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ABSTRACT. We investigate the effect of measurement error on principal component analysis
in the high-dimensional setting. The effects of random, additive errors are characterized by the
expectation and variance of the changes in the eigenvalues and eigenvectors. The results show that
the impact of uncorrelated measurement error on the principal component scores is mainly in terms
of increased variability and not bias. In practice, the error-induced increase in variability is small
compared with the original variability for the components corresponding to the largest eigenvalues.
This suggests that the impact will be negligible when these component scores are used in classifi-
cation and regression or for visualizing data. However, the measurement error will contribute to
a large variability in component loadings, relative to the loading values, such that interpretation
based on the loadings can be difficult. The results are illustrated by simulating additive Gaussian
measurement error in microarray expression data from cancer tumours and control tissues.

Key words: eigenvalues, eigenvectors, high-dimensional data, measurement error, microarray
data, perturbation theory, principal component analysis

1. Introduction

The last decades have seen an exploding production of complex, high-dimensional data in
different fields, from genetics (Li & Xu, 2008) to finance (Fan ef al., 2011). Often in these
examples the sample size can be quite small compared with the number of measured variables,
thus an efficient strategy for dimension reduction is required. Principal component analysis
(PCA) is a widely used technique, which reduces the high-dimensional data to a small set of
component scores. The component scores can be used for visualization and as input in con-
ventional methods, such as classification, clustering and regression. In practice, the principal
components are often thought to represent underlying processes, accounting for the variability
in the data, and the component loadings could be interpreted as the relative importance of the
different variables in the unobserved processes.

In various high-dimensional data, we find that measurement error in the observed variables
can be a severe problem. Examples include measurements of chemical spectra in chemometrics,
functional magnetic resonance imaging brain scans or microarray expression data in genomics.
In regression models, the presence of measurement error in covariates is known to cause bias
in parameter estimates and loss of power to detect significant effects (Carroll et al.,, 2006;
Buonaccorsi, 2009).

To deal with the issue of measurement error in PCA within the setting of microarrays
and chemometrics, Sanguinetti et al. (2005) and Wentzell & Hou (2012) constructed different
variations of PCA where information about the measurement error is incorporated. Wentzell &
Hou (2012) (based on Wentzell et al. (1997)) constructed a framework for maximum likelihood
PCA, which incorporates an assumed known covariance matrix for the measurement error.
Sanguinetti et al. (2005) extended the probabilistic PCA, which is solved by an expectation—
maximization algorithm, to incorporate the technical precision connected to a microarray as a
proxy for the measurement error in the data.
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However, in practice, it is difficult to estimate the covariance matrix of the measurement
error in a high-dimensional situation, and the PCA versions accounting for measurement error
are not in common use. Analyses are often carried out naively, running standard PCA on
the observed data without any correction for measurement error, and therefore, it will be use-
ful to understand the impact of error on component loadings, scores and selection. In the
framework of chemometrics, the effect of measurement error on eigenvalues was investigated
by Faber et al. (1993, 1995), but only for homogeneous error and not considering the high-
dimensional situation.

In this paper, we will derive the bias and variability in loadings and scores caused by a
general, additive measurement error. This is performed by considering perturbations of the
eigen decomposition, such that the bias and variability of the change in eigenvectors and values
are given by the distribution of the errors.

2. Principal component analysis

Principal component analysis reduces the dimensionality of data by finding the low-
dimensional linear subspaces where the projections of the data have the largest possible
variability. Specifically, given a p-dimensional vector x, the first principal component is
a unit-length vector vi € R?, such that vlTx has maximal variance. Because Var vlTx = VIT vy,
where ¥ is the population covariance matrix, the first principal component is the eigenvector
corresponding to the largest eigenvalue. The second principal component v is the unit-length
vector with the largest variance orthogonal to v; and is given by the eigenvector corresponding
to the second largest eigenvalue and so on.

