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Point Forecast Accuracy Comparison

Traditional:

Error: e = y − ŷ

Loss: L(e), where L(0) = 0 and L(e) ≥ 0, ∀e

Expected loss: E (L(e)), e.g. E (e2)

This Paper:

We assess by comparing F (e), the c.d.f. of e, and F ∗(e), where

F ∗(e) =

{
0, e < 0
1, e ≥ 0.
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Stochastic Error Distance (SED)

SED(F ,F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de

=

∫ 0

−∞
F (e) de +

∫ ∞
0

[1− F (e)] de

= SED(F ,F ∗)− + τSED(F ,F ∗)+
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Example: Two Forecast Error Distributions

Under the SED criterion, we prefer F1 to F2.
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SED and Expected Absolute Loss

SED(F ,F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de

Proposition (Equivalence of SED and Expected Absolute Loss):

If e is a forecast error with cumulative distribution function F (e),
such that E (|e|) <∞, then SED equals expected absolute loss:

SED(F ,F ∗) = E (|e|).
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Weighted Stochastic Error Distance (WSED)

WSED(F ,F ∗; τ) = 2(1− τ)SED(F ,F ∗)− + 2τSED(F ,F ∗)+,

where τ ∈ [0, 1].
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WSED and Expected Lin-Lin Loss

Proposition (Equivalence of WSED and Expected Lin-Lin Loss):

If e is a forecast error with cumulative distribution function F (e),
such that E (|e|) <∞, then WSED equals expected lin-lin loss:

WSED(F ,F ∗; τ) = 2(1− τ)

∫ 0

−∞
F (e) de + 2τ

∫ ∞
0

[1− F (e)] de

= 2E (Lτ (e)),

where Lτ (e) is the lin-lin loss function

Lτ (e) =

{
(1− τ)|e|, e < 0

τ |e|, e ≥ 0.
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Generalized Weighted Stochastic Error Distance (GWSED)

GWSED(F ,F ∗; p,w) =

∫
|F (e)− F ∗(e)|p w(e) de,

where p > 0.

SED and WSED are nested special cases:

I p = 1 and w(e) = 1 ∀ e produces SED.

I p = 1 and

w(e) =

{
2(1− τ), e < 0

2τ, e ≥ 0

produces WSED.

I Other choices of p and w(e)?
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GWSED and Expected Loss: A Complete Characterization

GWSED(F ,F ∗; p,w) =

∫
|F (e)− F ∗(e)|p w(e) de

Proposition (Equiv. of GWSED
(
F ,F ∗; 1,

∣∣∣dL(e)de

∣∣∣) and E (L(e))):

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for
e > 0 and dL(e)/de < 0 for e < 0, and suppose also that F (e)
and L(e) satisfy F (e)L(e)→ 0 as e → −∞ and
(1− F (e))L(e)→ 0 as e →∞. Then:∫ ∞

−∞
|F (e)− F ∗(e)|

∣∣∣∣dL(e)

de

∣∣∣∣ de = E (L(e)).
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Connections: Cramér-von Mises Divergence

GWSED(F ,F ∗; 2, f (e)) is Cramér-von Mises divergence,CVM(F ∗,F ):

CVM(F ∗,F ) =

∫
|F ∗(e)− F (e)|2 f (e)de

= −F (0)(1− F (0)) +
1

3

≥ 1

12
,

where equality holds if and only if F (0) = 1
2 .

Hence, like SED(F ,F ∗), CVM(F ∗,F ) ranks forecasts according to
expected absolute error.
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Connections: Kolmogorov-Smirnov Distance

KS(F ,F ∗) = sup
e

∣∣F (e)− F ∗(e)
∣∣ = max

(
F (0), 1− F (0)

)
,

where the lower bound is achieved at F (0) = 1
2 as in the

CVM(F ∗,F ) case.

Hence, like SED(F ,F ∗) and CVM(F ∗,F ), KS(F ,F ∗) ranks
forecasts according to expected absolute error.
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Concluding Remarks

We have:

1. Stayed within the E (L) framework (there is no escaping). X

2. Established (surprising) primacy of absolute and lin-lin loss. X

3. Clarified what it means to “select a loss function.” X

4. Built bridges to CVM divergence, KS distance, etc. X

5. Raised important related questions. X
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Question: When Do MAE and MSE Rankings Diverge?

Simplest Gaussian environment:

e ∼ N
(
µ, σ2

)
=⇒ E (|e|) = σ

√
2/π exp

(
− µ2

2σ2

)
+ µ

[
1− 2Φ

(
−µ
σ

)]
Unbiased case (µ = 0): E (|e|) ∝ σ

MAE and MSE rankings must be identical

Biased case (e1 ∼ N(0, 1) and e2 ∼ N(µ2, σ
2
2)):

MAE and MSE rankings can diverge, even under normality!
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MSE and MAE Divergence Regions, Gaussian Case

e1 ∼ N(0, 1), e2 ∼ N(µ2, σ
2
2)

We show divergence regions in black.
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