in the mul-
tivariate diagonal GARCH models discussed above. Then, denoting the resulting vector 
of standardized returns by êt = RtD̂

−1
t , the conditional correlation matrix Γ is efficiently 

estimated by the sample mean of the outer product of these standardized returns.
Although the CCC GARCH model is easy to estimate, and may work well over rela-

tively short time-spans, the underlying assumption of constant conditional correlation is 
arguably too restrictive in many situations.48 In response to this, Engle (2002a) and Tse 
and Tsui (2002) independently suggested allowing for dynamically varying conditional 

(45)�t = DtŴtDt .

48 �The literature is rife with examples of time-varying correlations. Cross-market stock–bond return cor-
relations, for instance, are often found to be close to zero or slightly positive during bad economic times 
(recessions), but negative in good economic times (expansions); see, e.g. the discussion in Andersen et al. 
(2007b). Numerous studies, including Longin and Solnik (1995), have also demonstrated that the correla-
tions among international equity markets change over time. Similarly, there is ample evidence from the 
recent financial crisis that default correlations can change quite dramatically over short periods of time.
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correlations within a GARCH framework. Specifically, assuming a simple scalar diagonal 
GARCH(1,1) structure for the correlations, the Dynamic Conditional Correlation 
(DCC) GARCH model, first proposed by Engle (2002a), may be expressed as,

where as before et = RtD
−1
t , and the matrix of conditional correlations are defined by 

the normalized elements of Qt, ρi,j,t = qi,j,t/
(√

qi,i,t
√

qj,j,t

)
, or in matrix format,

This latter normalization ensures that all of the correlations fall between −1 and 1.
In parallel to the CCC model, estimation of the DCC model may proceed in two 

steps, by first estimating univariate GARCH models for each of the assets. In contrast 
to the CCC model, however, the second step estimation in the DCC model, involving 
the dynamics of the Ŵt matrix, requires the use of numerical optimization techniques. To 
help facilitate this step, and at the same time ensure that the forecasts from the model are 
well behaved, it is often desirable to rely on correlation targeting. The parametrization 
in (46) does not immediately lend itself to that, as the unconditional expectation of Qt 
differs from the unconditional expectation of ete

′
t. Instead, following Aielli (2006) and 

re-parameterizing the dynamics for Qt as

where e∗t = diag{Qt}1/2et, it follows that E(Qt) = E(e∗t e∗′
t ). Correlation targeting is 

therefore readily implemented by replacing C∗ with the sample mean of the e∗t e∗′
t  

matrix, or some other hypothesized value. This corrected DCC (cDCC) model is rela-
tively easy to estimate in high dimensions when combined with the composite likeli-
hood idea discussed earlier.49

Another easy-to-implement DCC type model has recently been proposed by Engle 
and Kelly (2008). In this model, instead of assuming the same dynamic dependencies for 
all of the correlations, the time-varying correlations are assumed to be the same across 
all pairs of assets. Hence the name dynamic equicorrelation, or DECO, model. The 
assumption of identical correlations, of course, is only applicable when modeling similar 
types of assets, such as, e.g. a large cross-section of stock returns.50 Following Engle and 
Kelly (2008), the DECO model may be conveniently expressed as

(46)Qt = C + βQt−1 + α(et−1e′t−1),

(47)Ŵt = diag{Qt}−1/2 Qt diag{Qt}−1/2.

(48)Qt = (1 − α − β)C∗ + βQt−1 + α
(
e∗t−1e∗′

t−1

)
,

49 �The original DCC model defined by (46) and (47), and the cDCC version in (48), also both guarantee 
that Ŵt is psd, provided that α > 0 and β > 0.

50 �If this assumption is valid, imposing identical correlations will also generally enhance estimation effi-
ciency relative to a model that treats the pairwise correlations as unrelated.

(49)Ŵt = (1 − ρt)I + ρtJ ,
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where I  denotes the N  dimensional identity matrix, and J  refers to the N × N  matrix 
of ones. This representation for Ŵt has the advantage that the inverse is available in closed 
form,51

thus rendering the likelihood function easy to evaluate. Implementation of the DECO 
model, of course, still requires an assumption about the dynamic dependencies in the 
common conditional correlation. In particular, assuming a GARCH(1,1) structure,

with the updating rule naturally given by the average conditional correlation of the 
standardized returns,

the model has only three parameters, ωρ, αρ, and βρ, to be estimated.
To convey a feel for the importance of allowing for time-varying conditional cor-

relation, we plot in Figure 11 the estimated equicorrelations from a DECO model for 
the aggregate equity-index returns for 16 different developed markets from 1973 
through 2009.52 As the figure shows, there has been a clear low-frequency upward fluc-
tuation in the cross-country correlations, from a typical value of approximately 0.25 in 
the late 1970s to around 0.70 toward the end of the sample. The movement has not 
been entirely monotone, however, thus highlighting the flexibility of the DECO mod-
eling approach also to account for important short-run fluctuations in the 
1/2 × 16 × 15 = 120 pairwise correlations.

The scalar DCC model defined by (46) and (47), the modified DCC model in (48), 
and the DECO model in (49) are all extremely parsimonious and readily implemented 
for large N . They do, however, impose severe restrictions on the correlations, and 
may thus be seen as overly simplistic in applications involving only a few assets. More 
elaborate DCC models, including asymmetric formulations (e.g. Cappiello, Engle, and 
Sheppard (2006)) and regime switching type representations (e.g. Pelletier, 2006), have 
been proposed to allow for more nuanced modeling when N  is small, say N ≤ 5. We will 

51 �The inverse exists if and only if ρt �= 1 and ρt �= −1/(n − 1), while Ŵt is psd for 
ρt ∈ (−1/(n − 1), 1).

Ŵ−1
t = 1

(1 − ρt)

[
I − ρt

1 + (N − 1)ρt
J

]
,

ρt = ωρ + αρut + βρρt−1,

ut =
2
∑N

i=1

∑N
j>i ei,t ej,t

N
∑N

i=1 e2
i,t

,

52 �Similar figures are displayed by Christoffersen, Errunza, Jacobs, and Langlois (2011a), and we refer to their 
study for additional details concerning the data and the methods of estimation.
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not discuss these models here, but refer to the recent book by Engle (2009a) for a com-
prehensive survey of DCC models. Instead, we turn to an alternative way of disciplining 
the covariance matrix, namely factor structures.

3.1.2  Factor Structures and Base Assets
Factor structures are, of course, ubiquitous in finance. However, we will keep our discus-
sion short and focused on their explicit use in simplifying the modeling and forecasting 
of large dimensional dynamic daily covariance matrices, as required for risk measure-
ment and management purposes. More detailed discussions of the use of traditional 
factor models in the construction of VaRs and risk management more generally are 
available in Jorion (2007) and Connor, Goldberg, and Korajczyk (2010).

Market risk management systems for portfolios of thousands of assets often work 
from a set of smaller, say 30, observed base assets believed to be the key drivers of 
the underlying risks. The accuracy of the resulting risk management system, in turn, 
depends on the distributional assumptions for the base assets and the mapping from 
the base assets to the full set of assets. The specific choice of base assets depends 
importantly on the portfolio at hand but may, for example, consist of equity market 
indices, FX rates, benchmark interest rates, and so on, believed to capture the main 
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Figure 11  Time-varying international equity correlations. The figure shows the estimated equicorre-
lations from a DECO model for the aggregate equity-index returns for 16 different developed markets 
from 1973 through 2009.



Financial Risk Measurement for Financial Risk Management 1175

sources of uncertainty. These base assets will typically also be among the most liquid 
assets in the market. Such an approach is, of course, easier to contemplate for a rela-
tively specialized application with readily identifiable risk factors, such as a US equity 
portfolio, than a very large diversified entity, such as a major international bank or 
conglomerate.

Specifically, let RF ,t denote the NF × 1 vector of de-meaned returns on the base 
assets, or systematic risk factors. The distribution of the factors may then generally be 
expressed as,

where the notation corresponds directly to the one in Eqn (41) above for the N × 1 
vector of returns Rt. The number of base assets may be considerably higher than usual 
for traditional factor models employed in finance, but the basic idea is to keep their 
number much lower than the total number of assets.

The mapping from the NF base assets to the full set of N  assets typically consists of 
a linear factor structure,

where νt denotes a N × 1 vector of idiosyncratic risks, B0 is an N × 1 vector, and the 
factor loadings are contained in the N × NF matrix B. The factor loadings may be 
obtained from regression, if sufficient historical data exists for the full cross-section of 
assets. Alternatively, one may exploit the implications from a specific pricing model, if 
such a model exists. Sometimes, the loadings are also determined in more of an ad hoc 
fashion, by matching a security without a factor loading to another similar security 
with a well-defined loading. Importantly, however, both B0 and B are assumed to be 
constant.

Now, combining the distributional assumptions in (50) with the basic factor struc-
ture in (51), the resulting covariance matrix for Rt may be expressed as,

where �ν,t denotes the N × N  covariance matrix for νt. Since �t and �ν,t are both of 
the same dimension, this expression does not directly translate into any simplification in 
the estimation of the covariance matrix for the full set of N  returns. However, assum-
ing that the idiosyncratic risks are uncorrelated across assets and that their variances are 
constant, the expression for �t simplifies to

(50)RF ,t = �
1/2
F ,t ZF ,t , ZF ,t ∼ i.i.d., E(ZF ,t) = 0, Var(ZF ,t) = I,

(51)Rt = B0 + B RF ,t + νt ,

(52)�t = B′�F ,t B + �ν,t ,

(53)�t = B′�F ,t B + Dν ,
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where Dν = �ν,t is a time-invariant diagonal matrix. Moreover, the elements in Dν are 
readily estimated from the variances of the residuals in the factor model (51). This, of 
course, still leaves �F ,t to be determined. But, by keeping NF moderately low, �F ,t is 
much easier to estimate than �t. In fact, in addition to any of the techniques discussed 
in this section, some of the more advanced multivariate GARCH procedures alluded to 
above could be applied for estimating �F ,t when the number of base assets, or NF, is 
kept sufficiently low.53

Although convenient from a modeling perspective, the key assumption that �ν,t is 
diagonal and constant over time often appears at odds with the data. Just as variances 
(and covariances) of raw returns are clearly time varying, so are the variances (and 
covariances) of idiosyncratic risks. Related to this, the risk exposures of many assets, as 
encapsulated in the factor loadings, are also likely to change over time, rendering the 
key covariance matrix representation in (53) with B constant a poor approximation over 
long time periods. However, for applications exploiting high-frequency intraday data, it 
is often feasible to alleviate these drawbacks and, as we shall see below, factor structures 
are often invoked in such settings.

3.2  Intraday Data and Realized Covariances
Thus far our discussion has focused on models tailored toward capturing the dynamics 
in daily covariances based on daily data. As discussed in Section 2.2, however, for many 
assets intraday price data are now readily available, and just as this information is useful 
for the estimation of daily variances, it should be equally, if not more, useful for the 
estimation of daily asset covariances.

Generalizing the univariate setting in (20), and providing a continuous-time analog 
to the discrete-time representation in (41), we assume that the N × 1 log-price vector, 
P(t), is governed by the following multivariate diffusion process,

where M (t) and �(t)1/2 denote the N × 1 instantaneous drift vector and the N × N  
positive definite “square-root” of the covariance matrix, respectively, while W (t) denotes 
a N-dimensional vector of independent Brownian motions. As before, without much 
loss of generality, we assume that M (t) = 0, although non-zero drifts, as relevant over 
longer return horizons, easily can be incorporated into the analysis by considering de-
meaned returns. We also assume that the asset returns are linearly independent, i.e., no 

53 �This basic idea was pioneered by Diebold and Nerlove (1989) in their construction of a multivariate 
ARCH factor model, in which the latent time-varying volatility factors may be viewed as the base assets; 
see also Engle, Ng, and Rothschild (1990) and Alexander (2001).