In practice, the principal components are given by the sample covariance matrix. Let
X1,..., X, be n iid p-dimensional vectors and X = [Xy,...,X,] a p x n data matrix. When
assuming for simplicity that X,.,r = 1,...,n has a known zero expectation, the sample
covariance matrix is Sy = %XXT. The principal components are then given by the eigen
decomposition of Sy given by

Sx =VAVT,
with eigenvalues A = diag(Aq,...,A,) and eigenvectors V = [vy,...,v,]. The projections,
denoted by Z; = viTX fori = 1,..., p, are referred to as the ith component scores and

represent the new data, which can be used in further analyses. As this linear projection can
be seen as a weighted sum of the original variables, where the eigenvector gives the weight of
each variable, the coefficients of the eigenvector are usually referred to as the loadings of the
component. The dimensionality can be reduced by choosing the components corresponding to
the largest eigenvalues to represent the data.

In a situation with measurement error, an error contaminated version of the data, W, is
observed instead of the original data X. For the classical, additive measurement error model,
X is observed by W with the errors o'U, such that

W=X+oU.

The scaling o controls the magnitude of the error matrix U. Both the data X and the error U are
for simplicity assumed to have known zero expectation; hence, the same is true for W. Then the
estimator for the population covariance matrix is Sy = %WWT, and when the error model is
additive, the covariance matrix is given by

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 41 Impact of measurement error on PCA 1053

1 r_ 1 7l L TriT o Ovre o O yyiT

-WW! = - X+oU)X+0U)' = -XX' + —XU' + -UX' + —UU".

n n n n n n

The covariance matrix Sy is decomposed into the covariance matrix Sy and the additive
change depending on the scaling o

Sw =Sx + 0AS| + 02AS;, (H

where AS; = 2XU” + 1UX7 and AS, = 1UUT.

Our aim is to assess the change in loadings, scores and component selection, when the PCA
is carried out on Sy instead of Sy . The eigenstructure of Sy is further assumed to be known
in the sense that X is fixed. Then there will be p fixed eigenvectors V = [vi,...,v,] and
eigenvalues A = diag(A1,...,1p).

The spiked covariance model introduced by Johnstone (2001) considers the eigenvalues on a
population level, where the m first eigenvalues are substantially larger than the remaining p —m
eigenvalues, which are all equal to some constant. We assume the eigenvalues to originate from
a spiked covariance model on a population level, but fix them as a sample such that the non-
zero eigenvalues are necessarily different from each other (Rao ez al., 2008). When p > n, there
must also be at least p — n zero eigenvalues, and we assume for simplicity that exactly p — n
eigenvalues are equal to zero, such that the eigenvalues of A fulfill the following:

Al > o> Ay >>Am+l > > Ay >An+l =---=Ap=0.

2.1. Perturbation problem

Perturbation theory has been applied in several statistical settings, for instance by Kadane
(1970) to investigate the effect of small errors on different estimators and restrictions for
overidentification. Nadler (2008) used matrix perturbation theory to develop finite sample
approximations for estimates of the leading eigenvalue and eigenvector in a single-spike model.
As the sample estimation error in PCA can be modelled as an independent homogeneous mea-
surement error, the results of the current paper will in this special case be similar to the results
of Nadler (2008).

Our results have the following outline: First, the Taylor expansion of the eigenvalues and
the eigenvectors of Sy, are derived, giving the Taylor expansion of the principal component
scores of Sy Then the expectation and variance of the difference between the eigenvectors and
eigenvalues of Syy and Sy are derived on the basis of the Taylor expansions. For these results,
we condition on the original data matrix X, such that X represents n fixed realizations from
a population distribution. The Taylor expansions of eigenvalues and eigenvectors have earlier
been investigated by Wilkinson (1965) and Stewart & Sun (1990) for deterministic matrices in
numerical perturbation analysis, whereas Stewart (1990) introduced a stochastic norm, which
also allows random error matrices. We denote the ith eigenvalue and vector of Sy by A; and
v;, and the ith eigenvalue and eigenvector of Sy by Ay ; and vy ;.

