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Background

This paper is concerned with a fundamental problem in modern time series
econometrics:

It’s hard to estimate large covariance matrices.

It’s REALLY hard to estimate large time-varying covariance matrices.

Key Problem: Dimensionality. Estimating a covariance matrix typically
requires ∼ n2 parameters. Estimating a full model of covariance dynamics
typically requires ∼ n4 parameters.
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Background

Recent successful venture: Fan et al (2013) estimate a large covariance
matrix ΩY of a series Yt by decomposing

ΩY = Ωx + Ωη

with Ωxt low rank and Ωηt sparse.

Problem: This decomposition is constructed from a static factor
model for levels

Yit = bi ft + ηit (1)

Ωx = bΩf b
′

This assumes that the common component of volatilities is precisely
the volatility of the level-common component.
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This Paper’s Contribution

This paper uses the same ”low rank plus sparse” decomposition in a
stochastic volatility setting

ΩYt = Ωxt + Ωηt (2)

= bΩftb
′ + Ωηt

Contribution: Uses the observation that the optimal Ωxt for a ”low
rank plus sparse” decomposition is not necessarily bΩftb

′.

Approach: Begin with (2), then measure co-movement of the
resulting Ωxt = bΩftb

′ and Ωηt .
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General method

Let Y := Yit |i ∈ 1 : n, t ∈ 1 : T be the data of interest.

Fit Yit = bi ft + ηit

Obtain volatily proxies for market component and idiosyncratic
component sit and wit

Fit factor models to sit and wit separately, then to the panel of both.

Difference between number of factors in combined panel and sum of
factors in separate panels = number of factors in common.
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Description of Full Method

Begin with data Y := Yit |i ∈ 1 : n, t ∈ 1 : T and dynamic factor model
with q factors:

Yit = Xit + Zit =

q∑
k=1

bik(L)ukt + Zit

ukt are the market shocks, giving rise to the common component Xit .

Forni and Lippi (2011) and (2014) show that with mild additional
assumptions, there exist a set of block-diagonal filters An(L) and a full
rank constant matrix H such that

(I − An(L))Yt = Hut + (I − An(L))Zt
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Residuals for volatility analysis

The above lets us easily obtain residuals for the level-common component:
e = {eit} = {(Hut)i |i ∈ 1 : n, t ∈ 1 : T}. Since the remainder is
idiosyncratic, residuals are obtained by fitting univariate AR regressions,
yielding idiosyncratic residuals vit .

To conduct volatility analysis, take sit = log(e2it) and wit = log(v2it) as
volatility proxies. Assume these proxies are demeaned.

We now conduct factor analysis on sit and wit .
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Technical Issue - Factor Structure of Common Volatility

Suppose we find 1 factor in the filtered data for the levels (so that ut is
scalar). Then

sit = log(H2
i u

2
t ) = 2log(Hi ) + 2 log(ut)

After demeaning, we will find a single factor for sit , given by log(ut).

We should not need to estimate factor structure on the volatilities of
the common component.

We DO need to estimate factor structure on volatility of u′ts in the
case where there are many factors for the levels.
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Factors of Volatilities

As with the levels, we have the decompositions

sit = χs;it + ξs;it =

qs∑
k=1

ds;ik(L)εs;kt + ξs;it

wit = χw ;it + ξw ;it =

qw∑
k=1

dw ;ik(L)εw ;kt + ξw ;it

Now by construction, εs;kt and ξs;it are independent, as with εw ;kt

and ξw ;it .

But εs;kt and εw ;kt may not be, as with ξs;it and ξw ;it , etc, etc.
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Factors of Volatilities

Moving forward, we can decompose further:

sit =

qs∑
k=1

ds;ik(L)(φkt + ψs;kt) + (ζs;it + ξ∗s;it)

wit =

qs∑
k=1

dw ;ik(L)(φkt + ψw ;kt) + (ζw ;it + ξ∗s;it)
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Common and Idiosyncratic Volatility Shocks

These decompositions give rise to 4 categories:

Strongly common: The shocks common to both s and w .

Weakly common: The shocks ψs;kt and ψw ;kt . These are the common
shocks of each block not driven by the strongly common shocks.

Weakly idiosyncratic: ζs;it and ζw ; it. These are the shocks
idiosyncratic to the common shocks of their own block, but not
necessarily to the common shocks of the opposite block. Arguably the
most nebulous of the four.

Strongly idiosyncratic: ξ∗s;it and ξ∗w ;it . These shocks are independent
of each other and independent of all market-driven shocks. Essentially
iid white noise.
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Weakly Idiosyncratic Shocks

A useful way to think of the idiosyncratic shocks: We understand φkt , ψs;kt

and ψw ;kt . Consider

ηit =

{
sit = χs

η;it + ξsη;it =
∑Q

k=1 d
s
η;ik(L)εkt + ξsη;it

wit = χw
η;it + ξwη;it =

∑Q
k=1 d

w
η;ik(L)εkt + ξwη;it

Then ξη’s are strongly idiosyncratic by construction, so we conclude:

ζs;it = χs
η;it − χs;it

And similarly
ζw ;it = χw

η;it − χw ;it
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A revealing example

Suppose Q = qs = qw (as is found to be the case). Then there are no
weakly common or weakly idiosyncratic components, just a strongly
common shock and strongly idiosyncratic shocks.

We may thus write

log(e2it) = ds;i (L)φkt + ξs;it

log(v2it) = dw ;i (L)φkt + ξw ;it

Here φkt , ξs;it , and ξw ;it are mutually orthogonal at all leads and lags.

