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a b s t r a c t

A wide variety of priors have been proposed for nonparametric Bayesian estimation of
conditional distributions, and there is a clear need for theorems providing conditions on
the prior for large support, as well as posterior consistency. Estimation of an uncountable
collection of conditional distributions across different regions of the predictor space is
a challenging problem, which differs in some important ways from density and mean
regression estimation problems. Defining various topologies on the space of conditional
distributions, we provide sufficient conditions for posterior consistency focusing on a
broad class of priors formulated as predictor-dependent mixtures of Gaussian kernels.
This theory is illustrated by showing that the conditions are satisfied for a class of
generalized stick-breaking process mixtures in which the stick-breaking lengths are
monotone, differentiable functions of a continuous stochastic process. We also provide
a set of sufficient conditions for the case where stick-breaking lengths are predictor
independent, such as those arising from a fixed Dirichlet process prior.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

One of themost commonproblems in data analysis is the need to characterize the dependence of a response on predictors
in a flexible manner. We want to avoid parametric assumptions on the response density and how features, such as the
mean, variance, skewness, shape and even modality, change with predictors. Nonparametric estimates of the conditional
distribution [11,38] are appealing in this context, but in most applications one requires not just a point estimate but also a
characterization of uncertainty. For this reason, and because of excellent practical performance in a rich variety of application
areas, Bayesian approaches for conditional distribution estimation have become popular in recent years. The most common
class of models is infinite mixture models due in part to the rich literature on algorithms for posterior computation using
Markov chain Monte Carlo (MCMC) [22,49,33] and fast approximations [28]. Such MCMC algorithms are straightforward to
implement, and the output can be used to estimate exact posterior densities for functionals of interest.

The ever increasing literature on new nonparametric Bayes models and exciting new applications in areas ranging from
finance to biostatistics tomachine learning has generated considerable enthusiasm.However, there is a clear lack of frequen-
tist asymptotic theory supporting these models. The emphasis of this article is on substantially closing this gap focusing on
a new class of generalized stick-breaking process (gSB) priors, which encompasses a number of the most widely applied
priors as special cases.

In the absence of predictors, there is a rich theory andmethods literature on nonparametric Bayesmethods for estimating
a density f using mixture models of the form

yi ∼ f , f ∼ Π, (1.1)
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where Π is a mixture prior of the form


∞

h=1 πhk(y; θh) for suitably chosen kernel k, atoms and weights {(θh, πh), h =

1, . . . ,∞} with


∞

h=1 πh = 1 almost surely. The most common choice of Π is the Dirichlet process mixture of normals,
first introduced by [26]. Original works on Dirichlet process can be found in [12,13]. Support of Π in (1.1) and asymptotic
properties of the posterior are now well-understood [3,16,43,17,18,4].

Recent literature has focused on generalizingmodel (1.1) to the density regression setting inwhich the entire conditional
distribution of y given x changes flexibly with predictors. Bayesian density regression views the entire conditional density
f (y | x) as a function valued parameter and allows its center, spread, skewness, modality and other such features to vary
with x. For data {(yi, xi), i = 1, . . . , n} let

yi | xi ∼ f (· | xi), {f (· | x), x ∈ X} ∼ ΠX, (1.2)

where X is the predictor space andΠX is a prior for the class of conditional densities {fx, x ∈ X} indexed by the predictors.
Refer, for example, to [29,19,20,10,9,6,46] among others.

The primary focus of this recent development has been infinite mixture models of the form

f (y | x) =

∞
h=1

πh(x)φ

y − µh(x)

σh


, (1.3)

where φ is the standard normal density, {πh(x), h = 1, 2, . . .} are predictor-dependent probability weights that sum to one
almost surely for each x ∈ X, and (µh, σh) ∼ G0 independently, with G0 a base probabilitymeasure onFX ×ℜ

+,FX ⊂ Xℜ,
the space of all X → ℜ functions. A single finite mixture of Gaussians is inadequate to represent the shape of the density
f (y | x) for different levels of the predictor x unless the number of components is huge. By using an infinite mixture we
inherently allow for uncertainty in the number of components needed to characterize the data and bypass the difficult issue
of selecting the number of components.