Lemma 1. Assuming fixed p x n matrices X and U, the Taylor expansion for the ith eigenvalue
of Sw as o — 0 is given by

T T

vIASv;vE ASyy;

Aw.i = Ai +oviTAS1vl' +(72VITASZV1' +0? E l Aij i :
i A

J#i

+ 0(c?), 2
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and the Taylor expansion for the ith eigenvector of Sw up to a scaling constant as ¢ — 0 is
given by

vi AS]V, v; A52V,

vi ASlv,v ASq v vi ASlv,v ASyv;
+02 s —v~+003,
,§,§,<,-w 0" ; ey
(3)

wherei = 1,...,pwhen p <nandi = 1,...,n when p > n. The proof is found in Appendix
A.1 of the Supporting Information.

The first theorem establishes the Taylor expansion of the principal component scores. We
denote the ith scores of Sy by Z; and the ith scores of Sy by Zy, ;. As the scores are given
by Zw.; = v{V’ ; W, the result follows from the Taylor expansion of the eigenvectors combined
with the observed data matrix W.

Theorem 1. Assuming fixed p x n matrices X and U, the Taylor expansion for the i th component
scores of Sy as o — 0 is given by

V AS]V,

Zyi=1; +aZ oy vIX +ovl'U
J#i
vi ASlv, v; A52V,
2 o2
+to Z Ai —Aj j Z 'X
J#l J#l

vi ASlv,v AS|vi K

LY G0 X

JF#ikF#Ei
TAslvv AS1v;
2 ! LT 3
- E - Vv:X+O0 , 4
i J#Ei (i —4;)? R @) @

wherei = 1,...,pwhen p <nandi = 1,...,n when p > n. The proof is found in Appendix
A.2 of the Supporting Information.

The change induced by the measurement error can be quantified by the difference between
the eigenvalues and eigenvectors of Sy and Sy, denoted by AA; and Av;:

Adi = Awi —Ain AV =V —V;. (5)
We use the results from Theorem 1 and Lemma 1 to derive the expectation and variability
of AA; and Av; under the assumption that ¢U is normally distributed, and X and U are
independent. Then the multivariate additive measurement error model for n samples W =
[Wi,---,W,]is given by

W, =X, +0U,, U, ~N(0,Zy), r=1,...,n.

The covariance matrix of the error o'U, is given as Var (6U,) = 62y, such that 62 controls
the scaling of the variance. The expectation of AA; and Av; is the biasin Ay ; and vy ;.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Theorem 2 (Eigenvalues and eigenvectors). Assume U = [Uy,...,Uy,] to be independent and
identically, normally distributed, U, ~ N(0,Zy) for r = 1,...,n. Then the expectation and
variance of AX; as 0 — 0, conditional on X, are given by

o2 Av Suv; + A Suv;

E(AA; | X) = o>V Zyv + — Z T + 0(c3), (6)
i P
4r;0°
Var (Ad; | X) = —Z VT syv; + 0(03). %)
The expectation of Av; as o — 0, conditional on X, is given by
> j EUVI 02 ZV?EUVI‘
]E(AV,|X)—U Z l A Vj—7 ij
J#i J#i
o2 A ~VTEUV~
Tl X G T oe ®
jEi kAL
and the variance of the kth coefficient of Av; is given by
Aj AR EUV, + A \F; EUVJ 2
Var (Avix | X) = p Z 7 —/\,)2 Vik
J#i
2 24, v Sy,
o i Uvil
+— > i A_A{)(A‘_A)vjkv1k+0(03), )
A< P
wherei = 1,...,pwhen p <nandi = 1,...,n when p > n. The proof is found in Appendix

B.2 of the Supporting Information.

The variance of Av;x is, to leading order, a weighted sum over the kth coordinate of all
other eigenvectors, where the weights depend on the data and the error structure through the
eigenvalues and the covariance matrix of the error.

