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DGP: N-Variable VAR(p), t = 1, ...,T

Φ(L)xt = εt

εt ∼ iid(0,Σ)

Traditionally, e.g., 4-Variable VAR(3)
If you understand the VAR, you understand everything.

(1) Estimate the VAR

(2) Identify the estimated VAR

(3) Understand the estimated VAR

– Examine variance decompositions, etc.
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(1) Background Motivation

Financial/Economic Connectedness Measurement
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A Natural Financial/Economic Connectedness Question:

What fraction of the H-step-ahead prediction-error variance
of xi is due to shocks in xj , j 6= i?

Non-own elements of the variance decomposition: dH
ij , j 6= i
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Variance Decomposition / Connectedness Table

D

x1 x2 ... xN

x1 dH
11 dH

12 · · · dH
1N

x2 dH
21 dH

22 · · · dH
2N

...
...

...
. . .

...
xN dH

N1 dH
N2 · · · dH

NN
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Reading and Web Materials

Diebold, F.X. and Yilmaz, K. (2014), “On the Network Topology
of Variance Decompositions: Measuring the Connectedness of
Financial Firms,” Journal of Econometrics, 182, 119-134.

Diebold, F.X. and Yilmaz, K. (2015), Financial and
Macroeconomic Connectedness: A Network Approach to
Measurement and Monitoring, Oxford University Press. With K.
Yilmaz.

www.FinancialConnectedness.org
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DGP: N-Variable VAR(p), t = 1, ...,T

Φ(L)xt = εt

εt ∼ iid(0,Σ)

Traditionally, e.g., 4-Variable VAR(3)
If you understand the VAR, you understand everything.

Now, perhaps 5000-Variable VAR(50)
(e.g., asset returns or return volatilities, long memory)

“High dimensionality”
“Big Data”

(1) Estimate the VAR

(2) Identify the estimated VAR

(3) Understand the estimated VAR
– Examine variance decompositions, etc.
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(1) Estimate the VAR

Key theme: One way or another, we need to recover d.f.
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“Regularization”: Shrinkage, Selection, Combinations

Leading example: adaptive elastic net (lasso variant)

β̂AEnet = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ

K∑
i=1

wi

(
α|βi |+ (1− α)β2

i

)
where wi = 1/|β̂i |ν , β̂i is OLS or ridge, and ν > 0.

Lasso is α = 1, wi = 1∀i
Adaptive lasso is α = 1
Elastic net is wi = 1∀i
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Opportunities with Shrinkage, Selection, Combinations

– Lasso equation-by-equation vs. system
We’s like system estimation, and system lasso

(i.e., single system λ)

– Lasso may shrink in an awkward direction.
“Minnesota prior” via modified lasso penalty function

– What to Shrink/Select? Coefficients? D?
First-round coefficient lasso with second-round D thresholding?

– Is the group lasso appealing?

– Christian Hansen two-step lasso?
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“Regularization”: Dimensionality Reduction

Leading example: dynamic factor model

yt = λft + εt

εt ∼WN(0,Σ)

Φ(L)ft = vt

vt ⊥ εt−τ , ∀τ
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Opportunities with Dimensionality Reduction

– Precise implications of factor structure for D?

– Exact vs. approximate vs. switching factor structure

12 / 32



Opportunities with Dimensionality Reduction

– Precise implications of factor structure for D?

– Exact vs. approximate vs. switching factor structure

12 / 32



An Opportunity with Everything: N > T

– Equation-by-equation coefficient estimation

– System (multivariate) coefficient estimation

– Estimate Σ (and its Cholesky factor)
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(2) Identify the Estimated VAR

Key theme: SVAR-style identification is hopeless

We need to return to basics, like Cholesky
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If You Understand the VAR , You Understand Everything

But it’s hard to understand the VAR.

– Pairwise Granger-causality is inadequate

– Staring at coefficient matrices is inadequate

– Staring at coefficient matrices
and innovation covariance matrices

is adequate but unproductive

– Staring at variance decompositions (VD’s)
is adequate and maybe productive
But how will you identify them?
And how will you stare at them?
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VD’s Require Identification

Intricate theory identification
– Generally unavailable in high dimensions and arguably undesirable

Cholesky factor identification
– Orthogonalizes but requires ordering

But perhaps Cholesky ordering doesn’t matter much
except for very small H’s

But perhaps there is a natural Cholesky ordering
in many finance applications

(e.g., put large-cap institutions first)
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And, Perhaps Graphical Modeling can Help

Cholesky Orthogonalization:

(I − Φ1L− ...− ΦpL
p)yt = Pvt

vt ∼WN(0, I ),

where Σ = PP ′ (Cholesky factorization)

Moving-average representation:

yt = (I + Θ1L + Θ2L
2 + ...)Pvt

= Pvt + Θ1Pvt−1 + ...
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Recursive Structural System

Structural Simultaneous-Equations Model (SEM):

Ayt = Φ1yt−1 + ...+ Φpyt−p + εt

εt ∼ (0,Σ)

Recursive SEM: A triangular and Σ diagonal

Tyt = Φ1yt−1 + ...+ Φpyt−p + εt

εt ∼ (0,D)

The MA representation of the reduced form is:

yt = T−1εt + ...
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DAG’s, Bayes Nets, and all That...