(1.1) is similar in spirit to kernel mixtures used in nonparametric smoothing approaches. However, a major advantage
of using a Bayesian paradigm is that we do not need to deal with optimizing tuning parameters, which becomes difficult in
higher dimensions. The new adaptation results [25,39] reveal that even a single prior specification can adapt to the unknown
correct smoothness level of the true density and optimizes estimation in an asymptotic minimax sense. For conditional
densities, smoothing needs to be done over the response space as well as the predictor space, making the choice of optimal
smoothing evenmore difficult, especially when the predictors have varying degrees of influence on the response. A Bayesian
approach offers an easier practical solution in this case.

To our knowledge, only [2] have considered formalizing the notions of support for dependent stick-breaking processes.
We focus on a novel class of gSB processes, which express the probabilityweightsπh(x) in stick-breaking form,with the stick
lengths constructed through mapping continuous stochastic processes to the unit interval using a monotone differentiable
link function. This class includes dependent Dirichlet processes [27] as a special case.

Only a few papers have considered asymptotic properties of the posterior in conditional density estimation. [46]
considers posterior consistency in estimating conditional distributions focusing exclusively on logistic Gaussian process
priors [45]. Such priors lack the computational simplicity of the countable mixture priors in (1.3). [52] considers posterior
consistency in conditional distribution estimation through a limited information approach by approximating the likelihood
by the quantiles of the true distribution. [41,42] provide sufficient conditions for showing posterior consistency in estimating
an autoregressive conditional density and a transition density rather than regression with respect to another covariate.

In this article, focusing on model (1.3), we initially provide sufficient conditions on the prior and true data-generating
model under which the prior leads to weak and various types of strong posterior consistency. In this context, we first
define notions of weak and L1-integrated neighborhoods. We then show that the sufficient conditions are satisfied for gSB
priors. The theory is illustrated through application to a model relying on probit transformations of Gaussian processes, an
approach related to the probit stick-breaking process of [6,37]. We also considered Gaussianmixtures of fixed-π dependent
processes [27,8].

[31] showed posterior consistency in conditional density estimation using kernel stick breaking process mixtures of
Gaussians in a very recent unpublished article. They approximated a conditional density by a smooth mixture of linear
regressions as in [30] to demonstrate the KL property. In this paper, we have shown KL support using amore direct approach
of approximating the true density by a kernel mixture of a compactly supported conditional measure.

The fundamental contribution of this article is formalizing the notion of support of the gSB process mixture of Gaussians
on the space of conditional densities and formulating sufficient conditions to ensure that it leads to a consistent posterior.
In doing so, a key technical contribution is the development of a novel method of constructing a sieve for the proposed class
of priors. It has been noted by [51] that the usual method of constructing a sieve by controlling prior probabilities is unable
to lead to a consistency theorem in the multivariate case. This is because of the explosion of the L1-metric entropy with
increasing dimension. They developed a technique specific to the Dirichlet process in the multivariate case for showing
weak and strong posterior consistency. The proposed sieve1 avoids the pitfall mentioned by [51] in showing consistency
using multivariate mixtures. Our sieve construction has been recently used for studying convergence rates in multivariate
density estimation [40,44].

1 A similar sieve appears in [31] with a citation to an earlier draft of our paper.
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2. Notations

Throughout the paper, Lebesguemeasure onℜ orℜ
p is denoted by λ and the set of natural numbers by N. The supremum

and the L1-norms are denoted by ∥·∥∞ and ∥·∥1 respectively. The indicator function of a set B is denoted by 1B. Let Lp(ν,M)
denote the space of real valued measurable functions defined on M with ν-integrable pth absolute power. For two density
functions f , g , the Kullback–Leibler divergence is given by K(f , g) =


log(f /g)fdλ. A ball of radius r with centre x0 relative

to the metric d is defined as B(x0, r; d). The diameter of a bounded metric space M relative to a metric d is defined to be
sup{d(x, y) : x, y ∈ M}. The ϵ-covering number N(ϵ,M, d) of a semi-metric space M relative to the semi-metric d is the
minimal number of balls of radius ϵ needed to coverM . The logarithm of the covering number is referred to as the entropy.
‘‘-’’ stands for inequality up to a constant multiple or if the constant multiple is irrelevant to the given situation. δ0 stands
for a distribution degenerate at 0 and supp(ν) for the support of a measure ν.