Theorem 3 (Scores). Assume U = [Uy,...,U,] be independent and identically, normally dis-
tributed, U, ~ N(0, Z7) forr = 1,...,n. Then the expectation of AZ; = Ly .; —Z; aso — 0,
conditional on X, is given by

UVz GV Tsyv; v
E(AZ; |X)_022 Z > K viX
A=A =5 (/\ —A i — k)

wlsyv; v; EUviv5X+v52Uviva
__ZA—)L J +_Z Ai—A;

Ve J#i
+ 0(c?). (10)
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The variance of the kth coefficient of AZ; as 0 — 0, conditional on X, is given by

/\jVZ-TEUVl' +AiV?EUVj T 2
Vj k

2
o

Var (AZix | X) =— E : —
n = A —24))

02 ZAiV?EUV]V}“XkVITXk

X i — A (A — A7)

JAFLj<l
202 vaUv,-viTXk +V?EUviv]TXk

no= Ai—A;

+ GZVITEUV,-

v Xx + 0(c>), (11

wherei = 1,...,pwhen p <nandi = 1,...,n when p > n. The proof is found in Appendix
B.3 of the Supporting Information.

Remark 1. If the measurement error is uncorrelated and homogeneous, such that U, ~
N(0,021) forr = 1,...,n, the bias in the eigenvalues and eigenvectors simplifies. Because

E(Sw | X) =Sx +021,

the expectation of the eigenvalues and eigenvectors of Sy are given as E (Ay; | X) = A; + 02
and E (viy; | X) = v;, such that the bias is given exactly as

E(AX; | X) =02, E(Av; | X) = 0.

3. Implications

We will now explore the implications of Theorems 2 and 3 for the loadings, scores and
component selection, when the measurement error is assumed to be uncorrelated and either
homogeneous or heterogeneous. In the case of uncorrelated, homogeneous measurement error,
the variance of U, is equal for all variables, such that ¥y = I. Then the covariance matrix
of the error is given as Var (60U, ) = 021. In the case of uncorrelated, heterogeneous measure-

ment error, the variance of U, is different in each variable, such that ¥¢; = diag(cy,...,cp),
where the constants cx give the relative size of the variances. Then the covariance matrix of the
error is Var (cU, ) = diag(02c1 e ,Gch), where 2 controls the scaling.

A key element in the bias and variance expressions of Theorems 2 and 3 is the quantity
VJT.EUV,-, which captures the relationship between the error and the original data. For j = i,
this corresponds to a projection of the error covariance matrix Xy onto the eigenvector
space spanned by v;. For uncorrelated, homogeneous error, the projection of ¥ is either
viTEUV,- =1lor VJT Yyv; = 0for j # i, which simplify the bias and variance expressions. For
uncorrelated, heterogeneous error with covariance matrix ¥y = diag(cy,...,cp), the projec-
tions are given as weighted sums, viTEUV,- = Zl€=1 ckvizk and VJT.EUV,- = Zl€=1 CikVikVik,
where the variances are weighted by the corresponding loadings. Because the sum of the weights
szk are normalized to 1, the viTEUvi will be a weighted average of the error variances in the
heterogeneous case.

3.1. Loadings

The impact of measurement error on the principal component loadings can be assessed through
the bias and variance in the eigenvectors. If the measurement error structure is uncorrelated and
homogeneous, the bias in the loadings will be zero due to the orthogonality of the eigenvectors.
However, heterogeneous error or error structures with dependencies will introduce a bias.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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We can illustrate this effect through a simple heterogeneous structure with measurement
error in only one variable, ¥y = diag(1,0,...,0). The bias in the first loading of the ith
component is given by

