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Point Forecast Accuracy Comparison

Traditional:
Error: e=y —y
Loss: L(e), where L(0) =0 and L(e) >0, Ve

Expected loss: E(L(e)), e.g. E(e?)

This Paper:

We assess by comparing F(e), the c.d.f. of e, and F*(e), where

" 0, e<O0
F(e):{l e>0.
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Stochastic Error Distance (SED)

SED(F, F*) = /Oo IF(e) — F*(e)| de
0 [e%)
:/ F(e)de—i—/o [1— F(e)] de

= SED(F, F*)_ + rSED(F, F*).

SED.(F,F*)
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Example: Two Forecast Error Distributions
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Under the SED criterion, we prefer F; to F».
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SED and Expected Absolute Loss

SED(F, F*) = /Oo IF(e) — F*(e)| de

—00

Proposition (Equivalence of SED and Expected Absolute Loss):

If e is a forecast error with cumulative distribution function F(e),
such that E(|e|) < oo, then SED equals expected absolute loss:

SED(F,F*) = E(le|).
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Weighted Stochastic Error Distance (WSED)

WSED(F, F*;7) = 2(1 — 7)SED(F, F*)_ + 2rSED(F, F*),

where 7 € [0, 1].

& Penn

6/15



WSED and Expected Lin-Lin Loss

Proposition (Equivalence of WSED and Expected Lin-Lin Loss):

If e is a forecast error with cumulative distribution function F(e),
such that E(|e|) < oo, then WSED equals expected lin-lin loss:

0

WSED(F, F*: 7) = 2(1 T)/

—00

F(e) de + 27 /000[1 — F(e)] de
—2E(L(e))

where L.(e) is the lin-lin loss function

L) {(1 —7)lel, e<O

T|el, e>0.
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Generalized Weighted Stochastic Error Distance (GWSED)

GWSED(F, F*: p, ) :/|F(e) — FH(e)|P w(e) de,
where p > 0.

SED and WSED are nested special cases:
» p=1and w(e) =1V e produces SED.

» p=1and

w(e) = {2(1—7), e<0

27, e>0
produces WSED.

» Other choices of p and w(e)?
&Penn
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GWSED and Expected Loss: A Complete Characterization

GWSED(F, F*; p,w / IF(e w(e) de

dL(e)
de

Proposition (Equiv. of GWSED (F, F*; 1,

) and E(L(e))):

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for
e > 0 and dL(e)/de < 0 for e < 0, and suppose also that F(e)
and L(e) satisfy F(e)L(e) - 0 as e - —oo and

(1—F(e))L(e) » 0 as e — co. Then:

L RaCIES

—00

de = E(L(e))-
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Connections: Cramér-von Mises Divergence

GWSED(F, F*;2,f(e)) is Cramér-von Mises divergence, CVM(F*, F):

CVM(F*, F /|F*(e &) F(e)de
= —F(0)(1- F(0)) + 3
.1
> =,

where equality holds if and only if F(0) = %

Hence, like SED(F, F*), CVM(F*, F) ranks forecasts according to
expected absolute error.
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Connections: Kolmogorov-Smirnov Distance

KS(F,F*) = SL;p ‘F(e) — F*(e)‘ = max(F(0),1 — F(0)),

where the lower bound is achieved at F(0) = 3 as in the

CVM(F*, F) case.

Hence, like SED(F, F*) and CVM(F*,F), KS(F, F*) ranks
forecasts according to expected absolute error.
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Concluding Remarks

We have:
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Concluding Remarks

We have:
1. Stayed within the E(L) framework (there is no escaping). v'
2. Established (surprising) primacy of absolute and lin-lin loss. v/
3. Clarified what it means to “select a loss function.” v
4. Built bridges to CVM divergence, KS distance, etc. v/
5. Raised important related questions. v’
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Question: When Do MAE and MSE Rankings Diverge?

Simplest Gaussian environment:

e~ N(u,0°)

— E(le)=0o 2/7Texp<—2'u2>+u[l—2d><—'uﬂ

02 o

Unbiased case (u = 0): E(le]) x o
MAE and MSE rankings must be identical

Biased case (e; ~ N(0,1) and e ~ N(p2,03)):
MAE and MSE rankings can diverge, even under normality!
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MSE and MAE Divergence Regions, Gaussian Case

05 0 05 1
H2

€1~ N(Ov 1)1 €2 ~~ N(,LLQ,O'%)
We show divergence regions in black.
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