(54)dP(t) = M (t)dt + �(t)1/2 dW (t),
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redundant asset is included in the basic set of returns, implying that the covariance 
matrix �(t) is pd.54

The natural multivariate extension of the realized variation measure, defined in (21), 
to the notion of a daily realized covariance matrix is simply

where, as before, N (�) = 1/�. If, ideally, the price vector process in (54) is continu-
ously observable, then letting Δ go to zero enables us to compute the realized covari-
ance matrix in (55) at ever finer sampling intervals. In this scenario, the RCovt estimator 
converges to the integrated covariance matrix of the continuous-time stochastic volatil-
ity process on day t, given as,

This expression, and the underlying limiting arguments, represent a direct extension of 
the notion of the integrated variance for N = 1 in Eqn (22).55

Hence, as for the univariate case, the true ex-post covariance matrix becomes directly 
observable in this ideal setting, even in the absence of a model for �(t). The upshot is 
that, as before, variances and covariances no longer have to be extracted from a nonlin-
ear model estimated via treacherous likelihood procedures, along the lines of the mul-
tivariate GARCH models discussed above. Instead, by treating the realized covariance 
matrices as realizations of the true underlying series of interest, we may apply standard 
time series techniques for their modeling and forecasting.

Of course, the idealized frictionless setting motivating the recipe for RCovt in (55), 
and its limit in (56), provide only an approximate description of reality. For instance, as 
discussed in Section 2.2, trades are not consummated continuously, imposing a strict 
upper bound on the highest possible sampling frequency. This presents important new 
implementation challenges compared to the univariate case, especially if the number of 
assets is large and the trading intensities of some assets are relatively low. In particular, 
while some of the techniques discussed earlier may be adapted for consistently estimat-
ing the individual elements of the covariance matrix in the presence of market micro-
structure noise, none of these generally guarantee that the estimated covariance matrix 
is positive definite (pd), or even positive semi-definite (psd).

54 �As we discuss at length later, when the cross-section, N , is large, it can be difficult to generate unbiased 
estimates of the realized covariance matrix that satisfy this important constraint.

(55)RCovt(�) ≡
N (�)∑

j=1

Rt−1+j�,� R′
t−1+j�,�,

(56)ICovt =
∫ t

t−1

�(τ) dτ .

55 �For more formal development of the associated asymptotic distribution theory, see, e.g. Andersen et al. 
(2003a) and Barndorff-Nielsen and Shephard (2004a).
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Along these lines, Andersen et al. (2003a) first noted that the simple realized covari-
ance matrix in (55) will be pd by construction, as long as the asset returns are linearly 
independent and the trading (or quoting) activity is sufficiently high. The specific 
requirement is that price updates are available for the full cross-section of assets over 
small enough time increments, Δ, to ensure that the number of intraday observations, 
N (�) = 1/�, exceeds the number of assets, N . For example, if we sample individual US 
stocks every 5 min across the official trading day, the RCovt matrix is trivially singular if 
the number of stocks exceeds 78.

For a set of very actively traded securities, the above conditions may not appear 
unduly restrictive. After all, many assets trade multiple times each minute on average, 
often generating thousands of new trade prices per day. Unfortunately, this is deceptive. 
The key point is that all assets must have traded within each sampling interval. If not, 
this will generally result in a downward bias in the covariance estimates due to the pres-
ence of zero returns induced purely by the absence of trades (or quote changes)—a 
feature commonly labeled the Epps effect following the early characterization in Epps 
(1979). Since many assets periodically experience a trading lull, there will often be 
extended periods of no-trading for some of the assets, so that this can be a major con-
cern. Hence, when using the basic realized covariance matrix estimator in (55), it is 
critical to sample fairly sparsely to alleviate this bias.56 Of course, this then restricts the 
size of the cross-section that can be analyzed quite dramatically.

More generally, the price synchronicity requirement implies that the realized covari-
ance matrix cannot be estimated consistently unless the sampling scheme is adapted to 
the trading intensity of the least active asset at any given time. This idea is encapsulated 
in the “refresh time” sampling procedure advocated by Barndorff-Nielsen, Hansen, 
Lunde, and Shephard (2011) as part of their multivariate realized kernel approach to 
covariance matrix estimation. The kernel consists of the inclusion of a suitably chosen 
weight function for the lead and lag returns in the computation of the covariance 
matrix. This ensures consistency in the presence of general classes of microstructure 
noise, while also guaranteeing that the estimate of the covariance matrix is psd.

Direct application of this approach is eminently feasible for a limited number of 
actively traded assets. However, when the number of assets is large, refresh time sam-
pling results in a dramatic loss of data as intermediary prices for active assets are dis-
carded until the last asset trades. For example, Hautsch, Kyj, and Oomen (2012) assess 
that, with realistic intra-stock differences in trade arrival rates, more than 90% of the 
data are discarded for a system of twenty actively traded assets, and the proportion 

56 �It is generally also advantageous to follow the subsampling strategy previously outlined in Section 2.2, 
where one generates multiple subsamples of the intraday return series by initiating the sampling at the 
given frequency at different offsets relative to the opening trade, and then average the resulting covari-
ance measures across the subsamples. For example, by initiating sampling at each of the first 5-min marks 
during the trading day, one could secure five distinct 5-min return series for each asset.
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continues to rise as the cross-section of assets increases. This implies that, for N  ris-
ing, the effective sampling frequency, 1/�, drops quite dramatically, in turn rendering 
it difficult to satisfy the positive definiteness bound. Equally problematic is the loss in 
estimation precision as each pairwise covariance term is computed from fewer and 
fewer intraday observations, ultimately producing a poorly estimated overall covariance 
matrix with many zeros among the eigenvalues. In sum, this strategy fails for very large 
cross-sections of assets.

Two main approaches have hitherto been proposed in the literature to accommodate 
large cross-sections, while avoiding dramatic Epps style biases. One avenue is to initially 
ignore the requirement of positive definiteness and apply the refresh sampling scheme 
on smaller blocks of assets, thus mitigating the problems associated with the loss of data, 
and then to apply a regularization procedure to restore the psd property. The second 
approach is to exploit covariance matrix factor structure to reduce the effective dimen-
sion of the problem, thereby allowing for more reliable estimates from a given set of 
intraday observations. We now discuss these techniques.

3.2.1  Regularizing Techniques for RCov Estimation
The simplest method for converting a “vast” N × N  positive semi-definite covariance 
matrix estimator RCovt (�) of less than full rank and possibly containing multiple zero 
eigenvalues, into a strictly positive definite matrix is shrinkage. The idea is to combine 
RCovt(�) with an N × N  shrinkage target matrix, ϒt, which is positive definite and 
well conditioned. Ideally, the target should also provide a sensible benchmark covariance 
matrix to minimize the resulting bias. Formally,

where the weight assigned to the realized covariance matrix satisfies 0 < κ < 1, so the 
shrinkage estimator is a convex linear combination of a positive semi-definite and a 
positive definite matrix, implying it will be positive definite.

As an extraordinarily simple illustration of this basic principle, in a setting with daily 
data and time-varying covariance matrices, Ledoit and Wolf (2004) propose shrink-
age toward the identity matrix, i.e., ϒt = I , with the weight, κ, determined optimally 
according to an asymptotic quadratic loss function. While this will reduce the vari-
ance, it may, of course, induce a rather severe bias, as asset returns generally are highly 
correlated.

To counteract this bias, Ledoit and Wolf (2003) suggest shrinkage toward the covari-
ance structure implied by a simple one-factor market model. Specifically, following the 
discussion in Section 3.1.2 above,

(57)�̂S
t = κRCovt(�) + (1 − κ)ϒt ,

(58)ϒt = σ 2
M bb′ + Dν ,
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where σ 2
M refers to the variance of the market return, b denotes the N × 1 vector of 

factor loadings for each of the assets with respect to the market portfolio, and Dν is a 
diagonal matrix composed of the corresponding idiosyncratic variances. Importantly, all 
of these parameters are easy to estimate from simple time series regressions.

In contrast to ϒt = I , this procedure allows for non-trivial positive return correla-
tion across assets, thus providing a more suitable shrinkage target for covariance estima-
tion. However, it assumes that the relevant second-order return moments are 
time-invariant, so that a long time series of daily returns can be used for estimating b, 
along with the other parameters. This is counter to the spirit of high-frequency return-
based estimation, where we seek to determine the time variation in the covariance 
matrix and, as an implication, the fluctuations in systematic market risk exposures, or 
factor loadings.57 The extreme dichotomy between the realized covariance matrix, esti-
mated without bias but with poor precision, and the shrinkage target, which may be 
strongly biased but is estimated with better precision, naturally suggest alternative 
approaches that better balance the two effects.

In this regard, Hautsch, Kyj, and Oomen (2012) have recently suggested breaking 
the covariance matrix into blocks according to the trading intensity of the underlying 
assets, thus minimizing the loss of data from refresh time sampling when using the mul-
tivariate realized kernels to estimate the different blocks. Of course, simply piecing the 
covariance matrix together from separate blocks generally produces an indefinite matrix 
with negative as well as positive eigenvalues. To circumvent this problem, Hautsch, Kyj, 
and Oomen (2012) adopt so-called eigenvalue cleaning to “regularize” the covariance 
matrix in a second step, by separating the set of large and significant eigenvalues from 
those that are statistically insignificant and may have been generated by random noise.58

Specifically, denote the first stage realized kernel blocking estimator for the inte-
grated covariance matrix on day t by �̂t. Eigenvalue cleaning then consists of the fol-
lowing steps. First, define the realized correlation matrix by,

where, as for (45), D̂t = diag (�̂t)
1/2 denotes the diagonal matrix of realized standard 

deviations. Using the conventional spectral decomposition, rewrite the correlation 
matrix as,

57 �Again, Ledoit and Wolf (2003) envision their estimator to be applied for daily data but, as mentioned 
previously, there are recent attempts to adapt similar procedures to the high-frequency setting.

58 �This approach is motivated by random matrix theory; see, e.g. Mehta (1990) for an introduction to the 
theory and Tola, Lillo, Gallegati, and Mantegna (2008) for a recent application to portfolio choice.

(59)Ŵ̂t = D̂−1
t �̂t D̂

−1
t .

(60)Ŵ̂t = P̂t�̂t P̂
′
t ,
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where �̂t is the diagonal matrix of eigenvalues, λ̂i, i = 1, . . . , N , sorted in descending 
order so that λ̂1 � λ̂2 · · · λ̂N−1 � λ̂N, and P̂t denotes the orthonormal matrix of cor-
responding eigenvectors. Now, letting λ indicate the appropriate (positive) threshold for 
the significant eigenvalues, separate the first, say, k eigenvalues which exceed λ into one 
group. Next, equate all negative eigenvalues to zero and compute the average value, λ

B

t , 
of the positive and (modified) zero eigenvalues that are less than λ. The regularized cova-
riance matrix is then constructed from the “cleaned” matrix of eigenvalues �̂B

t , with the 
original k eigenvalues as the first k diagonal elements and the remaining N − k diagonal 
elements replaced by λ

B

t , according to the formula

Pursuing a similar approach, but taking the decomposition of the covariance matrix 
to a logical extreme, Lunde, Shephard, and Sheppard (2011) suggest estimating all cova-
riance terms using only the corresponding bivariate realized kernel estimator. This 
minimizes the loss of information due to refresh time sampling, while permitting an 
optimal choice of kernel bandwidth for each pairwise return series. The first stage esti-
mator is then obtained by assembling all the elements into a “composite realized kernel” 
covariance estimator. This heightens the quality of the estimate for each individual term, 
but it sacrifices the coherence of the overall matrix by not imposing the pd (or psd) 
property beyond the bivariate systems. Since the resulting composite covariance matrix 
typically will be “far” from pd, it requires a more substantial transformation of the 
entries in the covariance matrix to obtain a pd matrix than is the case for the RnB 
estimator of Hautsch, Kyj, and Oomen (2012), which usually operates with only 3–5 
blocks.59

Another closely related approach to the estimation of RCov, inspired by the idea of 
dimension reduction through the imposition of a factor structure, has also been sug-
gested by Lunde, Shephard, and Sheppard (2011). The idea is to let the correlation 
structure be determined only by the eigenvectors associated with the largest and most 
significant eigenvalues. Again, the significant eigenvalues are identified day-by-day using 
the “i.i.d. noise threshold” prescribed by random matrix theory.60 Formally, let

(61)�̂RnB
t = D̂t P̂t�̂

B
t P̂ ′

t D̂t .

59 �The notion of a distance between covariance matrices requires the adoption of a matrix norm. Since 
our discussion is heuristic, we abstain from any detailed account; see, e.g. Fan, Fan, and Lv (2008) for a 
discussion of alternative norms in the context of covariance matrix estimation.

60 �Alternatively, one may exploit an initial procedure to help decide on an appropriate fixed number of 
eigenvectors, or “factors”, in order to maintain a constant dimensionality of the correlation structure 
across days.

