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OUTLINE

• What is ML (and how does it differ from econometrics)?

• Lasso and random forests.
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• A few comments on causal inference.
(Susan and Victor will give talks about this.)
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WARNING

My view is quite highly biased and controversial.

Investigators who use [regression] are not paying
adequate attention to the connection - if any - between
the models and the phenomena they are studying. ... By
the time the models are deployed, the scientific position
is nearly hopeless. Reliance on models in such cases is
Panglossian ...

—David Freedman

Panglossian: characterized by or given to extreme optimism,
especially in the face of unrelieved hardship or adversity

I am skeptical of assumptions, especially in high-dimensional
settings. (But I seem to be an outlier.)



WARNING

My view is quite highly biased and controversial.

Investigators who use [regression] are not paying
adequate attention to the connection - if any - between
the models and the phenomena they are studying. ... By
the time the models are deployed, the scientific position
is nearly hopeless. Reliance on models in such cases is
Panglossian ...

—David Freedman

Panglossian: characterized by or given to extreme optimism,
especially in the face of unrelieved hardship or adversity

I am skeptical of assumptions, especially in high-dimensional
settings. (But I seem to be an outlier.)



WARNING

My view is quite highly biased and controversial.

Investigators who use [regression] are not paying
adequate attention to the connection - if any - between
the models and the phenomena they are studying. ... By
the time the models are deployed, the scientific position
is nearly hopeless. Reliance on models in such cases is
Panglossian ...

—David Freedman

Panglossian: characterized by or given to extreme optimism,
especially in the face of unrelieved hardship or adversity

I am skeptical of assumptions, especially in high-dimensional
settings. (But I seem to be an outlier.)



WARNING

My view is quite highly biased and controversial.

Investigators who use [regression] are not paying
adequate attention to the connection - if any - between
the models and the phenomena they are studying. ... By
the time the models are deployed, the scientific position
is nearly hopeless. Reliance on models in such cases is
Panglossian ...

—David Freedman

Panglossian: characterized by or given to extreme optimism,
especially in the face of unrelieved hardship or adversity

I am skeptical of assumptions, especially in high-dimensional
settings. (But I seem to be an outlier.)



WARNING

My view is quite highly biased and controversial.

Investigators who use [regression] are not paying
adequate attention to the connection - if any - between
the models and the phenomena they are studying. ... By
the time the models are deployed, the scientific position
is nearly hopeless. Reliance on models in such cases is
Panglossian ...

—David Freedman

Panglossian: characterized by or given to extreme optimism,
especially in the face of unrelieved hardship or adversity

I am skeptical of assumptions, especially in high-dimensional
settings. (But I seem to be an outlier.)



WHAT IS ML?

Field Assumptions Goals

Machine Learning light high-dimensional
prediction

Statistics heavier prediction
and inference

Economics very heavy prediction, inference
and causation
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PREDICTION

Observe Z1, . . . ,Zn ∼ P where Zi = (Xi ,Yi )

Xi ∈ Rd . (Possibly d > n).

Yi ∈ R regression, or Yi ∈ {0, 1} classification.

µ(x) = E[Y |X = x ]

ML goal: given new pair (X ,Y ), minimize prediction error

E[(Y − µ̂(X ))2].

Requires balancing bias and variance.

(In contrast, causal inference is a semiparametric problem and bias
is worse than variance.)
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Three Popular Prediction Methods For High Dimensional
Problems

• Lasso: high-dimensional linear regression

• Random Forests: best off-the-shelf nonparametric prediction
method

• Deep learning: huge breakthrough or snake oil?
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The Lasso for Linear Regression
Recall that the lasso estimator is

β̂ = argmin
β

(
1

n

∑
i

(Yi − βTXi )
2 + λ||β||1

)
where ||β||1 =

∑
j |βj |.

Why does everyone use it?

(1) This is convex and can be solved quickly.

(2) The resulting β̂ is sparse (most β̂(j)’s are 0).

(3) Can prove things about it. (Much harder for forward stepwise
regression.)

Questions:

1. What is the meaning of β?

2. How do we choose λ?

3. How do we do inference?
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Random Forests

To describe random forests, we begin with trees.

A regression tree is a nonparametric estimator µ̂ where µ̂ is a
piecewise constant over rectangles. (The fit is done by recursive
splitting).

