Dynamic Analysis of Multivariate Time Series Using Conditional Wavelet Graphs

Maria Grith1
Matthias Eckardt2

1Ladislaus von Bortkiewicz Chair of Statistics
2Department of Computer Science
Humboldt–Universität zu Berlin
Introduction

Aims

- Analyze local properties of nonstationary multivariate time series using wavelets (cross correlations)
- Introduce a novel graphical model defined on basis of partial wavelet coherences (PWC)
- Select the graphical model based on observed data: estimate PWC and test for statistical significance
Related Literature

Partial correlation graph for time series
- generalize classical concentration graphs to time series
- restricted to linear dependencies
- accounts for the non-contemporaneous influences (lags)

Barigozzi and Brownless (2014)
Graphical Models

A simple graph $G = (V, E)$ consists of:
- a set of vertices $V = \{v_1, \ldots, v_k\} < \infty$
- a set of edges $E \subseteq V \times V$, $e_{ij} = (v_i, v_j)$
- undirected edges $e_{ij} \in E(G) \iff e_{ji} \in E(G)$
- no graph loops or multiple edges

Usually, $v_i \in V$ represents a random variable/process.

A multigraph consists of multiple or parallel edges b/w v_i and v_j.

We derive a loopless undirected multigraph model from which simple graphs can be obtained as subgraphs.
Undirected Graphical Models

In this talk we focus on undirected graphs where

\[(v_i, v_j) \in E(G) \iff (v_j, v_i) \in E(G)\].

(a) MRF

(b) Multigraph

Quantile Graphical modelling of Point Processes

Wavelet Graph
Graphical Models for Time Series

k-dimensional multivariate time series $X_V(t)$
- $X_V(t) = \{X_i(t)\}_{i \in V}, t \in \mathbb{Z}, V = \{1, \ldots, k\}$
- $X_{V\setminus\{i,j\}}(t) = \{X_i(t)\}_{i \in V\setminus\{i,j\}}$.

The time series graph of a process X_V
- vertex v_i refers to the X_i component processes of X_V, $V = k \times \mathbb{Z}$

Linear dependence graphs
- edge e_{ij} is missing if the components X_i and X_j are uncorrelated (given all the other components), i.e. $X_i \perp \perp X_j(\mid X_{V\setminus\{i,j\}})$ orthogonality (conditional)

Remark: For Gaussian time series - conditional independence.

Wavelet Graph
Partial Correlation Graph for Time Series

Definition: The partial correlation graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ for a stationary process X_V is given by

$e_{ij} \notin \mathcal{E} \iff X_i \perp \perp X_j \mid X_V \setminus \{i,j\}$

$\iff \text{cov}(\varepsilon_i|_{V \setminus \{i,j\}}(t), \varepsilon_j|_{V \setminus \{i,j\}}(t + u)), \forall u \in \mathbb{Z}$

$\varepsilon_{i|V \setminus \{i,j\}} := X_i(t) - \mu_{i, opt} - \sum_{u=-\infty}^{+\infty} d_{i, opt}^{opt}(u) X_{V \setminus \{i,j\}}(t - u)$

$(\mu_{i, opt}, d_{i, opt}^{opt}) = \arg \min_{\mu_i, d_i} \mathbb{E}(X_i(t) - \mu_i - \sum_{u=-\infty}^{+\infty} d_i(u) X_{V \setminus \{i,j\}}(t - u))^2$
Correlation and Partial Correlation Graphs

Example: Dahlhaus (2000)
Let $X_1(t) = a_1 X_1(t - 1) + \varepsilon_1(t)$,

$$X_j(t) = a_j X_j(t - 1) + b_j X_{j-1}(t - t_j) + \varepsilon_j(t)$$

$t_j \in \mathbb{N}$ and $\varepsilon_j(t) \sim N(0, \sigma)$ iid.