(62)Ŵ̃t = P̃t�̃t P̃
′
t ,
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where �̃t denotes the k × k diagonal matrix containing the upper left k × k sub-matrix 
of �̂t, while ̃Pt denotes the N × k matrix containing the first k columns of eigenvectors 
from P̂t associated with the largest k eigenvalues. The resulting N × N  matrix, Ŵ̃t, is of 
rank k and thus not strictly positive definite. It is also not a proper correlation matrix, 
as it generally fails to have unit entries along the diagonal. Nonetheless, it embodies the 
correlation structure implied by the k most important eigenvectors, or the first k prin-
cipal components of the intraday returns. Hence, it is natural to modify this matrix to 
construct a proper correlation matrix,61

The resulting principal component regularized realized covariance matrix estimator is 
then obtained by simply scaling up Ŵ̃PC

t ,

as in (61).
It remains a matter for future work to systematically characterize the performance of 

these approaches to RCovt estimation based on the spectral decomposition in (60) for 
empirically realistic situations involving different scenarios for the number of included 
assets and the trading (quoting) intensities.

Rather than extracting principal components day-by-day to obtain a factor structure 
for the realized covariance matrix, a number of authors propose using pre-specified 
observable factors, or returns on factor mimicking portfolios, as a way to reduce the 
dimensionality of the problem and the associated estimation errors.62

Recall the basic linear factor structure in (51), where the parameters are assumed to 
be constant across days. Extending the corresponding expression for the discrete-time 
returns on the factors in (50) to a continuous-time setting, maintaining the same dif-
fusion representation for the logarithmic factor price process as for the returns in (54), 
we may write,

where �F (t)1/2 denotes the NF × NF positive definite “square-root” of the instan-
taneous covariance matrix, and WF (t) is a NF-dimensional vector of independent 

61 �Notice that for any square matrix A, the operation A − diag(A) leaves the off-diagonal entries in A 
unchanged, while producing zeros along the diagonal. Hence, I + [A − diag(A)] yields a matrix with 
unit entries on the diagonal and off-diagonal entries inherited from A.

(63)Ŵ̃PC
t = I +

[
P̃t�̃t P̃

′
t − diag

(
P̃t�̃t P̃

′
t

)]
.

(64)�̂PC
t = D̂tŴ̃

PC
t D̂t

62 �Fan, Fan, and Lv (2008) provide a formal theoretical analysis of the impact of dimensionality on the 
estimation of covariance matrices in the context of factor models.

(65)dPF (t) = �F (t)1/2 dWF (t),
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Brownian motions. Denoting the resulting day t realized covariance matrix for the 
factors by �̂F ,t, an implied day-by-day realized covariance matrix estimator for the 
N-dimensional vector of returns may then be constructed as,

where B̂ and D̂ν refer to estimates of the factor loadings and the (diagonal) covariance 
matrix for the idiosyncratic variances, respectively.

This approach has been successfully implemented by Bannouh, Oomen, and van Dijk 
(2010) for the estimation of large dimensional daily covariance matrices for hundreds of 
individual stocks. Bannouh et al. (2010) rely on a set of highly liquid exchange traded 
funds (ETFs) as factors. Prices for these contracts are essentially free of microstructure 
noise at relatively high frequencies, allowing for accurate estimation of �̂F ,t. In contrast, 
they estimate the factor loadings from daily data to avoid biases due to microstructure 
and Epps type effects. An even simpler approach would be to rely on the market model, 
effectively setting κ = 0 in the earlier (57) and (58) for the shrinkage estimator, thereby 
only exploiting the realized return variation of the market index as the single dynamic 
factor driving the covariance matrix in accordance with (66).

Of course, as already noted in Section 3.1.2, the restriction that the covariance 
matrix of the idiosyncratic returns is diagonal is rather strong. For example, it precludes 
sector specific effects. In an effort to relax this assumption, Fan, Liao, and Mincheva 
(2011) allow for some correlation in the error covariance matrix by imposing the 
weaker requirement that the matrix is “sparse”. Their estimation procedure exploits 
random matrix theory as they achieve the requisite parsimony, or sparsity, in the idio-
syncratic covariance matrix via so-called thresholding techniques.63

The assumption that the factor loadings are constant may, of course, also be prob-
lematic in some situations. Just as high-frequency data for the factors may be used in 
accurately estimating �̂F ,t, high-frequency data for the factors and the returns could 
similarly be used in the estimation of day-by-day realized factor loadings, or “betas”. 
This idea for the estimation of daily realized factor loadings from intraday data was first 
pursued empirically by Bollerslev and Zhang (2003) and Andersen, Bollerslev, Diebold, 
and Wu (2006b) for the three Fama–French portfolios and the market, respectively.64

From a practical perspective, however, the estimation of the loadings runs into the 
exact same market microstructure problems that plague the original RCovt estimator:   it 
is difficult to implement with illiquid assets and the large dimensions typically required for 
asset-level risk analysis. These difficulties may, of course, be partly overcome by resorting 

(66)�̂F
t = B̂ �̂F ,t B̂

′ + D̂ν ,

63 �Related banding and thresholding procedures for estimating daily realized covariance matrices are dis-
cussed in Wang and Zou (2010).

64 �Estimation and forecasting of betas based on high-frequency data have also been explored more recently 
within the Realized GARCH framework by Hansen, Lunde, and Voev (2010).
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to some of the techniques already outlined above. This mainly involves suitably combin-
ing the different procedures, and we abstain from fleshing out the details. Hence, instead 
of further discussion of techniques for measuring the current realized covariance matrix, 
we now turn to different dynamic models for forecasting realized covariance matrices.

3.2.2  Dynamic Modeling of Realized Covariance Matrices
All of the different procedures discussed in the preceding section for estimating the 
realized covariance matrix may in principle be applied as short-term daily forecasts as 
well, when augmented with a martingale assumption for the realized covariance matrix, 
e.g. tomorrow’s expected covariance matrix equals today’s realization.65 Of course, the 
martingale hypothesis is at best a short-term approximation, as both variances and 
covariances generally display mean reversion. Hence, for longer horizons explicit time 
series models must be developed as a basis for sensible forecasts.

Building on the univariate procedures discussed earlier, this section outlines various 
strategies for modeling and forecasting integrated covariance matrices, treating the real-
ized covariance matrix as directly observable, albeit with some measurement error. Since 
the literature on the estimation of large realized covariance matrices is recent and 
remains limited, there are still no authoritative studies of the relative performance of 
different approaches.66 Consequently, our review of existing techniques is invariably 
somewhat speculative. However, we anticipate this to be an area where substantial prog-
ress will be made over the coming years, and therefore summarizes what we see as some 
of the more promising new directions.

In parallel to the notation for the variance forecasts discussed earlier, we denote the 
N × N  point forecast of the integrated return covariance matrix for period t + k based 
on information through period t, by �̂t+k|t, while the corresponding measures for the 
realized covariance matrix in period t is generically labeled �̂t.67 Just as many of the 
forecasting models for the realized volatilities discussed in Section 2.2 were directly 

65 �Both Hautsch, Kyj, and Oomen (2012) and Lunde, Shephard, and Sheppard (2011) base their exploration 
of one-day-ahead covariance matrix forecasts on this hypothesis.

66 �The set of potential applications is literally unlimited, thus making it hard to settle on a simple metric for 
assessing the economic value of improved forecasts, even if one focuses on practical risk measurement and 
management problems. An early study inspiring this literature is Fleming, Kirby, and Ostdiek (2003), who 
suggest dramatic improvements vis-a-vis the RM and multivariate GARCH frameworks for standard 
mean–variance efficient asset allocation problems.

67 �Of course, as discussed in the previous section, there are many alternative proposals for estimating �t 
and associated procedures for forecasting it, so �̂t and �̂t+k|t merely serve as generic indicators for the 
realized covariance measure and forecast being entertained at a given point in the exposition. We reserve 
the more specific notation, RCovt(�), for the standard realized covariance estimator based on the cross-
product of returns sampled at fixed frequency Δ. Also, as in the univariate case, the models will typically 
stipulate a specific dynamic evolution for �t, whereas any empirical analysis will be based on the time 
series of observed �̂t.



Financial Risk Measurement for Financial Risk Management 1185

inspired by existing techniques for forecasting with daily or lower frequency data, so are 
many of the procedures for dynamic realized covariance matrix modeling.

In particular, directly emulating the RiskMetrics approach in (40), it is natural to 
postulate,

where 0 < λ < 1. Thus, the integrated covariance matrix forecast is generated as an 
exponentially weighted average of past realized covariance matrix measures with λ con-
trolling the relative weight ascribed to the more recent realizations.68 Intuitively, this 
allows for persistent time-variation in the realized covariance matrices, while implicitly 
acknowledging that each realization is measured with error. Of course, this approach 
also inherits all of the problems with the conventional RM approach, including the lack 
of mean reversion, and as such may not be appropriate for longer forecast horizons.

Alternatively, mimicking the scalar diagonal AR(1) model in (23) suggests the fol-
lowing multivariate regression specification,

where the N (N + 1)/2 × 1 vector ξt denotes an error term. This system requires noth-
ing but OLS to implement, and conditional on the estimated parameters, Ĉ and β̂, the 
forecast for the integrated covariance matrix is readily obtained from,

Strict positive definiteness of the covariance matrix forecast in (69) is guaranteed for any 
pd matrix Ĉ and positive values of β̂, as long as �̂t is psd.

Even though the above procedure generalizes the “martingale” hypothesis, cor-
responding to C = 0 and β = 1, it still assumes a common degree of mean reversion 
across all variances and covariances. As noted previously, this is likely overly restrictive, 
especially when considering a diverse set of assets, so it is worthwhile contemplating 
suitable generalizations.

Pushing the above approach one step further, any of the other procedures discussed 
in Section 3.1 could be similarly adapted to modeling realized covariances, keeping in 
mind the restrictions required for positive definiteness. For example, the DCC-type 
framework naturally suggests first modeling the realized standard deviations asset-
by-asset using any of the procedures discussed in Section 2.2, and the corresponding 

(67)�̂t+1|t = λ�̂t|t−1 + (1 − λ)�̂t ,

68 �This particular procedure is among the set of dynamic specifications explored by e.g. Fleming, Kirby, and 
Ostdiek (2003), Liu (2009), Bannouh et al. (2010), and Varneskov and Voev (2010).

(68)vech(�̂t+1) = vech(C) + βvech(�̂t) + ξt+1,

(69)vech(�̂t+1|t) = vech(Ĉ) + β̂vech(�̂t).
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realized correlations in a second step. Specifically, maintaining a simple dynamic struc-
ture as in (68), the dynamics of the correlations for the standardized returns could be 
modeled as,

where we have extended the notation for the conventional DCC model in the obvious 
way. Again, simple OLS is all that is required for estimation. As for the conventional 
DCC model, an additional normalization along the lines of (47) is needed to ensure that 
the resulting correlation matrix forecast is well defined, with ones along the diagonal 
and all of the off-diagonal elements falling between −1 and 1.

The advantages of these approaches are twofold. First, high-frequency information 
is used to obtain more precise estimates of current variances and covariances, in turn 
resulting in better “initial conditions” for forecast calculations. Second, by treating the 
covariance matrices as directly observable no numerical optimization is needed for the 
estimation of the models.

Even though we have focused on simple first-order models and corresponding one-
day-ahead forecasts, all the procedures discussed above could easily be iterated forward 
to generate multi-period forecasts �̂t+k|t. More complicated long-memory dynamics, 
regime-switching, or asymmetries, could also be incorporated into the models, provided 
the dimensionality of the estimation problem is kept in check.

A major obstacle for adopting more realistic and complex representations for the 
realized covariance matrix dynamics than offered by, e.g. (68) is, as discussed at length 
previously, the requirement for positive definiteness. A possible solution consists of first 
applying a nonlinear transform to the RCovt matrix with the property that the inverse 
transform will ensure positive definiteness. One may then specify and estimate the 
dynamics of the transformed system without imposing any constraints. Once the future 
expected value of the transformed system is determined, the inversion back into a cova-
riance representation automatically produces a pd matrix forecast. A popular example 
of this approach within the univariate setting is the specification of dynamic models for 
log volatility, as in the EGARCH and log-HAR-RV models discussed in Sections 2.1 
and 2.2, respectively.