Same for classification (binary regression).
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Tree

source: https://www.r-bloggers.com/

regression-tree-using-ginis-index/

https://www.r-bloggers.com/regression-tree-using-ginis-index/
https://www.r-bloggers.com/regression-tree-using-ginis-index/


Forest

Draw subsamples D1, . . . ,DN . Fit trees µ̂1, . . . , µ̂N on the
subsamples. (Usually one also draws random subsets of covariates.)

Random forest:

µ̂(x) =
1

N

∑
j

µ̂j(x).

One of the best general purpose prediction methods.
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source:
http://kazoo04.hatenablog.com/entry/2013/12/04/175402

http://kazoo04.hatenablog.com/entry/2013/12/04/175402


A Property of the Lasso
Let

r(β) = E [(Y − βTX )2].

Define the best, `1-sparse linear predictor β∗ by

r(β∗) = inf
β∈B(L)

r(β)

where
BL = {β : ||β||1 ≤ L}.

Thus, β∗ is the population version of the lasso estimator.

Let β̂ be the lasso estimator. With probabilty at least 1− δ,

r(β̂) ≤ r(β∗) +

√√√√16(L + 1)4B2

n
log

(√
2 d√
δ

)
.

No assumptions! (Not even linearity).
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INFERENCE?



The ‘True’ Parameter Versus the Projection Parameter

• If we assume that

Y =
∑
j

βjX (j) + ε

then there is a true β.

• Probably a bogus assumption.
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The ‘True’ Parameter Versus the Projection Parameter

• Let µ(x) = E[Y |X = x ] be arbitrary.

There is a best linear predictor βT∗ x that minimizes

E[(Y − βTX )]2.

No need to assume that µ(x) is linear.

We call β∗ the projection parameter.

For a subset S ⊂ {1, . . . , d}, βS is the projection parameter for S .

Note: βS is a random parameter. (And it is not smooth.)
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LOCO

LOCO (Leave Out COvariates)
Lei, G’Sell, Rinaldo, Tibshirani, Wasserman (arXiv:1604.04173)

Example:

γj = E

[
|Y − µ̂T(−j)X | − |Y − µ̂

TX |

]

Here, µ̂(−j) is obtained by removing X (j) and re-running the whole
algorithm.

γj : the increase in prediction error due to not having X (j).

Does not depend on linearity or model correctness. Interpretable.
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True versus Projection versus LOCO

True parameter approach:
Javanmard and Montanari (2014), Nickl and van de Geer (2013),
Belloni, Chernozhukov and Kato (2013), others ...

Projection parameter approach:
Berk, Brown, Buja, Zhang, Zhao (2013), Lee, Sun, Taylor (2016),
Lei, G’Sell, Rinaldo, Tibshirani, Wasserman (2016), ...

LOCO:
Lei, G’Sell, Rinaldo, Tibshirani, Wasserman (2016a,b), Hooker and
Mentch (2016).
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Inference

Method Parameter Assumptions Accuracy Computation Robust

Debiasing ‘true’ β Very Strong 1/
√
n Good No

Conditional projection Strong ? Good No

Uniform projection weak
√

k/n NP hard Yes

Sample Splitting projection none
√

log k/n Easy Yes

Sample Splitting LOCO none
√

log k/n Easy Yes

Conformal prediction none NA Easy Yes

The forgotten methods: unsupervised dimension reduction
(variable clustering, PCA, non-linear dimension reduction, etc).
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Types of coverage

Uniform inf
P∈ALL

Pn(θ ∈ C ) ≥ 1− α

Honest lim inf
n→∞

inf
P∈BIG

Pn(θ ∈ C ) ≥ 1− α

Parametric lim inf
n→∞

inf
P∈SMALL

Pn(θ ∈ C ) ≥ 1− α

Pointwise Pn(θ ∈ C )→ 1− α
We really want: Robust and Honest:

lim inf
n→∞

inf
w∈Wn

inf
P∈BIG

Pn(θ ∈ C ) ≥ 1− α

where Wn = all model selection rules.
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Debiasing Methods

Javanmard and Montanari (2014)

Lasso to get β̂.

Set

β̂ ←− β̂ +
1

n
MXT (Y − X β̂)

where M is an estimate of Σ−1.

Then √
n(β̂ − β) = Normal + small

Then we can construct confidence intervals. (Bonferroni over all
parameters.)

Very clean.