3. Conditional density estimation

In this section, we will define the space of conditional densities and construct a prior on this space. It is first necessary
to generalize the topologies to allow appropriate neighborhoods to be constructed around an uncountable collection of
conditional densities indexed by predictors. With such neighborhoods in place, we then state our main theorems providing
sufficient conditions under which various modes of posterior consistency hold for a broad class of predictor-dependent
mixtures of Gaussian kernels.

Let Y = ℜ be the response space and X be the covariate space which is a compact subset of ℜp. Unless otherwise stated,
we will assume X = [0, 1]p without loss of generality. Let F denote the space of densities on X × Y w.r.t. the Lebesgue
measure and Fd denote a subset of the space of conditional densities satisfying,

Fd =


g : X × Y → (0,∞),


Y

g(x, y)dy = 1 ∀ x ∈ X, x → g(x, ·)

continuous as a function from X → L1(λ,Y)

.

Suppose yi is observed independently given the covariates xi, i = 1, 2, . . .which are drawn independently fromaprobability
distribution Q on X. Assume that Q admits a density qwith respect to the Lebesgue measure.

If we define h(x, y) = q(x)f (y | x) and h0(x, y) = q(x)f0(y | x) then h, h0 ∈ F . Throughout the paper, h0 is assumed to
be a fixed density in F which we alternatively refer to as the true data generating density and {f0(· | x), x ∈ X} is referred
to as the true conditional density. The density q(x) will be needed only for theoretical investigation. In practice, we do not
need to know it or learn it from the data.

We propose to induce a prior ΠX on the space of conditional densities through a prior PX for a collection of mixing
measures GX = {Gx, x ∈ X} using the following predictor-dependent mixture of kernels

f (y | x) =


1
σ
φ


y − µ

σ


dGx(ψ), (3.1)

where ψ = (µ, σ ), and

Gx =

∞
h=1

πh(x)δ{µh(x),σh}, (µh, σh) ∼ G0, (3.2)

where πh(x) ≥ 0 are random functions of x such that


∞

h=1 πh(x) = 1 a.s. for each fixed x ∈ X. {µh(x), x ∈ X}
∞

h=1 are i.i.d.
realizations of a real valued stochastic process, i.e., G0 is a probability distribution over FX × ℜ

+, where FX ⊂ Xℜ,Xℜ

being the space of functions from X to ℜ. Hence for each x ∈ X,Gx is a random probability measure over the measurable
Polish space (ℜ × ℜ

+,B(ℜ × ℜ
+)). We are interested the following two important special cases.

3.1. Predictor dependent countable mixtures of Gaussian linear regressions

We define the predictor dependent countable mixtures of Gaussian linear regressions (MGLRx) as

f (y | x) =


1
σ
φ


y − x′β

σ


dGx(β, σ ),

and

Gx =

∞
h=1

πh(x)δ(βh,σh), (βh, σh) ∼ G0 (3.3)

where πh(x) ≥ 0 are random functions of x such that


∞

h=1 πh(x) = 1 a.s. for each fixed x ∈ X and G0 = G0,β × G0,σ is
a probability distribution on ℜ

p
× ℜ

+ where G0,β and G0,σ are probability distributions on ℜ
p and ℜ

+ respectively. For a
particular choice of πh(x)’s, we obtain the probit stick-breaking mixtures of Gaussians which have been previously applied
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to real data applications by [6,37,35]. The latter two articles considered probit transformations of Gaussian processes in
constructing the stick-breaking weights.