In this regard, Andersen et al. (2003a) proposed modeling the Cholesky decomposi-
tion of RCov rather than the matrix itself. The Cholesky decomposition provides one 
possible definition of a unique square-root of a positive definite realized covariance 
matrix estimator,

where Lt is a unique lower triangular matrix. The data vector subjected to dynamic 
modeling is then vech (Lt), and one simply substitute the forecast of vech(Lt+k) back 

(70)vech(Q̂t) = vech(C) + βvech(Q̂t−1) + ξt ,

(71)�̂t = LtL
′
t ,
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into (71) to construct a forecast of �t+k,�.69 One drawback to the use of Cholesky 
decompositions, and other nonlinear transformations, is that the estimated parameters 
can be difficult to interpret in terms of the marginal impacts of shocks to specific ele-
ments in the covariance matrix. Related to this, the dynamic Cholesky modeling strat-
egy inevitable involves a bias, arising from modeling and forecasting a nonlinear 
transformation and then mapping the resulting point forecasts back into the covariance 
matrix.70

Another strategy, proposed by Bauer and Vorkink (2011), is to exploit the matrix 
logarithmic function.71 Specifically, provided that �̂t is positive definite, then the N × N  
symmetric matrix,

is implicitly defined by the inverse of the matrix exponential function,

One may then proceed as before by specifying the dynamics of vech(At), estimating the 
system and constructing the implied �̂t+k|t forecasts. Of course, the dynamic specifica-
tion for vech(At) must be kept relatively simple to remain tractable in large dimen-
sions.72 Also, the same general problems arising from the use of a nonlinear transformation 
in the Cholesky decomposition discussed above remain for the At to �̂t 
transformation.

In summary, while the literature on modeling the covariance matrix dynamics is pro-
gressing rapidly along many different directions, there is still no consensus on the relative 
merits of the approaches. It is clear, however, that the use of high-frequency intraday data 
and realized covariance measures hold the promise of substantially improving the accuracy 
of covariance matrix forecasting. Going one step further, in direct parallel to the approach 
taken in the univariate setting of Section 2.2.3, the realized covariance forecasts discussed 
above may also be embedded within a multivariate GARCH setting to provide a vehicle 

69 �Building on this framework, Chiriac and Voev (2011) explore various dynamic specifications of the real-
ized covariance matrix for six liquid US stocks, and find that a long-memory vector ARFIMA model 
performs well. The reliance on approximate maximum likelihood estimation renders their approach 
problematic for large scale systems, but it should be feasible to adopt simpler specifications that would 
enable estimation when N is large.

70 �The aforementioned study by Chiriac and Voev (2011) also provides approximate bias correction terms 
for this, but deem the extent of the bias to be relatively minor in their empirical application.

71 A related multivariate matrix Exponential GARCH model was proposed by Kawakatsu (2006).

(72)At = log m
(
�̂t

)
,

(73)�̂t =
∞∑

n=0

1

n!A
n
t .

72 �The actual application in Bauer and Vorkink (2011) is relatively modest in terms of dimensionality, and 
too highly parameterized to be practical for high-dimensional applications.
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for combining the realized covariance matrices with a multivariate distribution for the 
return innovations. We briefly discuss some recent ideas for implementing this next.

3.2.3  Combining GARCH and RCov
As with the univariate setting, it is tempting to combine the precision of high-frequency 
realized volatility based measures with the powerful and flexible econometric tools pro-
vided by (quasi) likelihood estimation of GARCH models in extracting the volatility 
dynamics for multivariate systems. This can be done in a variety of ways, especially if 
one breaks the approach down into multiple steps. Nonetheless, the literature dealing 
with this approach remains nascent and we have little evidence regarding the relative 
performance of alternative procedures, so we only briefly illustrate how these methods 
may be combined to construct candidate models with non-trivial dynamic covariance 
structures through a couple of examples.

First, it is natural to exploit the various techniques for estimation of the realized 
correlation matrix, discussed in the initial parts of Section 3, with the flexible dynamic 
modeling of the individual conditional variances afforded by GARCH style models. 
Recall the decomposition in (45), �t = DtŴtDt. The diagonal conditional standard 
deviation matrix, Dt, may be obtained from univariate models, each estimated in isola-
tion using flexible dynamic specifications. When high-frequency data are available, the 
candidate univariate volatility models include the GARCH-X and Realized GARCH 
techniques reviewed in Section 2.3.3. These approaches ensure volatility dynamics that 
quickly respond to changes in the underlying realized volatility measures and provide 
a great deal of freedom in adapting the estimation to accommodate critical features 
of each specific series, including asymmetric return-volatility relations, long-memory 
dynamic dependencies, calendar effects, and the degree of heavy tails in the return 
distributions.

The conditional correlation matrix, Ŵt, also changes over time, but it is likely to 
evolve more slowly than the conditional variances. As such, one may exploit wider 
estimation windows to enhance the precision of estimation. Technically, one may simply 
stipulate a constant correlation matrix, Ŵt = Ŵ, for a period of one week or one month, 
say, but allow this constant matrix to be estimated over a rolling window so that it does 
evolve slowly over time. The longer time series allows for additional flexibility in esti-
mating the realized correlation matrix, even for a very large set of assets, using the vari-
ous techniques discussed in the previous sections. The candidate procedures for 
estimating Γ, include the basic RCovt estimator using appropriately sparse sampling 
frequencies, the shrinkage estimators, or the various techniques exploiting regulariza-
tion via principal components, observable factor structures, thresholding, and block-
ing.73 Clearly, the potential for developing alternative approaches along these lines is vast 

73 �One example of applying such procedures is Rosenow (2008) although he only applies the procedures 
for daily data.
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and we currently have only limited knowledge about the relevant empirical tradeoffs 
that will govern the success of the different techniques.

Second, we briefly discuss a proposal that directly combines realized covariance 
measures with GARCH style dynamics, namely the multivariate HEAVY model of 
Noureldin, Shephard, and Sheppard (in press), which extends the univariate specifica-
tion in (37). In the general form, the model inherits the curse of dimensionality from 
multivariate GARCH representations, so the empirical work focuses on parsimonious, 
and restrictive, representations. The model is explicitly designed for the low-frequency 
(daily) realized return cross-product, but the information set is given by corresponding 
high-frequency observations. Denoting the realized daily return cross-product by Ut, the 
model may be defined as follows,

where the N × N  matrix Ht denotes the covariance matrix of the daily return vector 
conditional on an information set including the high-frequency returns up to day t, 
while �t is a N × N  symmetric innovation matrix with Et−1[�t] = I .

Forecasting the covariance matrix requires a dynamic model for Ht. One tractable 
option is the scalar HEAVY parametrization, which is well defined subject to regularity 
conditions resembling those from the scalar multivariate GARCH model,

Here, aH and bH are positive scalars, CH is a N × N  matrix of constants, which may be 
fixed by covariance targeting, and Vt denotes a realized covariance measure, such as, e.g. 
the realized covariance matrix based on 5-min sampling.

Equation (75) allows for one-step-ahead forecasting, but multi-step forecasting 
requires an explicit representation of the dynamics for Vt as well. Letting Mt = Et−1[Vt], 
the evolution for Vt is stipulated to follow,

where the �t is a N × N  symmetric innovation matrix with Et−1[�t] = I . The associ-
ated dynamic representation for Mt is analogous to the scalar GARCH style specifica-
tion of (75), and directly generalizes (37),

With covariance matrix targeting, the scalar HEAVY system may be estimated by stan-
dard likelihood techniques once we provide a conditional distribution for the stochastic 

(74)Ut = RtR
′
t = H

1/2
t �t

(
H

1/2
t

)′
,

(75)Ht+1 = CH C ′
H + bH Ht + aH Vt .

(76)Vt = M
1/2
t �tM

1/2
t ,

(77)Mt+1 = CM C ′
M + bM Mt + aM Vt .
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shocks to the system. In particular, if the return innovations are i.i.d. Gaussian, the inno-
vation matrix, �t, in (74) will be Wishart distributed. Likewise, one may assume �t in 
(76) to be Wishart distributed.

In parallel to the univariate literature, Noureldin, Shephard, and Sheppard (in press) 
find the inclusion of the high-frequency return information to provide significant 
improvements over corresponding GARCH models utilizing only daily return observa-
tions. The upshot is that generalizations of multivariate GARCH models into settings 
that accommodate the inclusion of high-frequency data appear to provide a similar 
boost to the predictive performance that was observed in the univariate case. Obviously, 
the models still impose quite unsatisfactory constraints on the dynamic evolution of the 
system as well as the conditional return innovations, rendering further tractable exten-
sions to the framework important objectives for future work.

In summary, the opportunities for combining factor structures, multiple components, 
GARCH modeling approaches, and realized covariance measures in distinct ways are 
nearly unlimited. The literature is progressing in different directions, but we lack con-
sensus on how to assess and rank the performance of alternative procedures. Moreover, it 
is evident that the focus on the covariance matrix fails to explicitly incorporate features 
of the return distribution beyond the second moments, which are potentially critical for 
active risk management. We now turn to such issues.

3.3  Modeling Multivariate Return Distributions
Just as a fully specified and realistic univariate distribution is needed for risk measure-
ment, so too is a fully specified and realistic multivariate (non-Gaussian) distribution 
needed for risk management. For example, a fully specified multivariate distribu-
tion allows for the computation of VaR sensitivities and VaR minimizing portfolio 
weights.

The results of Andersen et al. (2000a) suggest that, at least in the FX market, the mul-
tivariate distribution of returns standardized by the realized covariance matrix is again 
closely approximated by a normal distribution. As long as the realized volatilities are 
available, a multivariate version of the log-normal mixture model discussed in Section 
2.3.2 could therefore be developed.

As discussed at length above, however, construction and use of realized covariance 
matrices may be problematic in situations when liquidity is not high. In that situation 
one of the more traditional parametric GARCH type models discussed in Section 3.1 
may be used for modeling the temporal dependencies in the conditional covariance 
matrix and then combined with an explicit (and by assumption time-invariant) multi-
variate distribution for the standardized returns.

Specifically, assuming the mean to be zero, or Mt = 0, we have from (41),

(78)Zt = �
−1/2
t Rt , Zt ∼ i.i.d., Et−1(Zt) = 0 Vart−1(Zt) = I,
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Alternatively, recalling the decomposition in (45), it is sometimes more convenient 
to consider the vector of standardized, but correlated asset shocks

where Dt denotes the diagonal matrix of conditional standard deviations for each of 
the assets, and Ŵt refers to the potentially time-varying conditional correlation matrix.

For concreteness, we focus on the DCC type decomposition in (79) and express 
the return distributions below in terms of et. As discussed in Section 3.1.1, this is often 
more convenient in large dimensions, but the same general ideas apply for the basic 
decomposition in (78) and distributions expressed in terms of Zt.

3.3.1  Multivariate Parametric Distributions
The normal distribution is convenient and tempting (but dangerous) to use. It implies 
that aggregate portfolio returns are also conditionally normally distributed. The multi-
variate normal density has the simple form

where the C (Ŵt) normalization factor ensures that the density integrates to one. The 
multivariate normal distribution, however, typically does not provide an accurate picture 
of tail risk. In parallel to our earlier discussion of univariate return distributions, several 
multivariate distributions have been proposed to remedy this deficiency.

Especially prominent among these is the multivariate Student’s t-distribution first 
employed in this context by Harvey, Ruiz, and Sentana (1992); see also the more recent 
work by Glasserman, Heidelberger, and Shahabuddin (2002). The multivariate standard-
ized symmetric t-distribution with correlation matrix Ŵt has the following density

where C(d, Ŵt) again ensures that the density integrates to one. The d > 2 scalar param-
eter determines the degree of leptokurtosis in the distribution. When d goes to infinity 
the power-form of the t-distribution converges to an exponential function and the 
multivariate normal distribution emerges in the limit. Unlike the normal distribution, 
the multivariate t-distribution allows for nonlinear tail dependence between assets. It 
does so in a symmetric fashion, however. It cannot accommodate two assets having 
a higher probability of a large joint down move than a joint up move of the same 
magnitude.