2
2 Vij o th Vljvlk 3
E (Avj1 |X) = 1— —Y 4 — =40 .
v %) = 0% (1= ) 0 T+ LY 3 o)
J#i JFLkF#iLJ
(12)
As p > n, we have assumed the fixed eigenvalues to be zero for j = n + 1,...,p If pis

much larger than n, the first two sums in (12) are approximated by (1/4;) > ; 4, and due

l]
to the unit length of the eigenvectors, we have } ;_; vizj =~ 1, such that expression (12) is
approximated by

o2
E(AV,‘] | X) ~ /\— Vil-
1

The bias in the first loading in this simplified model depends, to leading order, on the load-
ing value itself, thus the larger loadings have larger bias. It also depends on ¢2/A;, the ratio
between the variance of the error oU and the ith eigenvalue of Sy . This ratio expresses an
inverse signal-to-noise relationship, as the eigenvalues represent the overall structure or sig-
nal in the data. When the eigenvalues are large compared with the error variance, the inverse
signal-to-noise ratio is close to zero, resulting in a very small bias in the eigenvector coefficients.
The ratio 62 /A; is always positive, such that the loading is overestimated in absolute value and
thereby also the importance of the variable in question. This is natural as PCA is constructed
to interpret high variability as important structure. As errors increase variability, the variables
affected by error will erroneously be assigned an increased importance. For a general uncor-
related, heterogeneous error structure, that is, ¥y = diag(cy,...,cp), the bias will depend
on whether the corresponding error variance o%c is smaller or larger than the average error
variance over all variables:

5 _
0“(cxk —C)
E(Avig | X) =~ — ik
i
where ¢ = (1/p) Zf=1 ¢ p 1s the mean of individual variances.
The induced variation in a loading is characterized by Var (Av;x | X) in (9). If the error is
uncorrelated and homogeneous, the variance is given by

02 Ai + A
Var (Avix | X) = Z ﬁ 2 +0(0?). 13)

The variance is, to leading order, a weighted sum of the eigenvalues, where the weights vi 1
are the kth square coefficients of all other eigenvectors, and this makes it difficult to assess
the magnitude of the variance. But due to the unit length of v;, the mean value of vi 1
over the jth component is 1/p, such that we have approximately Y 7 G=1.j i 3 x = 1 for
large p. When p > n and most elgenvalues are zero, the sum in (13) can be approximated
Dz q ;‘l —Tf)z v% e = /A D0 ] - We can therefore approximate the variability in each

loading of the ith component by
2
Var (Avik | X) >~ —

i
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The variability in the loadings within the same component will therefore be of the same magni-
tude, and the variation should be seen relative to the loading value. From the example presented
in Section 4, we will see that the variation will be small compared with the largest loadings,
but large enough to be problematic for the average or small loadings. The large variability
around the true value induced by the error may cause an interpretation based on the loadings to
be incorrect.

3.2. Scores

The projections of the original data onto the eigenvector space, the component scores, are often
used in other types of analyses, such that the measurement error is propagated further. In the
case of uncorrelated and homogeneous error, Xy = I, the bias in the scores will, to leading
order, be 0,

E(AZix | X) = 0(c”).
whereas the variance in the kth score of the ith component is given by

3 — A

2
m (V?Xk) + 0(03),
L J

2

Var (AZ;x | X) =02 + &
by collecting the second and last term in (11). The first term in the variance expression is the
largest, such that the variance in the scores is mainly given by the error term o U. It is however
difficult to assess the contribution of the second term without the specified scores. The induced
variability in the scores can be compared with the error-induced variability in the observed data
W, which is given by Var (U, | X) = o2. We see that the error variance in the scores is larger,
due to the erroneously estimated eigenvectors.

It is also possible to quantify the impact of the error in terms of the overall variance of
the scores, as this is given by the eigenvalues Var (Z) = A. The difference in the overall score
variability is given by the bias in the eigenvalues, which for a homogeneous error is given by

o2 Ai +A;
E(AL |X) =024+ — Y 2222 4 0(?).
n o= A —Aj

This expression can, when p > n, by approximated by E (A1; | X) ~ o2 (1 + %), in the case
of uncorrelated and homogeneous error. To assess the relative increase in the variance of the
component scores, we compare the bias in the eigenvalues to the original eigenvalues, A;. If the
eigenvalues are large, the relative increase in variability introduced by the error will be small.

