"Common Factors in Commodity Futures Curves" by Karstanje, van der Wel, and van Dijk (2015)

Molin Zhong

University of Pennsylvania

February 27, 2015

Molin Zhong (UPenn)

February 27, 2015 0

Background

This paper is about modeling commodity futures curves

- **Commodity:** A standardized good, which is traded in bulk and whose units are interchangeable
 - Natural gas, Coffee, Copper

- Futures contract: Commitment to a transaction on a future date at a prearranged price
 - Pay \$80 for 1 barrel of oil 1 year in the future

Background: Why are commodity futures curves interesting?

Futures important for commodities producers to hedge price risks

Investors use commodities for diversification purposes

This paper

- Investigate commonality among factors driving many commodity futures curves
 - Comovement in price levels
 - Comovement in curve shapes

> 24 commodities separated into 5 sectors

Energy, Metals, Softs, Grains, and Meats

What the authors do

- Dynamic Nelson Siegel framework as in Diebold and Li (2006)
 - Decomposition into level, slope, curvature

 Common (market and sector-specific) components drive individual commodity factors as in Diebold, Li, and Yue (2008) and Kose, Otrok, and Whiteman (2003)

Preview of main results

- Important common components in level, slope, and curvature factors
 - \blacktriangleright On average $\approx 60\%$ of variation for level factor
 - \blacktriangleright On average $\approx 70\%$ of variation for slope and curvature factors
- Commonality mostly driven by sector-specific components as opposed to market components
 - \blacktriangleright On average $\approx 40\%$ of variation for level factor
 - \blacktriangleright On average $\approx 50\%$ of variation for slope and curvature factors
- Many other results that I will not go into today...
 - Economic interpretation of factors
 - Time-variation in importance of common components

Model

Model: Measurement equation

$$f_{i,t}(\tau) = l_{i,t} + s_{i,t} \left[\left(\frac{1 - \exp^{-\lambda_i \tau}}{\lambda_i \tau} \right) - \left(\frac{1 - \exp^{-\lambda_i}}{\lambda_i} \right) \right] + c_{i,t} \left[\left(\frac{1 - \exp^{-\lambda_i \tau}}{\lambda_i \tau} - \exp^{-\lambda_i \tau} \right) - \left(\frac{1 - \exp^{-\lambda_i}}{\lambda_i} - \exp^{-\lambda_i} \right) \right] + \kappa_i \cos \left(\omega \left(g_i(t, \tau) - \theta_i \right) \right) + \nu_{i,t}(\tau)$$

$$u_{i,t}(au) \sim_{iid} N(0, \sigma_{\nu,i}^2)$$

- $f_{i,t}(\tau)$: Futures price for **commodity i** at **time t** with **maturity** τ
- ► *l_{i,t}*, *s_{i,t}*, *c_{i,t}* : level, slope, curvature
- λ_i : decay parameter
- $\kappa_i \cos \left(\omega \left(g_i(t, \tau) \theta_i \right) \right)$: seasonal adjustment term

Factor loadings (from Diebold and Li, 2006)

Model: Common components

$$\begin{split} I_{i,t} &= \alpha_i^L + \beta_i^L L_{market,t} + \gamma_i^L L_{sector,t} + L_{i,t} \\ s_{i,t} &= \alpha_i^S + \beta_i^S S_{market,t} + \gamma_i^S S_{sector,t} + S_{i,t} \\ c_{i,t} &= \alpha_i^C + \beta_i^C C_{market,t} + \gamma_i^C S_{sector,t} + C_{i,t} \end{split}$$

- X_{market,t} : Market component
- X_{sector,t} : Sector-specific component
- X_{i,t} : Individual commodity component

Model: Transition equation

$$\begin{pmatrix} \Delta L_{y,t} \\ S_{y,t} \\ C_{y,t} \end{pmatrix} = \Phi \begin{pmatrix} \Delta L_{y,t-1} \\ S_{y,t-1} \\ C_{y,t-1} \end{pmatrix} + \begin{pmatrix} \eta_{y,t} \\ \eta_{y,t}^S \\ \eta_{y,t}^C \end{pmatrix}$$

$$\eta_{y,t}^{X} \sim_{iid} N(0, \sigma_{\eta,X,y}^{2})$$

- Φ is diagonal
- Note: level factor modelled as nonstationary

Estimation

Data

- 24 commodities separated into 5 sectors: Energy, Metals, Softs, Grains, and Meats
- Choose commodities based off of inclusion in S&P Goldman Sachs Commodity Index
- Monthly data from Jan 1995 to Sept 2012
- Heterogeneity in data availability between commodities and across time

Is the Dynamic Nelson Siegel framework appropriate?

> Yield curve naturally decomposes into level, slope, and curvature

> Dynamic Nelson Siegel model has level, slope, and curvature factors

• Question: Does the same hold true for commodity futures curves?