(79)et = D−1
t Rt , Et−1(et) = 0, Vart−1(et) = Ŵt ,

(80)f (et) = C(Ŵt) exp

(
−1

2
e′tŴ

−1
t et

)
,

(81)f (et) = C (d, Ŵt)

(
1 + e′tŴ

−1
t et

(d − 2)

)−(d+N )/2

,
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The asymmetric t-distribution employed by Demarta and McNeil (2005) allows for 
more flexibility. Let ξ denote an N × 1 vector of “asymmetry parameters”. The density 
for the standardized asymmetric t-distribution may then be expressed as

where Kd+N
2

(·) denotes the modified Bessel function of the third kind,

and C
(
d, Ŵ̇t

)
 is another normalization factor. The definitions of µ̇ and Ŵ̇ ensure that 

the vector of standardized return shocks, et, has mean zero and correlation matrix Ŵt. 
Note that for ξ = 0 and the absence of any asymmetries, we have µ̇ = 0 and Ŵ̇t = Ŵt. 
The asymmetric t-distribution therefore nests the symmetric t-distribution as a special 
case.

While the asymmetric t-distribution is more flexible than the symmetric t, it 
requires that the N asymmetry parameters in ξ be estimated simultaneously with the 
other parameters of the model. This becomes quite challenging in large dimensions. 
Instead copula methods sometimes provide a more flexible approach by allowing 
the univariate and distinctly multivariate distributional aspects to be specified in two 
separate steps.

3.3.2  Copula Methods
Much attention in risk management has focused on the construction of multivariate 
densities from the marginal densities via copulas, as in, for example, Li (2000), Jondeau 
and Rockinger (2006), Patton (2006), Rosenberg and Schuermann (2006), Creal, 
Koopman, and Lucas (2011), and Hafner and Manner (2012). We will not attempt an 
exhaustive review of this extensive literature here, referring instead to the in-depth 
treatment in McNeil, Frey, and Embrechts (2005).

The central result in copula theory is Sklar’s theorem. The theorem states that for a 
very general class of multivariate distribution functions, say F(e), with marginal distri-
butions F1(e1), . . . , FN (eN ), there exists a unique copula G(·) linking the marginals to 
the joint distribution

(82)

f (et) =
C

(
d, Ŵ̇t

)
Kd+N

2

(√(
d + (et − µ̇)′ Ŵ̇−1

t (et − µ̇)
)
ξ ′Ŵ̇−1

t ξ

)
exp

(
(et − µ̇)′ Ŵ̇−1

t ξ
)

(
1 + (et−µ̇)′Ŵ̇−1

t (et−µ̇)

d

) (d+N )
2

(√(
d + (et − µ̇)′ Ŵ̇−1

t (et − µ̇)
)
ξ ′Ŵ̇−1

t ξ

)− (d+N )
2

µ̇ = − d

d − 2
ξ , Ŵ̇t = d − 2

d

(
Ŵt − 2d2

(d − 2)2 (d − 4)
ξξ ′

)
,

(83)F(e) = G(F1(e1), . . . , FN (eN )) ≡ G(u1, . . . , uN ) ≡ G(u),
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where the N × 1 vector, u, is defined via the N marginals. In turn, this implies that the 
multivariate density may be expressed as

The resulting log-likelihood function for a sample of size T therefore naturally 
decomposes into two separate sums

This offers a potentially powerful framework for risk model builders by allowing the 
modeling of the marginal densities, corresponding to the second double summation, to 
be separated from the modeling of the copula function appearing in the first 
summation.74

Of course, in order to actually implement this approach, we need to specify the 
copula function g(·). The most commonly employed copula is constructed from the 
multivariate normal distribution. It may be succinctly expressed as

where �−1(ut) refers to the N × 1 vector of standard inverse univariate normals, and the 
correlation matrix Ŵ∗

t  pertains to the N × 1 vector e∗t  with typical element,

The normal copula has the advantage that it is relatively easy to work with. However, 
even though it is more flexible than the standard multivariate normal distribution, for 
many financial risk applications it does not allow for sufficient dependence between 
tail events.

To remedy this an alternative copula model can be built from the multivariate 
t-distribution. The resulting t-copula allows for tail dependence between the marginal 
probabilities ui,t but only in a symmetric fashion. Going one step further, an asymmetric 
t-copula may also be developed from the asymmetric multivariate t-distribution dis-
cussed above. From a practical modeling perspective, t-copula models have the potential 

(84)f (e) = ∂N G(F1(e1), . . . , FN (eN ))

∂e1 . . . ∂eN

= g (u) ×
N∏

i=1

fi(ei).

(85)log L =
T∑

t=1

log g(ut) +
T∑

t=1

N∑

i=1

log fi(ei,t).

74 �Note, this implicitly assumes that the copula function g(·) is constant through time. Although funda-
mentally different, this parallels the assumption of a time-invariant multivariate distribution f (·) for the 
standardized returns underlying the discussion in Section 3.3.1.

(86)g(ut; Ŵ∗
t ) =

∣∣Ŵ∗
t

∣∣− 1
2 exp

{
−1

2
�−1(ut)

′(Ŵ∗−1
t − I )�−1(ut)

}
,

(87)e∗i,t = �−1(ui,t) = �−1(Fi

(
ei,t

)
).
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to break the curse of dimensionality, which is otherwise unavoidable in multivariate 
t-distributions when N is large. In particular, while the asymmetric t distribution in (82) 
requires the simultaneous estimation of ξ and d, amounting to a total of N + 1 param-
eters, when using the asymmetric t-copula instead, it is possible to separately estimate 
each of the N marginal distributions allowing for asset specific distributional features.75 
The marginal distributions may then be “tied” together using an asymmetric t-copula 
with only two parameters: a scalar copula dG and a scalar copula asymmetry parameter 
ξG. This approach has successfully been implemented by Christoffersen et al. (2011a).

Many other classes of copula functions exist as well. Most of these, however, includ-
ing the popular Gumbel and Clayton classes, are not yet operational in high dimensions. 
An intriguing approach to overcoming this general dimensionality problem has recently 
been suggested by Oh and Patton (2011), who recommend relying on a latent factor 
structure for the copula. Fully efficient estimation of this new class of models is com-
plicated by the lack of closed-form expression for the likelihood function but it is rela-
tively easy to do via simulation-based procedures that match appropriate rank statistics. 
Oh and Patton (2011) find that this new approach works well in an application involv-
ing one hundred individual stocks.76 It is too early to tell how widely applicable this 
copula-factor structure is.

3.3.3  Combining GARCH and RCov
Another approach for obtaining full-fledged multivariate conditional return distribu-
tions is to combine the realized covariance measures and GARCH style dynamic 
specifications with specific distributional assumptions, along the lines of the procedures 
discussed in Section 3.2.3 where the innovation distributions were specified mostly 
to ensure tractable (quasi-likelihood) estimation of the underlying dynamic model 
parameters.

For example, if the distributions adopted for each of the univariate return innovation 
series in the GARCH specifications for the individual components of Dt in the DCC-
style decomposition in (45) are taken as exact representations of the data generating pro-
cess, this in principle defines a conditional one-step-ahead return distribution given the 
estimated (and assumed to be constant) realized correlation matrix. However, this is only 
tractable if simple, and restrictive, distributional assumptions are imposed. Typically, this 
implies resorting to a multivariate normal or student t-distribution for the return inno-
vation vector. This severely limits the complexity and realism in modeling the individual 
return innovations and volatilities. Short-term multi-horizon forecasts may be similarly 
obtained, if one stipulates that the correlation matrix remains constant. For longer 

75 �Of course, the need to estimate the N × N  correlation matrix Ŵt further confound the estimation 
problem.

76 �Their actual estimation results also suggest significant tail dependencies for most of the individual stocks 
in their sample, with the degree of tail dependence being stronger in crashes than booms.
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horizons, however, the dynamics of the realized correlation matrix would need to be 
modeled separately. In that situation the system quickly becomes analytically untractable, 
and simulation techniques are required for obtaining the multi-horizon density forecasts.

Another possible route involves the HEAVY model introduced in (74)–(77).   Assuming 
both multivariate innovation distributions are truly Wishart, as discussed in Section 3.2.3, 
the model naturally delivers a complete characterization of the one-step-ahead joint 
return distribution. The multi-horizon density forecasts must again rely on Monte Carlo 
procedures.

As an alternative to these GARCH representations, there has recently been an 
upsurge in work on related multivariate stochastic volatility models. These specifications 
generalize GARCH models in the sense that the dynamics of the volatility process is 
governed by independent random shocks rather than a deterministic function of the 
return innovations. The models tend to be heavily parametric but they may, under 
appropriate simplifying assumptions, be combined with realized covariance matrix mea-
sures.77 These models typically exploit Gaussian assumptions for the return and volatility 
(square-root covariance matrix) innovations as they produce “squares” that are Wishart 
distributed and thus known in closed form.78

The additive component Wishart-RCOV-A(K) model in Jin and Maheu (2010) 
provides an interesting example of combining such stochastic volatility representations 
with realized measures, by exploiting features akin to a multivariate HAR-RV model 
for the individual components of the realized covariance matrix. Although the empiri-
cal results appear promising, the parametric assumptions remain somewhat restrictive 
and estimation must be performed via Bayesian techniques using Markov Chain Monte 
Carlo (MCMC) procedures that are tractable only for moderately sized systems.

To summarize, the work on incorporating time-varying realized covariance mea-
sures within the multivariate GARCH and related stochastic volatility model setting is 
in its infancy. Given the need for tractability, the existing procedures invoke overly sim-
plistic distributional assumptions, rendering the multi-horizon density forecasts unable 
to fully account for critical features such as pronounced return-volatility asymmetries, 
the possibility of jumps, long-memory style volatility dynamics, and extreme correla-
tions in down markets. For the time being, such features are more readily portrayed 
through the design of appropriate simulation methods.

77 �Among the initial contributions in this area are Philipov and Glickman (2006), who specify a standard 
Wishart transition density for the inverse covariance matrix of daily returns, as well as Gourieroux, 
Jasiak, and Sufana (2009) who introduce the Wishart autoregressive model for daily data. Extensions of 
these models that involve realized covariance measures have been developed by, e.g. Bonato Caporin and 
Ranaldo (2009); Golosnoy, Glibisch, and Liesenfeld (2010); and Asai and So (2010).

78 �The Wishart distribution provides the matrix generalization of a “squared” normal distribution, i.e., just 
as the sum of squared i.i.d. normal variates are χ2 distributed, the sampling distribution of the sample 
covariance matrix for draws from the multivariate normal distribution is Wishart.



Torben G. Andersen et al.1196

3.3.4  Multivariate Simulation Methods
The multivariate normal distribution implies normally distributed portfolio returns so 
that the VaR, ES and most other risk measures are easily computed analytically. When 
using non-normal distributions, or any kind of copula, portfolio VaR, and ES must 
instead be computed via Monte Carlo simulation, rendering purely simulation-based 
methods relatively more attractive.

In the general multivariate case, we can in principle use the Filtered Historical 
Simulation (FHS) approach discussed in Section 2.3.4, but a multivariate standardization 
is needed. Using for example the Cholesky or the spectral decomposition we first create 
vectors of standardized returns as in (78); i.e.,

where �̂−1/2
t

 denotes the relevant decomposition of the estimated covariance matrix.79 
Now, resampling with replacement vector-wise from the standardized returns will 
ensure that the marginal distributions, as well as particular features of the multivariate 
distribution, as for example, the contemporaneous cross-sectional dependencies sug-
gested by Longin and Solnik (2001), will be preserved in the simulated data.

The dimensionality of the system may render the general multivariate standardiza-
tion above practically infeasible. However, the same FHS approach can be applied with 
the base asset setup discussed in Section 3.1.2, resampling from the factor innovations,

where we again rely on the spectral or Cholesky decomposition to build up the distri-
bution of the factor returns. Given the specification in Section 3.1.2, the corresponding 
idiosyncratic asset innovations may then be constructed from,

Thus, by resampling sequentially from Ẑt and ν̂t, we can easily build up the required 
distribution of the individual asset returns. This, of course, assumes that the base asset 
model provides a good description of the joint dependencies.

Alternatively, if one is willing to assume constant conditional correlations, as in (45) 
with Ŵt = Ŵ, then the standardization can simply be done on an individual asset-by-
asset basis using the univariate GARCH or RV-based predictive volatilities. Resampling 
vector-wise from the standardized returns will naturally preserve the cross-sectional 
dependencies in the historical data.

Ẑt = �̂
−1/2
t Rt , t = 1, 2, . . . , T ,

79 �Patton and Sheppard (2009) recommend the spectral decomposition because unlike the Cholesky, it is 
invariant to a reordering of the variables.