3.3. Component selection

Dimension reduction can be achieved by selecting a subset of the components with the largest
eigenvalues. Ferré (1995) performed an extensive comparison of different selection methods
and concluded that there is no ideal selection criterion. However, the criteria most often used
in practice, the percentage rule, the Kaiser rule and Scree plot, all specify a cut-off based on the
eigenvalues, where only the components corresponding to the eigenvalues previously the cut-off
value are kept. Our aim is to look into the effects of measurement error on these commonly used
criteria. It should be mentioned that more recent work on component selection in situations
with p > n exits (Kritchman & Nadler, 2008).

According to the percentage rule, the chosen components will explain a specified proportion
of the total data variability. Because the eigenvalues give the variance of the components, the

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 41 Impact of measurement error on PCA 1059

proportion is given by the sum of the eigenvalues of the chosen components divided by the sum
of all eigenvalues. As the bias in the eigenvalues is approximately equal when p > n, the relative
difference between the large and the small eigenvalues becomes smaller, such that additional
components are needed to explain the same proportion of the variability. The eigenvalues of the
additional components must outweigh the difference between the sum of the bias in the chosen
eigenvalues and the sum of the bias in all eigenvalues. The fact that additional components
must be chosen is a result of the error obscuring the original data structure.

With the Kaiser rule, the cut-off is the mean of the eigenvalues X (Jolliffe, 2002). Simulations
show that too few variables will be selected under this rule, and Jolliffe (2002) suggested a modi-
fied Kaiser rule with 0.7 as the cut-off. The Kaiser rule will, as opposed to the percentage rule,
adapt to the introduced bias. If the bias is approximately equal in all eigenvalues, the increase
in A will be the same as in the individual eigenvalues, such that the number of components over
the cut-off value remains the same.

A Scree plot is a graphical procedure to determine a cut-off value, where the eigenvalues are
plotted in decreasing order. The cut-off is set where the slope of the eigenvalues shifts from
steep to shallow (Jolliffe, 2002), and the components above this break point are retained. As
the bias in the eigenvalues is approximately equal, the break point should not appear to move,
but a graphical procedure can be difficult to assess.

4. Example — microarray expression data

We illustrate our results with microarray expression data from lung cancer patients available
in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-GEOD-
10072. The data set consists of 107 samples in total with 58 adenocarcinoma tumor tissue
samples and 49 non-tumor samples. In all samples, 22,284 genes are analysed using a HG-
U133A Affymetrix GeneChip (Affymetrix, Santa Clara, CA, USA).

Research into measurement error in microarray expression data has suggested a combination
of additive and multiplicative errors (Rocke & Durbin, 2001; Karakach & Wentzell, 2007).
For the purpose of illustration, we will only assume an additive measurement error. With the
Affymetrix chip technology, it is possible to use probe information to estimate the technical
uncertainty in expression values, for instance by the Bayesian Gene Expression (BGX) method-
ology (Hein et al., 2005; Turro et al., 2007). BGX uses Bayesian hierarchical models to produce
a posteriori distributions of the gene expressions by utilizing probe information. The probe set
in an Affymetrix GeneChip consists of 11-20 probe pairs of perfect match probes and mis-
match probes, which accounts for different sources of noise (Hein et al, 2005). The method
supplies a posteriori distributions for two parameters, the gene expression ux and the technical
variability 0,% for each sample.

We use the mean of the a posteriori distribution of ux as an estimate of the kth gene
expression, and we use the mean of the distribution of o,% as an estimate of the gene-specific
and sample-specific technical variance. However, we assume the technical variability to be
equal for each sample and use the mean over all samples as our estimate of the measurement
error.