This is often the case found in financial empirical work, and is the case
found in the empirical section of this paper, but in general need not be.
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The S&P100 Panel

The above method is applied to a panel of 90 times series for which
3457 trading days are observed.

Method successfully picks up periods of high market volatility by
estimating market shocks ut . They find overall 1/3 of total variance
of returns is driven by variation in level-common shocks.

Moreover, ut has a correlation of .95 with average daily returns,
consistent with interpretation that common shocks are ”market return”
shocks.

Factor structure: They find Q = qs = qw = 1.
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Minor Aside

The authors worked hard to construct the decompositions into
strongly common, weakly common, weakly idiosyncratic, and strongly
idiosyncratic shocks.

Are there datasets for which this analysis is more fruitful?

Large collections of macroeconomic indicators in a DSGE model
unlikely to have single factor volatility.
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Analyzing Volatility Shocks

There are two volatilities to consider: Volatility of the returns factor
sit and volatility of the returns idiosyncratic component wit .

Market volatility shocks accounts for 2/3 of the volatility of the
returns factor, and 1/10 of the volatility of the returns idiosyncratic
component.

Most of that 1/10 is observed during the 2008-2009 financial crisis,
during which market-driven volatility shocks account for closer to 1/5
of the volatility of the level-idiosyncratic component.
Outside of that time period, generally closer to 1/20.
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Analyzing Volatility Shocks

Combine the fact that the factor for volatility accounts for 2/3 of the
variation of the returns factor, and 1/10 of the variation of the returns
idiosyncratic component with the following:

The common component explains an average 1/3 of the volatility of
returns, the idiosyncratic component explaining the remaining 2/3.

Doing some bad math...

2/3∗(1/3) + 1/10∗(2/3) = .29

This suggests that the extracted factor for volatility explains around 30%
of the variation in returns.
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Level-Common and Volatility-Common Shocks
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Analyzing Volatility Shocks

The extracted factor for volatility explains little of the variation in
idiosyncratic volatility.

This is somewhat at odds to their original motivation.

This returns us to the technical issue: Is the extracted factor for volatility
to close to the volatility of the level-common component (u2t ) because the
estimation procedure effectively used this series 90 times? (Recall the
technical issue we raised).

If the full panel of volatilities consisted of log(u2t ) once, then the 100
idiosyncratic volatilities, would we get a more accurate estimate?

Or does this procedure just ruin the asymptotics without solving the
above problem?
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Issues And Extensions

There are several key issues:

Covariance estimation (as separate from volatility estimation).

Forecasting ability - point versus density forecast.

Volatility estimators - proxies instead of realized measures.
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Covariance Estimation

This paper assumes that all covariance in Yt is from joint loading off of
factor - assume exactly diagonal idiosyncratic covariance ∀t.

How realistic is this?

Let’s consider a small exercise with 11 stocks (GE, AXP, Coca Cola, etc,
etc). Fit a static factor model to them (scree plot suggests 1 factor) via
principal components.
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Covariance Estimation

Construct a realized measure RMΩYt from high-frequency data. With the
linear factor model in hand

Yit = bi ft + ηit

we can construct a high-frequency factor as

f̂ HFt = b
′
Y HF
t

From this we can construct an estimate of bRMΩftb
′, and a corresponding

estimate of idiosyncratic covariance.

What does idiosyncratic correlation look like?
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Idiosyncratic Correlation
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Idiosyncratic Correlation

Idiosyncratic correlation is mean zero (which we expect from factor model
identification assumptions).

But with static factor loadings and a 1-factor model (so that Ωft is
scalar), if you assume Ωηt diagonal ∀t, you arrive at a constant
correlation model. This is very at odds with the data.

Extending the model to capture structure of idiosyncratic correlation
would be a great extension.

We see that at least for some datasets we may be able to do this
parametrically/easily.

Semi-open question: What idiosyncratic correlation structures still
leave the model identified? Is long-run-mean ∼ 0 necessary?
Sufficient?
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Density Forecasts

Consider a general stochastic volatility model

Yt ∼ F (Σt)

Σt ∼ G (Σt−1)

This yields a density forecast via:

P̂(Yt+1|Ft) =

∫
F̂ (Yt+1|Σt+1)Ĝ (Σt+1 |Ft)dΣt+1

Most of the work on density forecasts in stochastic volatility settings has
only focused on the performance of the total density forecast P̂(Yt+1|Ft).

Extending the approach in this paper lets us address accuracy of
Ĝ (Σt |Σt−1).
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Forecasting: Model-free setup

Problem: A model-free approach means only point forecasts.

Can maintain model-free setup and estimate distribution of volatility
shocks.

Covariance densities require at least some structure (to maintain
positive-definiteness).
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Forecasting - Volatility proxies?

The estimation procedure gives rise to impulse response functions which
are useful for point forecasts of volatility.

How robust is the forecast to the choice of volatility proxy?

Patton (2010) shows that the answer unfortunately depends on your
choice of loss function. Only particular classes of loss functions are
assured to be robust to choice of volatility proxy.

Readers familiar with Patton will not be surprised to hear that this
class is precisely Bregman loss functions.
Bregman loss functions are quite general so this is not devastating, but
worth keeping in mind.
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Conclusions

Key observation: that common component of volatilities is not the
volatility of the common component.

This is an exciting and important observation that paves the way for
accurate volatility estimation.
Empirical result that large numbers of common and idiosyncratic
volatilities load off of a single factor is crucial for future tractable
modeling.

This paper is an extremely successful first pass at the approach, so it
comes with the caveat that all first passes have: a LOT of room for
forward progress. The two big ones are:

Restricts to volatility estimation, not covariance estimation.
Leaves open the question of how to estimate the densities of extracted
shocks.
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