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Background

Forecast Combination

I Model-based: variance-covariance, regression
I Survey-based
I Market-based

More info -> better forecast: Wisdom of the crowds!
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Summary

Information Aggregation Mechanism (IAM)

I Combine density forecasts
I Innovative designs

Theory

I �A trip to Bayesland� (Nate Silver)
I Density forecast: Dirichlet process

Evaluation

I Di�culty in density forecast
I Problem: iid?
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Information Aggregation Mechanism (IAM)

Parimutuel-like betting mechanism (vs A-D security market)

I +: Easy and intuitive to implement
I -: Discrepency in the ideal and actual loss functions

Fake money

I +: Reduce the impact of risk aversion

Non-tradable tickets

I +: Reduce price speculation and transaction cost

Tickets prices increase over time

I +: Reduce information externality
I -: Reduce information available

Participants are chosen to be �insiders�

I +: Reduce self-selection bias and noise trading
I -: Maybe some �outsiders� would help too?

F More independent info set, wisdom of the crowds
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Information Aggregation Mechanism (IAM)

Between survey- and market- based forecast combinations

I Provide money incentive
I But with non-tradable tickets and less self-selection problem
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Theory

�A trip to Bayesland� (Nate Silver)

I Individual:

ind posterior = common prior+ ind private info

= ind ticket placement

I Aggregate:

agg posterior = common prior+ sum of private info

= agg ticket placement

I More info -> better forecast
I Bayesian updating vs invisible hand
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Theory
Density forecast: Dirichlet process

I A set of bins
P (Y ∈ bin k) = πk

I Prior:
π ∼ Dir (α1, · · · , αK ) , E [πk ] =

αk∑K

j=1
αj

I Ind posterior = ind ticket placement:

π|sn ∼ Dir (α1 +mnp̂n,1, · · · , αK +mnp̂n,K )

E [πk |sn] =
αk +mnp̂n,k

mn +
∑K

j=1
αj

I Agg posterior = agg ticket placement:

π|s1:N ∼ Dir

(
α1 +

N∑
n=1

mnp̂n,1, · · · , αK +
N∑
n=1

mnp̂n,K

)

E [πk |s1:N ] =
αk +

∑N

n=1
mnp̂n,k∑N

n=1
mn +

∑N

n=1

∑K

j=1
αj
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Theory

Some tests of the Bayesian updating in real world

I �Belief Updating among College Students: Evidence from Experimental
Variation in Information�, Wiswall and Zafar (2011)

I ...
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Evaluation

Q: whether it accurately re�ects the uncertainty in sales?

I H0: As the forecasting horizon h decreases, density forecast should get
closer to the true conditional distribution of Yt |Ft,t−h.

I How to test?

Di�culties in evaluating density forecast

I the true conditional distribution of Yt |Ft,t−h is not observable, even
ex-post

I heterogeneous info set for di�erent period t
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Evaluation

Probablity integral transformation (1-step-ahead):

I true conditional distribution of Yt |Ft,t−1: ft (yt)
I density forecast of Yt |Ft,t−1: pt (yt) = MN

(
η̃1|t−1, · · · , η̃K |t−1

)
I cdf of density forecast:

zt =

ˆ yt

−∞
pt (ỹt) dỹt = Pt (yt)

∼
ft
(
P−1t (zt)

)
pt
(
P−1t (zt)

)
zt ∼ iid U [0, 1], if pt (·) = ft (·)

QQ plot, KS test

I Joint test of iid and U [0, 1]
I but for h-step-ahead forecast, iid would be violated...
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Evaluation
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Evaluation

h-step-ahead Forecast

I Recall that optimal point forecast errors MA(h − 1)
I Similarly, if the density forecast is optimal, the zt series would be

(h − 1)-dependent
I And the sub-series will be iid : {z1, z1+h, z1+2h, · · · },
{z2, z2+h, z2+2h, · · · }, ...,{zh, z2h, z3h, · · · }
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Evaluation

Q: whether it accurately re�ects the uncertainty in sales?

I H0: As the forecasting horizon h decreases, density forecast should get
closer to the true conditional distribution of Yt |Ft,t−h.

Cannot be directly compared via KS test due to serial correlation

Maybe just compare the predictive likelihood

Ph =
T∏
t=1

pt|t−h (yt)

and Ph should decrease with h

Laura Liu (University of Pennsylvania) Combining Density Forecasts via Information Aggregation MechanismDecember 5, 2014 13 / 13