Start with:

Heckman, J. and Pinto, R. (2015), ”Causal Analysis After
Haavelmo,” Econometric Theory,
http://www.nber.org/papers/w19453

Then back up and read or re-read:

Lauritzen, S. (1996). Graphical Models, Clarendon Press.

Pearl, J. (2009), Causality: Models, Reasoning, and Inference,
Cambridge University Press (second edition).

Potentially good primers:

Hjsgaard, S. ”Graphical Models and Bayesian Networks with R”
www.people.math.aau.dk/~sorenh/misc/2014-useR-GMBN/

Rebonato, R. (2010), Coherent Stress Testing: A Bayesian
Approach to the Analysis of Financial Stress, Wiley.
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DAG’s, Bayes Nets, and all That...

– Causal relationships are represented by a graph G ,
where nodes correspond to variables.

– Nodes are connected by arrows that
represent causal influences between variables.

– The set of descendants of a variable V consists of all variables
connected to V by arrows of the same direction arising from V .

– Graph G is called a DAG if no variable is a descendant of itself.

– Not fully simultaneous. Instead, recursive!
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Key DAG Insights

– DAG environment is recursive system environment

– DAG causality is about determining recursive system ordering

– Conditional independence: y is independent of x conditional on
z if and only if Pr(y ∩ x | z) = Pr(y | z) Pr(x | z).

– Local Markov condition: In a DAG, a variable is independent of
its non-descendants conditional on its ancestors.
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Opportunities with DAG’s

Potentially a very big step:

Local Markov / conditional independence can be used
to help determine recursive orderings. “Likelihood information”

and

Bayesian analysis can blend likelihood and prior information.
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(3) Learn From the Identified Estimated VAR

Key theme: Staring at massive D is just as hopeless
as staring at massive coefficient matrices

But graph-theoretic tools come to the rescue
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How?

Can’t stare productively at coefficient and covariance matrices.

When N = 5 all is well.
We can stare productively at D.

When N = 5000 we’re in trouble.
We can no longer stare productively at D!

The key tool for “digesting” VAR info
(i.e., examination of D)
is itself now indigestible!
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Part I: Graph-Theoretic D Distillation
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Interpret D as a Network Adjacency Matrix
Distill Using the Degree Distribution

Variance Decomposition / Connectedness Table

x1 x2 ... xN From Others

x1 dH
11 dH

12 · · · dH
1N

∑
j 6=1 d

H
1j

x2 dH
21 dH

22 · · · dH
2N

∑
j 6=2 d

H
2j

...
...

...
. . .

...
...

xN dH
N1 dH

N2 · · · dH
NN

∑
j 6=N dH

Nj

To
Others

∑
i 6=1 d

H
i1

∑
i 6=2 d

H
i2 · · ·

∑
i 6=N dH

iN

∑
i 6=j d

H
ij

Total directional connectedness “from,” CH
i←• =

∑N
j=1
j 6=i

dH
ij : “from-degrees”

Total directional connectedness “to,” CH
•←j =

∑N
i=1
i 6=j

dH
ij : “to-degrees”

Systemwide connectedness, CH = 1
N

∑N
i,j=1
i 6=j

dH
ij : mean degree
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Opportunities with Graph-Theoretic D Distillation

– Examine aspects of the degree distribution across H

– Other Connectedness Measures

(a) Multi-step connectedness
The degrees of A track 1-step connectedness.

The degrees of Ak track k-step connectedness,

(b) ∞-step connectedness (“eigenvalue centrality”)
Examine second smallest eigenvalue λ2 of L = M − A

(M is a diagonal matrix containing the node degrees)
(A is the adjacency matrix.)

(c) But is any of this necessary/desirable for us?
Should we not simply vary H?
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Part II: Graph-Theoretic D Visualization
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Spring Graph
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Spring Graph Detail

I Node size: Asset size

I Node color: Total directional connectedness “to others”

I Node location: Average pairwise directional connectedness
(Equilibrium of repelling and attracting forces, where (1) nodes repel
each other, but (2) edges attract the nodes they connect according
to average pairwise directional connectedness “to” and “from.”)

I Edge thickness: Average pairwise directional connectedness

I Edge arrow sizes: Pairwise directional connectedness “to” and
“from”
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Opportunities With D Graphs

– Examine graphs across H

(Multiple comparisons or a single animation across H)

– Spring graphs have a flip-flop issue

– There does not exist a natural gradation
across colors from “cool” to “hot”
(So use layering rather than colors)

– Time-varying coefficients and dynamic network graphs
(Rolling estimation, explicitly time-varying coefficients, etc.)

– Animate over time for fixed H,
for a variety of H
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Concluding Perspective

Old view: VAR’s unworkable in high dimensions
(Actually no one even thought about high dimensions)

New view: VAR’s are workable in high dimensions

(1) Regularization for estimation

(2) Bayes nets for Cholesky identification

(3) Network graphs for visual understanding

Still VAR’s, but:

Important new tools for estimation and analysis in high dimensions
are opening important new research areas
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