3.2. Gaussian mixtures of fixed-π dependent processes

In (3.1), set Gx as in (3.2) with πh(x) ≡ πh for all x ∈ X where πh ≥ 0 are random probability weights


∞

h=1 πh = 1
a.s. and {µh(x), x ∈ X}

∞

h=1 are as in (3.2). Examples include fixed-π dependent Dirichlet process mixtures of Gaussians [27].
Versions of the fixedπ-DDP have been applied to ANOVA [8], survival analysis [7,23], spatial modeling [15], andmanymore.

A Gaussian process is a common choice for constructing stochastic processes πh(x)’s and µh(x)’s. Recall that a
Gaussian process {α(x) : x ∈ X} is defined as a stochastic process for which any finite dimensional representation
{α(x1), . . . , α(xp)}, p ≥ 1 has a joint Gaussian distribution. We denote by GP(µ, c) a Gaussian process with mean function
µ : X → R and c : X × X → R.

4. Notions of posterior consistency for conditional densities

We recall the definition of posterior consistency through yn = (y1, . . . , yn) and xn = (x1, . . . , xn).

Definition 4.1. The posterior ΠX


· | yn, xn


is consistent at {f0(· | x), x ∈ X} with respect to a given topology if

ΠX


U c

| yn, xn


→ 0 a.s. for an arbitrary neighborhood U of {f0(· | x), x ∈ X} in that topology.

Here a.s. consistency at {f0(· | x), x ∈ X} means that the posterior distribution concentrates around a neighborhood of
{f0(· | x), x ∈ X} for almost every sequence {yi, xi}∞i=1 generated by i.i.d. sampling from the joint density q(x)f0(y | x).

We define the weak and ν-integrated L1 neighborhoods of a collection of conditional densities {f0(· | x), x ∈ X} in the
following. A sub-base of a weak neighborhood is defined as

Wϵ,g(f0) =


f : f ∈ Fd,


X×Y

gh −


X×Y

gh0

 < ϵ


, (4.1)

for a bounded continuous function g : Y × X → ℜ. A weak neighborhood base is formed by finite intersections of
neighborhoods of the type (4.1). Define a ν-integrated L1 neighborhood

Sϵ(f0; ν) =


f : f ∈ Fd,


∥f (· | x)− f0(· | x)∥1 ν(x)dx < ϵ


(4.2)

for any measure ν with supp(ν) ⊂ X. Observe that under the topology in (4.2), Fd can be identified to a closed subset of
L1(λ × ν,Y × supp(ν)) making it a complete separable metric space. Thus measurability issues will not arise with these
topologies.

In the following, we define the Kullback–Leibler (KL) property of ΠX at a given f0 ∈ Fd. Note that we define a KL-type
neighborhood around the collection of conditional densities f0 through defining a KL neighborhood around the joint density
h0, while keeping Q fixed at its true unknown value.

Definition 4.2. For any f0 ∈ Fd, such that h0(x, y) = q(x)f0(y | x) is the true joint data-generating density, we define an
ϵ-sized KL neighborhood around f0 as

Kϵ(f0) = {f : f ∈ Fd,KL(h0, h) < ϵ, h(x, y) = q(x)f (y | x) ∀y ∈ Y, x ∈ X},

where KL(h0, h) =

h0 log(h0/h). Then,ΠX is said to have KL property at f0 ∈ Fd, denoted f0 ∈ KL(ΠX), ifΠX{Kϵ(f0)} > 0

for any ϵ > 0.

Another definition we would require for showing the KL support is the notion of weak neighborhood of a collection
of mixing measures GX = {Gx, x ∈ X} where Gx is a probability measure on S × ℜ

+ for each x ∈ X. Here S = ℜ
p

or ℜ depending on the cases considered above. We formulate the notion of a sub-base of the weak neighborhood of
GX = {Gx, x ∈ X} below.

