Assessing Point Forecast Accuracy by Stochastic Error Distance

> Francis X. Diebold and Minchul Shin University of Pennsylvania

> > November 15, 2014

Point Forecast Accuracy Comparison

Traditional:

Error:
$$e = y - \hat{y}$$

Loss: L(e), where L(0) = 0 and $L(e) \ge 0$, $\forall e$

Expected loss: E(L(e)), e.g. $E(e^2)$

This Paper:

We assess by comparing F(e), the c.d.f. of e, and $F^*(e)$, where

$$F^*(e) = \left\{ egin{array}{cc} 0, & e < 0 \ 1, & e \geq 0. \end{array}
ight.$$

Stochastic Error Distance (SED)

Example: Two Forecast Error Distributions

Under the *SED* criterion, we prefer F_1 to F_2 .

SED and Expected Absolute Loss

$$SED(F,F^*) = \int_{-\infty}^{\infty} |F(e) - F^*(e)| de$$

Proposition (Equivalence of SED and Expected Absolute Loss):

If e is a forecast error with cumulative distribution function F(e), such that $E(|e|) < \infty$, then SED equals expected absolute loss:

$$SED(F, F^*) = E(|e|).$$

Weighted Stochastic Error Distance (*WSED*)

$$WSED(F,F^*; au)=2(1- au)SED(F,F^*)_++2 au SED(F,F^*)_+,$$
 where $au\in[0,1].$

WSED and Expected Lin-Lin Loss

Proposition (Equivalence of WSED and Expected Lin-Lin Loss):

If e is a forecast error with cumulative distribution function F(e), such that $E(|e|) < \infty$, then WSED equals expected lin-lin loss:

$$WSED(F, F^*; \tau) = 2(1 - \tau) \int_{-\infty}^{0} F(e) de + 2\tau \int_{0}^{\infty} [1 - F(e)] de$$
$$= 2E(L_{\tau}(e)),$$

where $L_{\tau}(e)$ is the lin-lin loss function

$$L_ au(e) = egin{cases} (1- au)|e|, & e < 0 \ au|e|, & e \geq 0. \end{cases}$$

Generalized Weighted Stochastic Error Distance (GWSED)

$$GWSED(F,F^*;p,w) = \int |F(e) - F^*(e)|^p w(e) de,$$

where p > 0.

SED and WSED are nested special cases:

▶
$$p = 1$$
 and $w(e) = 1 \forall e$ produces SED.

▶
$$p = 1$$
 and $w(e) = egin{cases} 2(1- au), & e < 0 \ 2 au, & e \ge 0 \end{cases}$

produces WSED.

Other choices of p and w(e)?

GWSED and Expected Loss: A Complete Characterization

$$\mathit{GWSED}(\mathit{F},\mathit{F}^*;\mathit{p},w) = \int \left|\mathit{F}(e) - \mathit{F}^*(e)
ight|^p w(e)\,de$$

Proposition (Equiv. of *GWSED* $\left(F, F^*; 1, \left|\frac{dL(e)}{de}\right|\right)$ and E(L(e)):

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for e > 0 and dL(e)/de < 0 for e < 0, and suppose also that F(e) and L(e) satisfy $F(e)L(e) \rightarrow 0$ as $e \rightarrow -\infty$ and $(1 - F(e))L(e) \rightarrow 0$ as $e \rightarrow \infty$. Then:

$$\int_{-\infty}^{\infty} |F(e) - F^*(e)| \left| \frac{dL(e)}{de} \right| de = E(L(e)).$$

Connections: Cramér-von Mises Divergence

GWSED(F, F^{*}; 2, f(e)) is Cramér-von Mises divergence, CVM(F^{*}, F):

$$CVM(F^*,F) = \int |F^*(e) - F(e)|^2 f(e)de$$

= $-F(0)(1 - F(0)) + rac{1}{3}$
 $\geq rac{1}{12},$

where equality holds if and only if $F(0) = \frac{1}{2}$.

Hence, like $SED(F, F^*)$, $CVM(F^*, F)$ ranks forecasts according to expected absolute error.

Connections: Kolmogorov-Smirnov Distance

$$KS(F, F^*) = \sup_{e} |F(e) - F^*(e)| = max(F(0), 1 - F(0)),$$

where the lower bound is achieved at $F(0) = \frac{1}{2}$ as in the $CVM(F^*, F)$ case.

Hence, like $SED(F, F^*)$ and $CVM(F^*, F)$, $KS(F, F^*)$ ranks forecasts according to expected absolute error.

We have:

1. Stayed within the E(L) framework (there is no escaping). \checkmark

- 1. Stayed within the E(L) framework (there is no escaping). \checkmark
- 2. Established (surprising) primacy of absolute and lin-lin loss. \checkmark

- 1. Stayed within the E(L) framework (there is no escaping). \checkmark
- 2. Established (surprising) primacy of absolute and lin-lin loss. \checkmark
- 3. Clarified what it means to "select a loss function." \checkmark

- 1. Stayed within the E(L) framework (there is no escaping). \checkmark
- 2. Established (surprising) primacy of absolute and lin-lin loss. \checkmark
- 3. Clarified what it means to "select a loss function." \checkmark
- 4. Built bridges to CVM divergence, KS distance, etc. \checkmark

- 1. Stayed within the E(L) framework (there is no escaping). \checkmark
- 2. Established (surprising) primacy of absolute and lin-lin loss. \checkmark
- 3. Clarified what it means to "select a loss function." \checkmark
- 4. Built bridges to CVM divergence, KS distance, etc. \checkmark
- 5. Raised important related questions. \checkmark

Question: When Do MAE and MSE Rankings Diverge?

Simplest Gaussian environment:

$$\mathbf{e}\sim \mathbf{N}\left(\mathbf{\mu},\sigma^{2}
ight)$$

$$\implies E(|e|) = \sigma \sqrt{2/\pi} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) + \mu \left[1 - 2\Phi\left(-\frac{\mu}{\sigma}\right)\right]$$

Unbiased case ($\mu = 0$): $E(|e|) \propto \sigma$ MAE and MSE rankings must be identical

Biased case $(e_1 \sim N(0, 1) \text{ and } e_2 \sim N(\mu_2, \sigma_2^2))$: MAE and MSE rankings can diverge, even under normality!

MSE and MAE Divergence Regions, Gaussian Case

 $e_1 \sim N(0,1), e_2 \sim N(\mu_2, \sigma_2^2)$ We show divergence regions in black.