The R package for BGX is highly labor-intensive, and our analysis is restricted to the 3000
genes with the highest variance. The estimated gene expression is seen as the original data, and
the measurement error structure is assumed to be uncorrelated and heterogeneous with vari-
ance equal to the mean of the estimated technical variability over samples. To illustrate the
effects of measurement error, we add a simulated Gaussian error to the data, and the prin-
cipal components of the original and the error-prone data are compared. The robustness of
the component loadings against error is explored with the aim of biological interpretation,

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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whereas the robustness of component scores is explored with the aim of classification and
logistic regression.

The simulated additive measurement error is assumed to be normally distributed, with an
uncorrelated and heterogeneous variance structure given by

W=X+U, U,k%/\f(O,a,%), r=1,....n,k=1,...,p,

where the error variance a,% is the estimate supplied by the BGX methodology.

Table 1 displays the 15 genes corresponding to the largest loadings (in absolute value) in the
first principal component. The second column displays the original loadings, and the third col-
umn displays the difference in the loadings, when the simulated error is added to the data. The
fourth and fifth columns display the theoretical bias and standard deviation in each loading.
The last two columns display the genetic variance in the original data, and the ratio between the
measurement variance estimated by BGX and the genetic variance. The last column therefore
shows the degree of uncertainty in the measurements.

We observe that changes in the loadings in Table 1 are much larger than the theoretical
bias, and this is due to the variability in the scores. The theoretical variability, in terms of the
standard deviation, is substantially larger than the theoretical bias, as seen in Table 1. This illus-
trates that, when focusing on the loadings, the main impact of uncorrelated errors is increased
variability and not bias. Biologically, the loadings can be interpreted as the relative impor-
tance of each gene in the underlying processes represented by the component, and the random
fluctuations in the loading values can undermine the biological interpretation.

The impact of measurement error on the scores is illustrated graphically in Fig. 1, which
displays the first and second principal component of the original data and the data with a
simulated, additive error. An arrow indicates the change in scores, when the simulated error
is introduced. We observe that the changes are very small compared with the overall posi-
tions of the scores, and this is due to the large first and second eigenvalues, A; = 1255.01 and
A2 = 969.95. The variance of the error ranges from 0.03 to 1.90 with a mean of 0.86. Even
though the error variance can be substantial compared with the genetic variability, it is very

Table 1. The 15 genes corresponding to the largest coefficients in absolute value in the first
eigenvector in decreasing order, together with the difference induced by the simulated error,
the theoretical bias, the theoretical standard deviations, the variance in the variable and the
ratio between the variance of measurement error and variable variance

Gene annotation Vik Avig Bias St. dev. 0)2( O’lzj / 0)2(
214387_x_at —0.0545 0.0008 0.000011 0.0026  8.361 0.05
205982_x_at —0.0539  —0.0001 0.000012  0.0025  7.830 0.05
211735_x_at —0.0531 0.0038 0.000013  0.0026  8.030 0.04
209612_s_at —0.0528 0.0026 0.000001 0.0026  4.839 0.15
219230_at —0.0502 0.0048 —0.000010  0.0026  4.912 0.19
209074 _s_at —0.0501 0.0064 —0.000013  0.0025 5.276 0.18
209613 _s_at —0.0498  —0.0029 —0.000006  0.0026  4.757 0.18
203980_at —0.0496 0.0043 —0.000013  0.0026  5.397 0.18
205200_at —0.0490 0.0006 —0.000007  0.0025 4.715 0.18
213317_at —0.0477 0.0048 —0.000004  0.0026  4.420 0.18
204719_at —0.0476 0.0012 —0.000011 0.0025  3.755 0.26
215454_x_at —0.0474  —0.0009 —0.000001 0.0026  5.463 0.12
209763_at —0.0469 0.0029 —0.000001 0.0025  3.659 0.22
212713_at —0.0468 0.0012 —0.000008  0.0025  3.905 0.23
206488 _s_at —0.0463  —0.0002 —0.000012  0.0025  3.773 0.27
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Fig 1. Plot of first and second component scores from original data and data with simulated error based
on the estimated error structure. An arrow indicates the change in scores from the original value. Black
dots indicate adenocarcinoma tumour tissue, and open circles indicate non-tumour tissues.