All processes are correlated, i.e. the (simple) correlation graph is complete, while the conditional correlation graph is given below.

```
1 ---- 2 ---- 3 ---- 4
```

Generalization: If in the partial correlation graph there exist a path between two vertices, then the component processes associated with them are correlated (and vice-versa).
Frequency Domain Formulation

Partial cross-spectrum b/w X_i and X_j at frequency $\omega \in [-\pi, \pi]$

$$f_{ij|\mathcal{V}\backslash\{i,j\}}(\omega) = \frac{1}{2\pi} \sum_{t=-\infty}^{+\infty} \left[\sum_{u=-\infty}^{+\infty} \varepsilon_i|\mathcal{V}\backslash\{i,j\}(t)\varepsilon_j|\mathcal{V}\backslash\{i,j\}(t+u) \right] e^{-i\omega t}$$

$$= \frac{1}{2\pi} \sum_{u=-\infty}^{+\infty} \text{cov}(\varepsilon_i|\mathcal{V}\backslash\{i,j\}(t), \varepsilon_j|\mathcal{V}\backslash\{i,j\}(t+u))e^{-i\omega t}$$

- is the Fourier transform of the cross-correlation function
- is a measure of covariance b/w $\varepsilon_i|\mathcal{V}\backslash\{i,j\}$ and $\varepsilon_j|\mathcal{V}\backslash\{i,j\}$

$$\rightarrow X_i \perp \perp X_j \mid X_{\mathcal{V}\backslash\{i,j\}} \Leftrightarrow f_{ij|\mathcal{V}\backslash\{i,j\}}(\omega) = 0, \forall \omega$$
Partial Spectral Coherence

Observation: The estimation of residuals $\varepsilon_{i|V\{i,j\}}(t)$ is computationally intensive.

Alternative: If the spectral matrix $f_V(\omega) = \{f_{ij}(\omega)\}_{i,j \in V}$ is regular and $g(\omega) := f(\omega)^{-1}$ then the partial spectral coherence matrix is $R(\omega) = -\text{diag}(g(\omega))^{-1/2}g(\omega)\text{diag}(g(\omega))^{-1/2}$, whose elements can be shown to satisfy

$$ R_{ij|V\{i,j\}}(\omega) = \frac{f_{ij|V\{i,j\}}(\omega)}{\left[f_{ii|V\{i,j\}}(\omega)f_{jj|V\{i,j\}}(\omega)\right]^{1/2}}. $$

$\rightarrow X_i \perp \perp X_j | X_{V\{i,j\}} \iff R_{ij|V\{i,j\}}(\omega) = 0, \forall \omega \iff g(\omega) = f(\omega)^{-1}, \forall \omega$
Localized Partial Correlation Graph

For (possibly) non-ergodic and non-stationary multivariate time series wavelet-based methods

- allow time varying analysis of spectral behavior
- characterize dependence in time-frequency domain
- similar to applying linear filters locally \((\mu_{i,t}^{opt}, d_{i,t}^{opt})\) to obtain the errors \(\varepsilon_{i|V\backslash\{i,j\}}(t)\)
- Similar to local covariance functions, local cross-spectra and local coherence

Remark: If the time series are stationary, their spectral behavior will be constant over time.
Wavelets

- "Mother wavelet" $\psi \in L_2(\mathbb{R})$ s.t.
 $$\int_{-\infty}^{\infty} \psi(t)dt = 0$$ admissibility condition
 $$\int_{-\infty}^{\infty} \psi^2(t)dt = \|\psi\|^2 = 1 'unit' energy property.$$

- Families of basis functions $\psi_{\tau,s}(t)$
 $$\psi_{\tau,s}(t) = \frac{1}{\sqrt{s}} \psi \left(\frac{t-\tau}{s} \right), \ s \in \mathbb{R}^+, \ \tau \in \mathbb{R}$$ (1)
 τ location and s scale (pseudo-frequency); $\|\psi_{\tau,s}\| = 1$

Note: We will consider complex wavelets further on.
Example: Morlet Wavelet

Morlet wavelet under translation and dilation
Wavelet Transform

Wavelet coefficients w.r.t. X_i

$$W_i(\tau, s) = \langle X_i, \psi_{\tau,s} \rangle$$

$$= \frac{1}{\sqrt{s}} \sum_{-\infty}^{+\infty} X_i(t) \overline{\psi_{\tau,s}(t)}$$

(·) stands for the complex conjugate. Additionally, a frequency domain representation of $W_i(\tau, s)$ follows as

$$W_i(\omega) = \frac{\sqrt{|s|}}{2\pi} \sum_{t=-\infty}^{\infty} X_i(t) f_{\psi_{s,\tau}}(st) e^{i\omega t},$$

where $f_{\psi_{s,\tau}}$ is the Fourier transform of the wavelet function $\psi_{\tau,s}(t)$.
'Adaptive' Window

Heisenberg time-frequency boxes of two wavelet basis
Wavelet Graphs

Scaleogram

60Sec continuous Wavelet bior2.8

Arousal-valence scale for the EEG signal, Sorkhabi (2014)
Parseval’s Relation: Extension to Wavelets

Recall: The inner product of two time series equals the inner product of their Fourier transform.