ẐF ,t = �̂
−1/2
F ,t RF ,t , t = 1, 2, . . . , T ,

ν̂t = Rt − B̂RF ,t , t = 1, 2, . . . , T .
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3.3.5  Multivariate Extreme Value Theory
The simulation procedures discussed above work well for numerically describing cor-
relations and related “central” features of the joint return distributions. Multivariate 
Extreme Value Theory (EVT) offers a tool for exploring cross-asset dependencies in the 
“tails” of distributions, which are not well captured by standard parametric distributions 
or correlation measures.

For example, Longin and Solnik (2001) define and compute extreme correlations 
between monthly US index returns and a number of foreign country indexes. In the case 
of the bivariate normal distribution, correlations between extremes taper off to zero as the 
thresholds defining the extremes get larger in absolute value. Actual financial returns, how-
ever, behave quite differently. In particular, the correlation between the large (in an absolute 
sense) negative returns reported in Longin and Solnik (2001) tend to be much larger than 
the normal distribution would suggest (while interestingly, the correlations of large positive 
returns appear to approach zero in accordance with the normal distribution).80 Such strong 
correlation between negative extremes is clearly a key risk management concern.81

To illustrate the important deviations from multivariate normality commonly 
found in financial markets, consider the threshold plots in Figure 12. The solid lines in 
Figure 12 show the empirical equity-index threshold correlations averaged across the 
120 possible pairs of correlations based on the same 16 developed market returns used 
in the estimation of the DECO model in Figure 11. For comparison, the dashed lines 
indicate the threshold correlations implied by a multivariate standard normal distribu-
tion with constant correlation, while the lines with square markers are the threshold 
correlations computed via simulations from the previously estimated DECO model.

As the figure clearly shows, the down-market threshold correlations are much stron-
ger than the up-market correlations. The multivariate normal distribution with constant 
correlation captures quite closely the up-market correlations but it cannot simultane-
ously account for the much larger, and increasing with the threshold, down-market 
correlations. The dynamic normal distribution driven by the basic Gaussian DECO 
model generates larger threshold correlations overall, but the model does not explain 
the strong multivariate asymmetry that actually exists in the returns. The specification 
of dynamic multivariate models and distributions to satisfactorily account for these 
important nonlinear asymmetric extreme dependencies is challenging. It remains the 

80 �See also Ang and Bekaert (2002), Ang and Chen (2002), and Ang, Chen, and Xing (2006), among many 
others, for additional empirical evidence on similar nonlinear dependencies in equity returns.

81 �It is generally unclear where these increased dependencies in the “tails” are coming from. Poon, 
Rockinger, and Tawn (2004), for instance, report that “devolatilizing” the daily returns for a set of 
international stock markets significantly reduces the joint tail dependence, while Bae, Karolyi, and Stulz 
(2003) find that time-varying volatility and GARCH effects cannot fully explain the counts of coinci-
dent “extreme” daily price moves observed across international equity markets.
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focus of much ongoing work, much of which rely on the use of copulas and/or EVT 
type approximations.

A full treatment of this literature, and the extensive literature on multivariate EVT 
more generally, is well beyond the scope of the present chapter. Instead we refer to 
the books by Embrechts, Kluppelberg, and Mikosch (2002) and McNeil, Frey, and 
Embrechts (2005), along with the recent discussion in Embrechts (2009). Unfortunately, 
it is not yet clear whether multivariate EVT distributions will be operational in large-
dimensional systems. Issues of scalability, as well as cross-sectional and temporal aggrega-
tion problems in parametric approaches, all present formidable challenges. Meanwhile, 
just as the newly available high-frequency data may be used in the construction of more 
accurate realized volatility measurements, and in turn covariance matrix forecasts, we 
conjecture that the intraday data may be constructively used in a similar manner for 
better measuring the “tails” of the return distributions, and in turn the joint extreme 
dependencies. The recent theoretical results in Bollerslev and Todorov (2011a) and 
related empirical findings in Bollerslev, Todorov, and Li (in press) are suggestive.
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Figure 12  Average threshold correlations for 16 developed equity markets. The solid line shows the 
average empirical threshold correlation for GARCH residuals across sixteen developed equity markets. 
The dashed line shows the threshold correlations implied by a multivariate standard normal distribu-
tion with constant correlation. The line with square markers shows the threshold correlations from a 
DECO model estimated on the GARCH residuals from the 16 equity markets. The figure is based on 
weekly returns from 1973 to 2009.
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3.4  Systemic Risk and Measurement
We have emphasized using the univariate portfolio-level and multivariate asset-level risk 
models discussed in Sections 2 and 3, respectively, to construct real-time portfolio risk 
measures, such as VaR and ES, conditional on the history of returns. It is sometimes 
informative also to consider risk measures that condition not only on historical returns, 
but also on assumed scenarios for particular risk factors. We might, for example, be inter-
ested in the firm-specific effects of a market-wide shock, or the market-wide effects of 
a firm-specific shock.

Such scenario-based conditional risk measures are intrinsically related to measure-
ment of systemic risk. There is no single definition of systemic risk, and we will shortly 
introduce several, but the defining characteristic is that systemic risk—one way or 
another—involves market-wide movements. Systemic risk measures can help firms to 
develop richer and more informative risk reports internally. They can also be used by 
supervisory authorities to measure and monitor the firm-specific effects of market-wide 
shocks, the market-wide effects of firm-specific shocks, and the corresponding totals 
across all firms. Those measurements may then impact policy decisions, such as which 
banks to support during crises, which bank mergers to approve, and so on.

3.4.1  Marginal Expected Shortfall and Expected Capital Shortfall
Marginal expected shortfall (MES) for firm j is

where rmkt,T+1 denotes the overall market return, and C
(
rmkt,T+1

)
 denotes a systemic 

event, such as the market return falling below some threshold C. MESj|mkt tracks the 
sensitivity of firm j’s return to a market-wide extreme event, thereby providing a simple 
market-based measure of firm j’s fragility.

Ultimately, however, we are interested in assessing the likelihood of firm distress, and 
the fact that a firm’s expected return is sensitive to market-wide extreme events—that 
is, the fact that its MES is large—does not necessarily mean that market-wide extreme 
events are likely to place it in financial distress. Instead, the distress likelihood should 
depend not only on MES, but also on how much capital the firm has on hand to buffer 
the effects of adverse market moves.

These distress considerations raise the idea of expected capital shortfall (ECS), which 
is closely related to, but distinct from, MES. ECS is the expected additional capital needed 
by firm j in case of a systemic market event. Clearly ECS should be related to MES, 
and Acharya, Pedersen, Philippon, and Richardson (2010) indeed show that in a simple 
model the two are linearly related,

(88)MES
j|mkt

T+1|T = ET

[
rj,T+1|C

(
rmkt,T+1

)]
,

(89)ECS
j|mkt

T+1|T = a0j + a1jMES
j|mkt

T+1|T ,
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where a0j depends on firm j’s “prudential ratio” of asset value to equity as well as its debt 
composition, and a1j depends on firm j’s prudential ratio and initial capital. Note that 
the conditioning in ECS is closely related to the idea of stress tests popular in both best-
practice private-sector and regulatory risk management. Indeed the thought experiment 
embodied in ECS is a stress test, with a very important and natural stress (a large market 
event) being tested.

Building on the theory of Acharya et al. (2010), Brownlees and Engle (2011) propose 
and empirically implement ECS

j|mkt

T+1|T as a measure of firm j’s systemic risk exposure to 
the market at time T , with overall systemic risk then given by 

∑N
j=1 ECS

j|mkt

T+1|T. 
Implementation of MES (and hence ECS) requires specification of the systemic market 
event C

(
rmkt,T+1

)
, or more simply a market return threshold C. Values of C = 2% and 

C = 40% have, for example, been suggested for one-day and six-month returns, respec-
tively. In addition, and of crucial importance, implementation of MES also requires a 
multivariate volatility model. That is, the conditioning on C

(
rj,T+1

)
 in all of the mea-

sures above, from MES
j|mkt

T+1|T through to 
∑N

j=1 ECS
j|mkt

T+1|T, requires at least a bivariate 
volatility model for firm and market returns, and more generally a high-dimensional 
volatility model for all firms’ returns. The models introduced in Sections 3.1, 3.2, 3.3 
satisfy that need.82

3.4.2  CoVaR and ΔCoVaR
In the previous section we introduced MES and ECS, which measure firm systemic 
risk exposure by conditioning firm events on market events. Here we introduce CoVaR, 
which works in the opposite direction, measuring firm systemic risk contribution by 
conditioning market events on firm events.

In (1) we defined firm j’s 1-step-ahead VaR at level p as the value of VaR
p,j

T+1|T that 
solves

Similarly, following Adrian and Brunnermeier (2011), one may define firm j’s 1-step-
ahead “CoVaR” at level p conditional on a particular outcome for firm i, say C

(
ri,T+1

)
, 

as the value of CoVaR
j|i
T+1|T that solves

82 �Brownlees and Engle (2011), for example, use the daily GARCH-DCC modeling approach described 
in Section 3.1.1. Interestingly, they find that aggregate MES increased sharply starting in mid-2007, and 
that even by mid-2010 it was still much higher than in the pre-crisis period.

p = PrT

(
rj,T+1 < −VaR

p,j

T+1|T

)
.

(90)p = PrT

(
rj,T+1 < −CoVaR

j|i
T+1|T |C

(
ri,T+1

))
.
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Because C
(
ri,T+1

)
 is not in the time-T  information set, CoVaR will be different from 

the regular time-T  conditional VaR. The leading choice of conditioning outcome, 
C

(
ri,T+1

)
, is that firm i exceeds its VaR, or more precisely that ri,T+1 < −VaR

p,i

T+1|T. As 
such, CoVaR is well suited to measure tail-event linkages between financial institutions.

A closely related measure, �CoVaR
j|i
T+1|T (read “Delta CoVaR”), is of particular 

interest. It measures the difference between firm-j VaR when firm-i is “heavily” stressed 
and firm-j VaR when firm i experiences “normal” times. More precisely,

where CoVaR
j|VaR(i)

T+1|T  denotes firm-j VaR when firm i’s return breaches its VaR, and 

CoVaR
j|Med(i)

T+1|T  denotes firm-j VaR when firm i’s return equals its median.
A direct extension lets us progress to the more interesting case of firm i’s overall 

systemic risk contribution, as opposed to just firm i’s contribution to firm j. We simply 

set j = mkt, so that �CoVaR
mkt|i
T+1|T then measures the difference between market VaR 

conditional on firm i experiencing an extreme return, and market VaR conditional on 
firm i experiencing a normal return.83 Hence �CoVaR

mkt|i
T+1|T measures the contribution 

of firm i to overall systemic risk, 
∑N

i=1 �CoVaR
mkt|i
T+1|T.84

The conditioning on C
(
ri,T+1

)
 in all of the CoVaR measures above, from 

CoVaR
j|i
T+1|T through to 

∑N
i=1 �CoVaR

mkt|i
T+1|T, requires at least a bivariate volatility 

model for the returns on firms i and j, or i and mkt, and more generally a high-dimen-
sional volatility model for all firms’ returns. The models introduced in Sections 
3.1,3.2,3.3 are again relevant.85

3.4.3  Network Perspectives
Interestingly, modern network theory provides a powerful unifying framework for 
systemic risk measures, including measures like ECS and CoVaR introduced above.86 

(91)�CoVaR
j|i
T+1|T = CoVaR

j|VaR(i)

T+1|T − CoVaR
j|Med(i)

T+1|T ,

83 �Alternatively we might set j = sys, where sys denotes the financial system, as measured by the return 
on a portfolio of major financial institutions.

84 �The concept of CoVaR also has interesting parallels to the conditioning of VaR in Garcia, Renault, and 
Tsafack (2007), who show that proper conditioning in VaR can eliminate the subadditivity problems 
raised by Artzner et al. (1999).

85 �Multivariate quantile models, such as those recently developed by White, Kim, and Manganelli (2010), 
could also be used in this context.

86 �Here we provide a brief overview of key ideas. Extended discussion, references, and systemic risk mea-
sures based directly on network topology are contained in Diebold and Yilmaz (2009, 2011, 2012).
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The simplest network is composed of N nodes, where any given pair of nodes may 
or may not be linked. We represent the network algebraically by an N × N  symmetric 
adjacency matrix A of zeros and ones, A = [aij], where aij = 1 if nodes i and j are 
linked, and aij = 0 otherwise. Because all network properties are embedded in A, any 
sensible connectedness measure must be based on A. The most important and popular, 
by far, are based on the idea of a node’s degree, given by the number of its links to 
other nodes δi =

∑
j aij, as well as aspects of the degree distribution across nodes. The 

total degree �iδi (or mean degree 1
N

�iδi) is the key network connectedness 
measure.