small compared with the first two eigenvalues, and the relative impact of the error on the scores
is determined by the ratio between the error variance and the eigenvalue. The plot of the first
two components can be used to classify the tissues by cancer status, adenocarcinoma tumour or
non-tumour, which are indicated by black and open circles, respectively. The arrows illustrate
that both groups experience a slightly increased variability. This is only a problem for classifi-
cation if the change causes the groups to overlap, but this does not occur in our example. The
key point is the small relative change in the overall positions of the scores.

The classification can also be performed by logistic regression, where measurement error will
often cause attenuation in estimated regression coefficients (Carroll et al., 2006; Buonaccorsi,
2009). We illustrate this effect by using the first component scores Z; without and with error
in a logistic regression. For logistic regression, we assume

yi ~ Bernoulli(p;), logit(p;) = Bo + B1Z1.

The binary outcome y; is the cancer status, lung cancer or normal tissue. The estimated
coefficients from the logistic regression based on the scores from the original data are
f}o,zl = —0.292 and ﬁ 1.z; = —7.224 x 1072, whereas the coefficients based on the scores from
the data with error are BO.ZW,l = —0.287 and ﬁl,ZW,l = —7.161 x 1072, There is a slight
underestimation of the slope coefficient, consistent with the well-known attenuation effect. The
increased variability in the component scores causes the estimated slope 1,7, , to decrease in
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absolute value. The attenuation factor gives the expected decrease as f1,z,,, = ¥B1.z, with
Y = VarZ; /Var Zw 1, (Carroll et al., 2006). As the variances of the scores are the eigenval-
ues, the factor is approximately A1/A1 w = 0.981 in our data, consistent with the effect seen

inﬁlgzl‘w.

5. Discussion

Our aim is to understand the effect of measurement error on PCA, motivated by applications
in high-dimensional error-prone data. The impact of the error is characterized by the bias and
variance of eigenvalues and eigenvectors based on second-order Taylor approximations. The
results are given for additive errors with a general covariance matrix, such that also measure-
ment error with a correlation structure beyond the uncorrelated case can be explored. It has
been shown that the impact of uncorrelated errors on component scores will mainly be in
terms of an increased variability. We have quantified the impact of the additive measurement
error based on a small error assumption. In practice, what we need for the theory to work is
that o2 is small relative to the eigenvalues. As shown in the example, this will often be the
case, even if there is substantial measurement error relative to the variation in the data them-
selves. In the setting of microarray data, where the first eigenvalues can be substantially larger
than the error variance, the relative impact of the error variability will be negligible. This sug-
gests that the additive measurement error might be unproblematic in microarrays, when dealing
only with the components corresponding to the largest eigenvalues, for instance, in the case
of data visualization. However, the measurement error will also cause an increased variabil-
ity in the loadings, which can be large relative to the loading values and thereby undermine
their interpretation.

For the specific application of microarray data, the effects of multiplicative error should
also be investigated, as Rocke & Durbin (2001) and Karakach & Wentzell (2007) suggest that
the appropriate measurement error model for microarrays is a combination of additive and
multiplicative errors.

Because our aim is to understand the direct impact of measurement error, we condition on
the data X, fixing the model error. However, recent results raise issues regarding the consistent
estimation of the population structure by PCA in the high-dimensional setting. Johnstone &
Lu (2009), among others have shown that eigenvalue and eigenvector estimates are not asymp-
totically consistent when p > n, and they have introduced the asymptotically consistent sparse
PCA methodology. Therefore, it remains an open question if the inconsistency may be a more
severe problem than measurement error.
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