But, it requires: linear model correct, incoherence, sparsity,
constant variance, very carefully chosen tuning parameter.
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Conditional Methods

Lee, Sun and Taylor (2014).
Target is the projection parameter.

Assume: normality, known, constant variance. Fixed X .

Select model S ⊂ {1, . . . , d} by lasso.

Focus on βS(j) where βS is the projection parameter.

Carefully chosen event En.

By sufficiency:
√

n(β̂(j)− β(j))

∣∣∣∣∣ En

has a distribution (truncated Normal) indexed by one parameter.
Test and invert.

Advantage: no linearity. No incoherence.

Disadvantages: depends on the tails of the Normal. (fragile)
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Fragility

If d fixed, Normality is not needed thanks to CLT.

If d log d/n→∞, and ε not Normal, then by Theorem 12 of
Tibshirani, Rinaldo, Tibshirani and Wasserman (arXiv:1506.06266):

T does not converge to Unif(0, 1).

In fact, we create an example where

T → 0

with probability at least 1/e.
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Uniform Methods

Berk, Brown, Buja, Zhang, Zhao (2013),

Let S be all possible models that can be selected.

Let

Fn(t) = P

(
sup
S∈S

√
n||β̂S − βS ||∞ ≤ t

)
.

Then β̂S(j)± F−1n (1− α) is a valid confidence interval for any S
and any j ∈ S .

Advantages: no linear model. No incoherence asumptions. Honest
coverage.

Disadvantages: cannot estimate Fn unless we make extra
assumptions.
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Sample Splitting

Hartigan (1969), Moran (1973), Barnard (1974), Cox (1975),
Mosteller and Tukey (1977, p 37), Picard and Berk (1990), Miller
(1990, p13) and Faraway (1995), G’Sell, Lei, Rinaldo, Tibshirani,
Wasserman (2016).

Barnard:
“ ... the simple idea of splitting a sample in two and then
developing the hypothesis on the basis of one part and testing it on
the remainder may perhaps be said to be one of the most seriously
neglected ideas in statistics ...”
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Sample Splitting

Split data into D1 and D2.

Choose model S from D1.

Use Normal approximation or bootstrap on D1.

Then
lim inf

n
inf

w∈W
inf

P∈Pn

Pn(βS ∈ C ) ≥ 1− α

where W is all possible selection rules.

Advantage: No assumptions! Robust to selection rule.

Disadvantage: We lose some prediction accuracy.
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Sample Splitting + LOCO

G’Sell, Lei, Rinaldo, Tibshirani and Wasserma (2016).
Define variable importance directly:

φS(j) = median

(
|Y − µ̂(−j)(X )| − |Y − µ̂(X )|

∣∣∣∣∣ D1

)

Using order statistics from D2 we get a confidence interval C such
that

inf
w

inf
all P

Pn(φS(j) ∈ C ) ≥ 1− α.

Truly distribution free.
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A Subsampling Approach
Mentch and Hooker (2016).

Let µ̂ be a random forest.

Recall that a U-statistic has the form
1(n
r

)∑
β

h(Zβ1 , . . . ,Zβr ).

However, for a random forest, we have an incomplete, infinite order
U-statistic.

They show that µ̂(x) ≈ Normal. Then they do a LOCO test:

H0 : µ(x) = µ(−j)(x).

Use test statistic: D̂(x) = µ̂(x)− µ̂(−j)(x).

Note: we could also use this for linear models.

Advantages: nonparametric, assumption-free. No splitting needed.

Disadvantages: Does not return a simple model. Non-uniform CLT.

Wager and Athey (2015) have a different approach for random
forests for treatment effects.
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Suppose we want a model-free confidence set for a future Y .

Linear working model (assumed to be wrong).

Conformal inference was invented by Vovk et al (1990’s).
Construct C (x) such that

P(Y ∈ C (X )) ≥ 1− α for all P.
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Basic idea
Observe

Y1, . . . ,Yn

Predict new Yn+1.

1. Fix y . We will test: H0 : Yn+1 = y .

2. Form augmented data (Y1, . . . ,Yn,Yn+1) where Yn+1 = y .

3. Compute scores R1, . . . ,Rn+1 where Ri = Ri (Y1, . . . ,Yn+1).
Example:

|Yi − Y y |.

4. Test H0 : Yn+1 = y .
The p-value is p(y) = 1

n+1

∑n+1
i=1 I (Ri ≥ Rn+1).

Under H0 : Yn+1 = y , this is (discrete) Uniform (0,1).