The network structure sketched above is, however, rather too simple to describe 
the network connections of relevance in financial risk management. Generalization 
in two key directions is necessary. First, links may be of varying strength, not just 
0–1. Second, links may be of different strength in different directions (e.g. firm i may 
impact firm j more than firm j impacts firm i). Note, for example, that the systemic risk 
measures introduced above are weighted and directional. For example, CoVaR

j|i
T+1|T 

tracks effects from i to j, whereas CoVaR
i|j
T+1|T tracks effects from j to i, and in general 

CoVaR
j|i
T+1|T �= CoVaR

i|j
T+1|T.

It is a simple matter, however, to characterize directed, weighted networks in a paral-
lel fashion. To allow for directionality, we allow the adjacency matrix A to be non-sym-
metric, and to allow for different relationship strengths we allow A to contain weights 
aij ∈ [0, 1] rather than simply 0–1 entries. Node degrees are now obtained by summing 
weights in [0, 1] rather than simply zeros and ones. In addition, and importantly, there 
are now “to-degrees” and “from-degrees”, corresponding to row sums and column 
sums, which generally differ since A is generally non-symmetric. The from-degree of 
node i is δfrom

i =
∑

j aij, and the to-degree of node j is δto
j =

∑
i aij . The total degree is 

δ = �iδ
from
i = �jδ

to
j
.

Crucially, the from- and to-degrees (and of course the total degree) measure aspects 
of systemic risk. The from- and to-degrees measure systemic risk with respect to partic-
ular firms. From-degrees measure exposures of individual firms to systemic shocks from 
the network, in a fashion analogous to ECS

j|mkt

T+1|T. To-degrees measure contributions of 
individual firms to systemic network events, in a fashion analogous to �CoVaR

mkt|i
T+1|T. 

The total degree aggregates firm-specific systemic risk across firms, providing a measure 
of total system-wide systemic risk.

A key insight is that many approaches to systemic risk measurement fit naturally 
into the network framework. Consider, for example, �CoVaR measure. One can 
view the �CoVaR

j|i
T+1|T , i, j = 1, . . . , N  (suitably scaled) as elements of an N × N  

adjacency matrix for a weighted directed network of firms. Then, for example, 
the systemic risk of firm i, �CoVaR

sys|i
T+1|T , is the network to-degree of firm i, 

δto
i = �j�CoVaR

j|i
T+1|T . And finally, the total systemic risk, 

∑
i �CoVaR

sys|i
T+1|T , is the 

network total degree δ.
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4.  CONDITIONING ON MACROECONOMIC FUNDAMENTALS

The risk models that we have discussed thus far are inherently “reduced form” in nature. 
They explain risk in an autoregressive fashion, as exemplified by the canonical GARCH 
family. Fortunately, even if the models fail to provide a deep structural understanding of 
volatility movements, they are nevertheless powerful and useful in a variety of contexts. 
We have obviously emphasized risk measurement and management, but other successful 
areas of application include portfolio allocation, spot and derivative asset pricing, active 
trading, and dynamic hedging.

Ultimately, however, we aspire to a deeper structural understanding. That is, we 
aspire to understand the connections between returns (especially, for our purposes, 
return volatilities) and macroeconomic fundamentals, say r ↔ f . Asset prices are risk-
adjusted discounted claims on fundamental streams, so prices and their properties 
should ultimately depend on expected fundamentals and associated fundamental risks. 
Here we sketch emerging empirical aspects of those connections, through the lens of 
return and fundamental first and second moments, denoted µr, σr, µf ,   and   σf , 
respectively.87Figure 13 provides a simple schematic diagram for all of the possible 
connections among σr, µr, σf , and µf . Each of the six connections represents a 
potentially important link, and a correspondingly important line of research 
inquiry.88

Historically, however, it is well-known that σr, µr, σf , and µf  have often appeared 
only weakly connected, or even disconnected. This observation is memorably 
enshrined in equity markets in the “excess volatility” puzzle of Shiller (1981), in for-
eign exchange markets in the “exchange rate disconnect” puzzle of Obstfeld and 
Rogoff (2000), in bond markets in Alan Greenspan’s long-maturity yield “conun-
drum,” and so on.89

In contrast, we shall present and interpret a variety of accumulating evidences 
showing how returns—return volatilities in parti cular—are connected to fundamentals. 
Of course many of the links in Figure 13 remain incompletely understood, but they 
are receiving increased attention, and volatility features prominently throughout this 

87 �In parallel to the models for returns emphasized so far in this chapter, we will content ourselves with 
means and variances, but one could, of course, also consider higher-order moments.

88 �Note that the links in Figure 13 are “undirected”, or “non-causal”, and as such more about correlation 
than causation. One could go even farther and consider directed, or causal, links, but that would require 
replacing each bi-directional arrow in Figure 13 with a pair of uni-directional arrows, thus doubling the 
number of links to be addressed.

89 �On the conundrum: “ …the broadly unanticipated behavior of world bond markets remains a conun-
drum. Bond price movements may be a short-term aberration, but it will be some time before we are 
able to better judge the forces underlying recent experience” [Alan Greenspan, US congressional testi-
mony, February 16, 2005]; see also Backus and Wright (2007).



Torben G. Andersen et al.1204

emerging research. Given the theme of the chapter, we will focus largely on three links 
directly involving σr and/or σf , namely µf ↔ σr, µf ↔ σf , and σf ↔ σr. We now 
address them in turn.

4.1  The Macroeconomy and Return Volatility
To begin, consider the link between macroeconomic fundamentals and return volatility, 
µf ↔ σr. Officer (1973) was among the first to document and emphasize the very 
high stock market volatility during the very severe recession of the 1930s. The US stock 
market crash of 1987 spurred additional research into the fundamental determinants 
of volatility. In a well-known and exhaustive study in the wake of the 1987 crash, for 
example, Schwert (1989) went farther, showing that, surprisingly, the oft-suspected 
fundamentals (leverage, corporate profitability, etc.) have negligible impact on market 
volatility, while recessions do. In particular, return volatility is significantly higher in 
recessions, so that high volatility during bad times is not just a one-off Great Depression 
phenomenon, but rather a regularly recurring business cycle phenomenon.

These findings regarding the link between financial market volatility and the busi-
ness cycle have since been echoed repeatedly. Hamilton and Lin (1996), for example, 
provide strong and sophisticated confirmation using regime-switching models of real 
growth and equity returns, allowing for both high and low real growth states and high 
and low equity-return volatility states. Their estimated regime transition probabilities 
indicate high positive steady-state coherence between low (high) real growth and high 
(low) equity return volatility.

More recent work, in particular Bloom, Floetotto, and Jaimovich (2009) as sum-
marized in Table 1, also confirms and significantly amplifies Schwert’s earlier result, 
showing, among other things, that it holds not only for stock returns at the aggregate 
level, but also for the cross-section of returns at the firm level. Table 1 makes clear not 
only the statistical significance of the “recession effect” on volatility, but also its sizable 
economic importance.

µr σ

σ

r

µ f f

Figure 13  Return and fundamental mean and volatility linkages. Each link represents a distinct line 
of inquiry.
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Although we have emphasized the links between macroeconomic fundamentals and 
equity market risk, one would expect related links in other market risk contexts. To 
take one example, consider foreign exchange. The expected real streams that underlie 
exchange rate determination are similar to those that underlie broad equity-market 
price determination, except that for exchange rates there are two streams, for two 
countries.

A second example is credit risk. In defaultable bond markets, for example, the 
celebrated Merton (1974) model directly links credit spreads to equity volatility, 
predicting that higher equity volatility should widen spreads, as emphasized empiri-
cally by Campbell and Tacksler (2003). Hence the business cycle effects in equity 
volatility imply parallel business cycle effects in credit spreads, via the Merton 
model.

4.2  The Macroeconomy and Fundamental Volatility
The next link that we consider pertains to µf ↔ σf ; that is, real activity and its rela-
tionship to real (fundamental) volatility. It transpires that real fundamentals affect real 
volatility not only at business-cycle frequencies, but also at lower growth frequencies. 
Hence we treat both.

First consider fundamental volatility σf  at business-cycle frequencies. Bloom, 
Floetotto, and Jaimovich (2009) show that σf  is much higher in recessions (just as with 
σr), at both the aggregate level and at the cross-sectional firm level. We summarize their 
results in Table 2. Just as with the recession effect in stock return volatility, the recession 
effect in real growth volatility is notable not only for its statistical significance, but also 
for its sizable economic importance.90

90 �Note that if stock return volatility and real growth volatility both increase during recessions, then they 
themselves must, of course, be positively related. We will return to this point below.

Table 1  Stock return volatility during recessions. Aggregate stock-return volatility is quarterly real-
ized standard deviation based on daily return data. Firm-level stock-return volatility is the cross-
sectional inter-quartile range of quarterly returns. Source: Adapted from Bloom, Floetotto, and 
Jaimovich (2009)

Mean recession volatil-
ity increase (%)

Standard error (%) Sample period

Aggregate returns 43.5 3.8 63Q1–09Q3
Firm-level returns 28.6 6.7 69Q1–09Q2
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Observed links at business-cycle frequencies between real growth µf  and real volatil-
ity σf  are also well grounded in theory. Recent research, for example, explores dynamic 
stochastic general equilibrium models with heteroskedastic shocks (technology, prefer-
ences, policy, …), as in Bloom (2009), Fernández-Villaverde, Guerrón-Quintana, 
Rubio-Ramıírez, and Uribe (2011), and Basu and Bundick (2011).91

Now consider fundamental volatility σf  at growth frequencies. Many have com-
mented on the large reduction (roughly fifty percent) in US real GDP volatility begin-
ning around 1985. Dubbed the “Great Moderation” by Stock and Watson (2002), it was 
originally documented by Kim and Nelson (1999) and McConnell and Perez-Quiros 
(2000).

Perhaps the “Great Moderation” was just a long string of good luck, or perhaps 
it was a structural shift due to improved policy. In any event it seems likely that it 
is over, as the recession of 2007–2009 was very long and very deep. That is, even if 
a structural shift toward lower real volatility occurred in the mid-1980s, so too did 
a shift back around 2008. Hence it may be useful to think of the Great Moderation 
not as a one-off structural shift, but rather as a manifestation of a low-frequency 
real volatility dynamic driven by macroeconomic factors potentially very different 
from those that drive the earlier-discussed real volatility dynamics at business-cycle 
frequencies.

In intriguing recent work, Carvalho and Gabaix (2010) do precisely that, argu-
ing that the Great Moderation was neither good policy nor good luck, but rather the 
natural outcome of the evolution of sectoral shares, which during the post-1984 period 
produced a better-diversified (and hence less volatile) GDP. In related work from an 
explicit network perspective,  Acemoglu, Ozdaglar, and Tahbaz-Salehi (2010) make clear 
that the dynamic workings of “better diversification” are subtle and nuanced, depending 
not only on first-order connections among sectors, but also crucially on higher-ordered 
connections.

91 See also the insightful survey of Fernández-Villaverde and Rubio-Ramírez (in press).

Table 2  Real growth volatility during recessions. Aggregate real growth volatility is quarterly 
conditional standard deviation. Firm-level real growth volatility is the cross-sectional inter-quartile 
range of quarterly real sales growth. Source: Adapted from Bloom, Floetotto, and Jaimovich (2009)

Mean recession volatil-
ity increase (%)

Standard error (%) Sample period

Aggregate growth 37.5 7.3 62Q1–09Q2
Firm-level growth 23.1 3.5 67Q1–08Q3
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4.3  Fundamental Volatility and Return Volatility
Now consider the links between fundamental volatility and return volatility, σf ↔ σr. 
Even with no additional work, our earlier discussion of µf ↔ σr and µf ↔ σf  imme-
diately implies that σr and σf  must be positively related. This is so because σr and σf  both 
covary negatively with the business cycle (µf ), and hence they must covary positively 
with each other. Hence the case is closed as soon as it is opened; return volatility and 
real fundamental volatility are clearly related.