Examples of futures price curve

Examples of yield curve (taken from Diebold and Li, 2006)

February 27, 2015 14

Answer: As a statistical approximation... YES!

VERY simple case (nonstochastic)

 $f_t(\tau) = s_t + (r-c)\tau$

- $f_t(\tau)$: futures price with **maturity** τ
- ► *s_t* : spot price
- r : risk free rate
- c : convenience yield the flow of services which accrues to the owner of a physical inventory but not to the owner of a contract for future delivery (Brennan, 1991)
- ► Question: Could there be a theoretical issue with DNS approximation as maturity goes to ∞?

Relationship with Schwartz (1997)

Schwartz (1997) 3-factor model

- Arbitrage-free model of commodities futures curve
- Posits stochastic processes for spot price, convenience yield, and risk free rate
- Uses no-arbitrage restrictions to compute commodities futures curve

 Commodity-by-commodity: estimate individual factor DNS model and 3-factor arbitrage-free model

Comparison of DNS and Schwartz (1997) model estimates

- Orange: DNS level factor
- Blue: Spot price factor
- Average correlation across commodities: 0.67

```
Molin Zhong (UPenn)
```

Comparison of DNS and Schwartz (1997) model estimates

- Orange: DNS slope factor
- Blue: Convenience yield factor
- Average correlation across commodities: 0.76

Joint model factor estimates

Autoregressive parameters

	Δ Level	Slope	Curvature		
Market	0.11	0.93	0.78		
Energy	0.12	0.79	0.88		
Metals	0.12	0.96			
Softs	0.45	0.93	0.87		
Grains	-0.12	0.94	0.88		
Meats	0.05	0.88	0.72		

Red numbers are significant at 10% level

Factor estimates

Variance decompositions

	Δ Level			Slope			Curvature		
	Market	Sector	Idio	Market	Sector	Idio	Market	Sector	Idio
Energy	12.4	61.3	26.3	74.6	12.3	13.1	28.3	44.0	27.7
Metals	16.1	49.1	34.7	17.5	75.6	6.9			
Softs	34.1	12.8	53.2	1.7	26.6	71.7	22.7	34.0	43.3
Grains	53.5	21.6	25.0	0.1	74.1	25.9	25.4	66.8	7.9
Meats	7.3	25.2	67.4	7.2	53.3	39.5	15.4	61.8	22.7

Further comments/extensions

Extension 1: Forecasting exercise

 DNS model has been shown to forecast well (Diebold and Li, 2006), especially when compared to affine term structure models

Forecast comparison:

- Individual-commodity DNS model
- Schwartz (1997) 3-factor model
- Benchmark forecasting models (i.e. random walk)

Extension 2: Stochastic volatility

Extension 3: Going beyond the U.S. economy

Economic interpretation of futures curves in terms of U.S.
 macroeconomic variables Economic interpretation

What about other countries?

 Importers versus exporters of commodities (Peersman and van Robays, 2012)

Extension 4: Real effects of commodities futures curve uncertainty shocks

- How does uncertainty about the shape of commodity futures curves impact the real economy?
 - Overall economy versus commodity sectors
 - Commodity importers versus exporters
 - Monetary policy implications?

Creal and Wu (2014): Effects of short and long-term interest rate uncertainty on the macroeconomy

Conclusion

- I really like this paper
 - Novel application of DNS methodology
 - Lots of clean empirical results
- Opens up a lot of interesting empirical questions (of which I have only listed 4)

(a) Level - market-wide

(a) Slope - market-wide

(a) Curvature - market-wide

▶ Return

Economic interpretation of factors

- Theory of normal backwardation (Keynes, 1930)
 - Commodity producers and inventory holders hedge risk by selling commodity futures
 - Requires setting futures prices at discount to encourage speculators to take opposite long position
 - Empirical implication: relationship between hedging pressure and commodity futures curve
- Theory of storage (Kaldor, 1939, Working, 1949)
 - Relationship between futures price, spot price, inventory storage benefits, and inventory storage costs
 - Empirical implication: relationship between inventory levels and commodity futures curve

▶ Return

Economic interpretation of factors

Market-wide components:

- ► ∆ Level
 - Hedging pressure (+), Equity returns (+), USD exchange rate returns (-)
- Slope
 - Business inventories (+), Hedging pressure (+), Leading economic indicators (+), Current economic indicators (-)
- Curvature
 - ▶ Business inventories (+), Hedging pressure (-), Interest rates (+)

Time-variation in importance of factors

Investigate time-variation in importance of common components

- Weights $\delta^{|k|}$ to each observation
- ▶ δ = 0.99
- ▶ k = ..., -2, -1, 0, 1, 2, ...
- Centered at $\Theta = 1, 2, ..., T$