5. Invert:
Cn(y) = {y : p(y) ≥ α}.
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Linear Regression (with model selection)

• Data =⇒ model selection =⇒ β̂

• Augment: (X1,Y1), . . . , (Xn,Yn), (x , y) =⇒ µ̂(x ,y) = β̂T x

• Residuals: Ri = |Yi − µ̂T(x ,y)(Xi )|.

• π(x , y) = 1
n+1

∑n+1
i=1 I (Ri ≥ Rn+1).

• Repeat for every (x , y).

• Cn(x) = {y : π(x , y) ≥ α}.
• Without any assumptions: P(Y ∈ Cn(X )) ≥ 1− α.
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Conformalization

Methods for high-dimensional conformal inference are developed in
arXiv:1604.04173.

Includes: new theory, simulation studies.

R package conformalInference
https://github.com/ryantibs/conformal
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CAUSAL INFERENCE

We have treatment variable Wi ∈ {0, 1}. Counterfactuals
(Y (0),Y (1)).

Y =

{
Y (0) if W = 0 (Y (1) is unobserved)

Y (1) if W = 1 (Y (0) is unobserved).

µ(x ,w) = E[Y |X = x ,W = w ]
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ML vs Statistics vs Economics

In ML we want low prediction error

E[(Y − µ̂(X ))2].

Balance bias and variance.

In economics, we may want to estimate the causal effect

θ = E[Y (1)]− E[Y (0)].

Not identifiable unless we assume no unmeasured confounding:

W |= (Y (1),Y (0))
∣∣∣ X .

In that case

θ =

∫
[µ(x , 1)− µ(x , 0)]dP(x)
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The Causal Effect

θ =

∫
[µ(x , 1)− µ(x , 0)]dP(x)

In principle:

θ̂ =
1

n

∑
i

[µ̂(Xi , 1)− µ̂(Xi , 0)]

but:

1. µ(x ,w) may be high-dimensional.

2. This is a semiparametric problem not a prediction problem so
we don’t want to balance bias and variance.

3. We also want a confidence interval.

4. We want to assess the sensitivity to the “no confounding”
assumption.

(See Susan and Victor’s talks.)



The Causal Effect

θ =

∫
[µ(x , 1)− µ(x , 0)]dP(x)

In principle:

θ̂ =
1

n

∑
i

[µ̂(Xi , 1)− µ̂(Xi , 0)]

but:

1. µ(x ,w) may be high-dimensional.

2. This is a semiparametric problem not a prediction problem so
we don’t want to balance bias and variance.

3. We also want a confidence interval.

4. We want to assess the sensitivity to the “no confounding”
assumption.

(See Susan and Victor’s talks.)



Sensitivity Analysis

No unmeasured confounding:

W |= (Y (1),Y (0))
∣∣∣ X .

Sensitivity to this assumption.

Large literature:
Robins (1999), Rosenbaum (2002), Richardosn et al (2014),
Imbens (2003), Brumback et al (2004), Blackwell (2013), ...

Let

q(1, x) = E[Y (1)|W = 1,X = x ]− E[Y (1)|W = 0,X = x ]

q(0, x) = E[Y (0)|W = 0,X = x ]− E[Y (0)|W = 1,X = x ].

These are 0 if there is no unmeasured confounding.
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Sensitivity Analysis

Assume q(1, x) = q(0, x) = a.

Let
Ỹi = Yi − a π(1−Wi |Xi )

where
π(w |x) = P(W = w |X = x).

Replace Yi ’s with Ỹi ’s. Repeat for every value of a.

But in practice, we need to estimate π(w |x) (another
high-dimensional regression).

We should do a sensitivity analysis for that too.

Double sensitivity analysis?
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Replace Yi ’s with Ỹi ’s. Repeat for every value of a.

But in practice, we need to estimate π(w |x) (another
high-dimensional regression).

We should do a sensitivity analysis for that too.

Double sensitivity analysis?



Sensitivity Analysis

Assume q(1, x) = q(0, x) = a.

Let
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CONCLUSION

There are now many methods for inference with high-dimensional
models.

Sample splitting is simple and gives valid, robust confidence
intervals.

Forget about β; there are better parameters to estimate.

Conformal methods for distribution free predictive inference.

For causal inference, need to develop method to assess sensitivity
to unobserved confounding in the high-dimensional setting.

THE END
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