But one might want to go farther. First, one might want to complement our deduc-
tion of a σf ↔ σr link with a direct exploration. Engle, Ghysels, and Sohn (2006) do 
just that, directly documenting the links between σf  and σr after effectively removing 
high-frequency variation in returns and fundamentals using a persistent/transitory 
component model.

Second, one might want to explore cross-section and panel aspects. That can be 
useful because the precision with which relationships can be inferred depends on the 
amount of variation in the data, and there may be more variation over a broad cross 
section of countries than for a single country over time. Diebold and Yilmaz (2010) 
do this, showing that countries with higher fundamental volatility tend to have higher 
broad stock market volatility, even controlling for initial development level. In the most 
thorough study to date, Engle and Rangel (2008) explore time-series, cross-sections, and 
panels, clearly finding that the “long-term volatilities of macroeconomic fundamentals 
…are primary causes of low-frequency market volatility”.

In closing this section we note that we have largely interpreted “market risk and 
macro fundamentals” as “market volatility and macro fundamentals”.  As we have empha-
sized earlier in our discussion of portfolio-level risk measurement, however, one may 
naturally approach market volatility from a top-down (portfolio-level) or bottom-up 
(asset-level) perspective. In a bottom-up approach, not only conditional variances but 
also conditional correlations among individual returns are of central importance as they 
obviously impact portfolio (i.e., market) volatility. Hence the fundamental determinants 
of conditional correlations have also recently begun to receive attention, as in Rangel 
and Engle (2012).

4.4  Other Links
The links between volatility and fundamentals that we have discussed thus far do not 
involve µr. There are two main reasons. First, the horizons emphasized throughout most 
of the chapter tend to be fairly short—typically less than a month—and at such short 
horizons µr is small and arguably almost constant.92 Second, at longer horizons for 
which µr is larger and likely time varying in interesting ways, we can interpret µr as an 
excess return (“the equity premium”), which, of course, is the subject of an enormous 

92 Indeed that is why we typically fix µr at zero in previous sections.
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and distinguished literature that is treated extensively elsewhere in this volume. Hence 
we provide here only brief glimpses of aspects of the links µr ↔ σr, µr ↔ µf  and 
µr ↔ σf  as they relate most directly to our present concerns.

First, consider the equity premium and return-volatility relationship, µr ↔ σr. 
Stimulated by the pioneering work of Markowitz (1959), an enormous amount of asset 
pricing research has focused on quantifying various aspects of this financial market 
“risk-return tradeoff ”. Financial econometric research has followed suit, as exemplified 
by the GARCH-M model of Engle, Lilien, and Robbins (1987), defined by (7) and (8) 
above with µt = x′

tβ + δσt. In this model the conditional standard deviation enters 
directly as an explanatory variable for the conditional mean—together with other pos-
sible explanatory variables xt—thus providing an econometric approximation to a time-
varying risk premium.93

Although intuitively appealing, a number of subtleties have emerged in both theory 
and empirics. Modern general equilibrium theory reveals that, in principle, positive 
contemporaneous risk-return correlation is not guaranteed, as subtle dynamic interac-
tions may be operative; see, e.g. Abel (1988); Backus and Gregory (1993); Whitelaw 
(2000); and Bollerslev, Sizova, and Tauchen (2012) among others. In parallel, a wealth of 
recent empirical work reveals that, in practice, the contemporaneous risk-return cor-
relation is often found to be negative; see, e.g. Bollerslev, Litvinova, and Tauchen (2006), 
Lettau and Ludvigson (2010), and Brandt and Wang (2010). Hence, rather ironically, we 
now realize that we know less than we thought about the most researched connection, 
µr ↔ σr.

Second, consider the relationship between the equity premium and the business 
cycle, µr ↔ µf . Fama and French (1989) and Fama (1990) emphasize expected busi-
ness conditions as a likely key driver of expected excess returns, with expected excess 
returns negative near business cycle peaks and positive near troughs. However, they, and 
the huge ensuing literature, use mostly proxies for expected business conditions, typically 
the dividend yield, the term premium, and the default premium; see, e.g. Campbell and 
Thompson (2008) and the literature cited therein.94

Lettau and Ludvigson (2001) began a movement toward explicit incorporation of 
expected business condition variables with their celebrated generalized consumption–
wealth ratio cay, or more precisely, the cointegrating residual between log consumption 
and log wealth. Campbell and Diebold (2009), and subsequently Goetzman, Watanabe, 
and Watanabe (2009), extended the movement with direct inclusion of expected real 
growth, or more precisely, Livingston survey expectations of real growth.95 The results 

93 �The conditional standard deviation is sometimes replaced by the conditional variance, µt = x′
tβ + δσ 2

t , 
or other monotone transformations of σt, in the estimation of the GARCH-M model.

94 Note that, ironically, the standard proxies are financial rather than real.
95 For details on the Livingston survey, see Croushore (1997).
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suggest that expected growth is indeed a central determinant of expected excess returns, 
with the Livingston expectations generally the most stable and significant predictor 
across numerous competing specifications, including ones involving the “standard” 
financial predictor variables.

Having discussed a number of links involving fundamental volatility, we are now in 
a position to consider the final link, which also involves fundamental volatility, namely 
µr ↔ σf . Modern asset-pricing theory emphasizes not only fundamental expectations, 
but also fundamental volatilities in the determination of the equity premium. An obvi-
ous example is the “long-run risk” model by Bansal and Yaron (2004), and its extension 
explicitly incorporating time-varying economic uncertainty in Bollerslev, Tauchen, 
and Hao (2009b). In this new class of models, which features Epstein and Zin (1989) 
preferences, variation in both consumption’s conditional mean and conditional variance 
contribute importantly to variation in the equity premium. Supporting empirical evi-
dence is provided in Bansal, Khatacharian, and Yaron (2005) and Bollerslev, Sizova, and 
Tauchen (2012), among others.

4.5  Factors as Fundamentals
In our discussion of the links between market risk and macro fundamentals we have 
sometimes been casual in distinguishing returns from excess returns, realized from 
expected returns, realized from expected volatility, and related, in our treatment of tim-
ing. This is to some extent unavoidable, reflecting different conventions both within and 
among different and evolving literatures, as well as our desire to convey wide-ranging 
ideas in this broad survey. Nevertheless, a clearly emergent theme is that financial mar-
kets, as summarized by µr and σr, are very much linked to the business cycle, as sum-
marized by µf  and σf . Indeed it is not an exaggeration to claim that business-cycle risk 
may be the key driver of expected excess equity returns and return volatilities. Here we 
expand on that insight.

Although the business cycle may be a key risk factor, a long tradition, dating at least 
to Burns and Mitchell (1946) and actively extending to the present, recognizes that no 
single observed variable is “the business cycle” or “real activity”. Instead, we observe lit-
erally dozens of indicators (employment, industrial production, GDP, personal income, 
etc.), all of which contain information about the business cycle, which is not directly 
observable. Hence the key business cycle real activity fundamental underlying risk may 
be appropriately and productively viewed as a common factor to be extracted from 
many individual real activity indicators.

Expanding on this “factors as fundamentals” perspective, another likely relevant 
additional factor candidate is price/wage pressure, which may of course interact with 
real activity, as emphasized in Aruoba and Diebold (2010). In any event, the point is sim-
ply that, although we see hundreds of macroeconomic fundamentals, a drastically smaller 
set of underlying macroeconomic factors is likely relevant for tracking market risk.  



Torben G. Andersen et al.1210

This is useful not only for best-practice firm-level risk management, but also for regu-
lators. In particular, the factors-as-fundamentals perspective has important implications 
for the design of stress tests that simulate financial market responses to fundamental 
shocks, suggesting that only a few key fundamentals (factors) need be stressed.

Not surprisingly, then, we advocate that risk managers pay closer attention to mac-
roeconomic factors, as they are the ultimate drivers of market risk. We hasten to add, 
however, that due to the frequent “disconnect” problems mentioned earlier, we would 
never advocate conditioning risk assessments only on macroeconomic factors. Rather, 
macroeconomic factors complement, rather than substitute, for the methods discussed 
in earlier sections, by broadening the conditioning information set to include funda-
mentals in addition to past returns.

One might reasonably question the usefulness of conditioning on macroeconomic 
data for daily risk assessment, because macroeconomic data are typically available only 
quarterly (e.g. GDP and its components), or sometimes monthly (e.g. industrial produc-
tion and the CPI). Recent developments that exploit state space methods and optimal 
filtering, however, facilitate high-frequency (e.g. daily) monitoring of latent macroeco-
nomic fundamental factors. In particular, based on the high-frequency real activity 
monitoring approach of Aruoba, Diebold, and Scotti (2009), the Federal Reserve Bank 
of Philadelphia produces the “ADS index” of real activity, updated and written to the 
web in real time as new indicator data, released at different frequencies, are released or 
revised.96

We have emphasized macroeconomic fundamentals for equity market risk, but the 
bond market is also closely linked to macroeconomic fundamentals. In particular, gov-
ernment bond yield curves are driven by just a few factors (level, slope, curvature), with 
the level factor closely linked to price/wage activity and the slope factor closely linked 
to real activity.97 The same is true for yield curves of defaultable bonds, except that there 
is the additional complication of default risk, but that too is linked to the business cycle. 
Hence despite data on dozens of government bond yields, and dozens of macroeco-
nomic indicators, the interesting reality is their much lower-dimensional “state  
vectors”—the level and slope factors beneath the yield curve, and the real and price/
wage activity factors beneath the macroeconomy. One can easily imagine the usefulness 
for daily market and credit risk management (say) of systems linking yield curve factors 
(level, slope, curvature, …), equity factors (market, HML, SMB, momentum, liquidity, 
…), and macroeconomic factors (real, price/wage, …). All of those factors are now read-
ily available at daily frequency.

96 �The index and a variety of related materials are available at http://www.philadelphiafed.org/research-
and-data/real-time-center/business-conditions-index.

97 For background and references, see Diebold and Rudebusch (2012).

http://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index
http://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index
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5.  CONCLUDING REMARKS

We have attempted to demonstrate the power and potential of dynamic financial econo-
metric methods for practical financial risk measurement and management. We have 
surveyed the large literature on high-frequency volatility modeling, interpreting and 
unifying the most important and intriguing results of practical relevance.98 Our discus-
sion has many implications for practical financial risk management; some point toward 
desirable extensions of existing approaches, and some suggest new directions. Key points 
include:
1.	 Standard “model-free” methods, such as historical simulation, rely on false assump-

tions of independent returns. Reliable risk measurement requires a conditional density 
model that allows for time-varying volatility.

2.	 Successful risk measurement may be achieved through the use of univariate density 
models directly for portfolio returns. GARCH volatility models offer a convenient 
and parsimonious framework for modeling key dynamic features of such portfolio 
returns, including volatility mean reversion, long memory, and asymmetries.

3.	 Successful risk management, in contrast, requires a fully specified multivariate den-
sity model. In that regard, standard multivariate models are too heavily parameter-
ized to be useful in realistic medium- and large-scale financial market contexts. In 
medium-scale financial contexts, recently developed multivariate GARCH models 
are likely to be useful. In very large-scale financial contexts, more structure must be 
imposed, such as decoupling variance and correlation dynamics. In all cases, resam-
pling methods applied to standardized returns are an attractive strategy for accom-
modating conditionally non-normal returns.

4.	 Volatility measures based on high-frequency return data hold great promise for prac-
tical risk management, as realized volatility and correlation measures produce more 
accurate risk assessments and forecasts than their conventional competitors. Because 
high-frequency information is only available for highly liquid assets, a base-asset 
factor approach may sometimes be useful. In addition, the near log-normality of 
realized volatility, together with the near-normality of returns standardized by real-
ized volatility, holds promise for relatively simple-to-implement log-normal/normal 
mixture models in financial risk management.

5.	 The business cycle emerges as a key macroeconomic fundamental driving risk in 
a variety of markets, including equities and bond yields. Among other things, this 
means that our emphasis on conditioning applies not only at the short horizons 

98 �We hasten to add that this chapter is a complement, not a substitute, for the more general and technical 
survey of volatility and covariance forecasting of Andersen et al. (2006a). In addition, space constraints 
and other considerations have invariably limited our choice of included topics. For instance, we have 
largely neglected stochastic volatility and other parameter-driven approaches to volatility modeling, as 
well as option-implied volatility.
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(typically daily) stressed in Sections 2 and 3, but also at much longer horizons, once 
the information set is appropriately broadened to include macro fundamentals as 
opposed to just past returns.
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