- $X_i(t)$ can be recovered from the wavelet transform

$$X_i(t) = \frac{1}{C_\psi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{s^2} W_i(\tau, s) \psi_{\tau, s}(t) d\tau ds$$

- For two processes $X_i(t)$ and $X_j(t)$, the energy in the time domain is preserved in the time-frequency domain

$$\langle X_i X_j \rangle = \frac{1}{C_\psi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{s^2} |W_i(\tau, s)\overline{W_i(\tau, s)}| d\tau ds,$$

for a finite constant C_ψ satisfying

$$C_\psi = \int_{-\infty}^{\infty} \frac{|\psi(\omega)|^2}{|\omega|} d\omega < \infty.$$
Partial Cross Wavelet

- Cross-wavelet coefficients - can be interpreted as a localized measure of correlation between two time series

\[W_{ij}(\tau, s) = W_i(\tau, s) \overline{W_j}(\tau, s) \]

- Partial cross-wavelet

\[W_{ij\setminus\{i,j\}}(\tau, s) = W_{ij}(\tau, s) \]

\[- W_{i\setminus\{i,j\}}(\tau, s) W_{j\setminus\{i,j\}}(\tau, s)^{-1} W_{j\setminus\{i,j\}}(\tau, s) \]

It extends a result for partial cross-spectrum (Brillinger, 1981) and involves inversion of \((k - 2) \times (k - 2)\) dimensional matrix; alternatively solve via recursion formula.
Partial Wavelet Coherence

- Partial wavelet coherence

\[
R_{ij|\mathcal{V}\backslash\{i,j\}}(\tau, s) = \frac{|W_{ij|\mathcal{V}\backslash\{i,j\}}(\tau, s)|}{|W_{ii|\mathcal{V}\backslash\{i,j\}}(\tau, s)W_{jj|\mathcal{V}\backslash\{i,j\}}(\tau, s)|^{\frac{1}{2}}}
\]

\[
0 \leq |R_{ij|\mathcal{V}\backslash\{i,j\}}(\tau, s)|^2 \leq 1, \text{ interpreted as a localized correlation in the time-frequency domain}
\]

Remark. \(X_i \perp\!\!\!\!\perp X_j \mid X_{\mathcal{V}\backslash\{i,j\}} \iff R_{ij|\mathcal{V}\backslash\{i,j\}}(\tau, s) = 0, \forall s, \tau \iff |W_{ij|\mathcal{V}\backslash\{i,j\}}(\tau, s)| = 0, \forall s, \tau\)
Wavelet Dependence Graph

For $X_V(t)$ a multivariate stochastic process evolving in discrete time a wavelet dependence graph is an undirected multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ in which any $v_i \in \mathcal{V}(\mathcal{G})$ encodes the i-th component $X_i(t)$ of $X_V(t)$ s.t.

$$X_{i,s} \perp \perp X_{j,s} \mid X_{V\setminus\{i,j\},s} \iff e_{ij,s} \notin \mathcal{E}_s(\mathcal{G}) \iff R_{ij\mid \mathcal{V}\setminus\{i,j\}}(\tau, s) = 0, \forall \tau$$

at fixed scale s, where $\mathcal{E}_s(\mathcal{G})$ is a scale-specific subset and it holds that $\mathcal{E}(\mathcal{G}) = \bigcup \mathcal{E}_s(\mathcal{G})$.

Remark: A partial correlation (wavelet) graph can be obtained from the multigraph by replacing any multiedge by at most one edge.
Outlook

Graph estimation

- noisy observation: shrinkage/smoothing of the wavelet coefficients, LASSO
- distributional assumptions for testing: Gaussian errors, Monte-Carlo methods

Extensions

- Directed graphs - Granger causality
- Dynamic graphs
- Simulation, real data
Brillinger, D.R.

Time Series: Data Analysis and Theory

Brillinger, D.R.

Remarks Concerning Graphical Models for Time Series and Point Processes

Dahlhaus, R.

Graphical Interaction Models for Multivariate Time Series

Metrika **51**: 157–172, 2000
Dahlhaus, R. and Eichler, M.
Causality and Graphical Models in Time Series Analysis

Eichler, M.
Granger Causality and Path Diagrams for Multivariate Time Series

Eckardt, M.
Reviewing Graphical Modelling of Multivariate Temporal Processes
Working paper, 2015
Barigozzi, M. and Brownlees, C.

NETS: Network Estimation for Time Series

Working paper, 2014