Definition 4.3. For a bounded continuous function g : S × ℜ
+

× X → ℜ and ϵ > 0, a sub-base of the weak neighborhood
of a conditional probability measure {Fx, x ∈ X} is defined as

{Gx, x ∈ X} :


S×ℜ+×X

g(s, σ , x)dGx(s, σ )q(x)dx − g(s, σ , x)dFx(s, σ )q(x)dx
 < ϵ


. (4.3)

A conditional probability measure {Gx, x ∈ X} lies in the weak support of PX if PX assigns positive probability to every
basic neighborhood generated by the sub-base of the type (4.3). In the sequel, we will also consider a neighborhood of the
form 

{Gx, x ∈ X} : sup
x∈X


S×ℜ+

{g(s, σ )dGx(s, σ )− g(s, σ )dFx(s, σ )}
 < ϵ


(4.4)

for a bounded continuous function g : S × ℜ
+

→ ℜ.
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5. Posterior consistency in MGLRx mixture of Gaussians

5.1. Kullback–Leibler property

We will work with a specific choice of PX motivated by the probit stick breaking process construction in [6]. Let

πh(x) = Φ{αh(x)}

l<h

[1 − Φ{αl(x)}] , (5.1)

where αh ∼ GP(0, ch), for h = 1, 2, . . . ,∞. Assume the following holds.

S1. ch is chosen so that αh ∼ GP(0, ch) has continuous path realizations
S2. for any continuous function under the GP(0, ch) prior for αhg : X → ℜ,

PX


sup
x∈X

|αh(x)− g(x)| < ϵ


> 0

h = 1, . . . ,∞ and for any ϵ > 0.
S3. G0 is absolutely continuous with respect to λ(ℜp

× ℜ
+).

Consider the subset F ∗

d ⊂ Fd satisfying the following conditions.

A1. f is nowhere zero and bounded byM < ∞.
A2. |


X


Y
f (y | x) log f (y | x)dyq(x)dx| < ∞.

A3. |


X


Y
f (y | x) log f (y|x)

ψx(y)
dyq(x)dx| < ∞,

where ψx(y) = inft∈[y−1,y+1] f (t | x).
A4. ∃ η > 0 such that


X


Y

|y|2(1+η) f (y | x)dyq(x)dx < ∞.
A5. (x, y) → f (y | x) is jointly continuous.

Remark 5.1. A1 is usually satisfied by common densities arising in practice. A4 imposes a minor tail restriction; e.g., a
mean regression model with continuous mean function and a heavy-tailed t residual density with 4 degrees of freedom
satisfies A4. Conditions A2 and A3 are more subtle, but are also mild. A flexible class of models which satisfies A1–A5 is as
follows. Let yi = µ(xi) + ϵi, with µ : X → ℜ continuous and ϵi ∼ fxi , where fx(ϵ) =

H
h=1 πh(x)ψ(ϵ;µh, σ

2
h ) for some

H ≥ 1,
H

h=1 πh(x) = 1, πh : X → [0, 1] continuous and ψ is Gaussian or t with greater than 2 degrees of freedom.

Remark 5.2. S2 is satisfied if ch(x, x′) = e−Ah∥x−x′∥
2
and the prior for Ah has full support on R+.

The following theorem characterizes the subset of Fd for which ΠX has the KL property. The proof of Theorem 5.3 is
provided in Appendix C.

Theorem 5.3. f0 ∈ KL(ΠX) for each f0 in F ∗

d if PX satisfies S1–S3.

Remark 5.4. The conditions are satisfied for a class of gSB process mixtures in which the stick-breaking lengths are
constructed through mapping continuous stochastic processes to the unit interval using a monotone differentiable link
function.

To prove Theorem 5.3, we need several auxiliary results related to the support of the prior PX which might be of
independent interest. The key idea for showing that the true f0 satisfiesΠX{Kϵ(f0)} > 0 for any ϵ > 0 is to impose certain
tail conditions on f0(y | x) and approximate it by f̃ (y | x) =

 1
σ
φ
 y−x′β

σ


dG̃x(β, σ ), where {G̃x, x ∈ X} is compactly

supported. Observe that,

KL(h0, h) =


X


Y

f0(y | x) log
f0(y | x)
f̃ (y | x)

dyq(x)dx +


X


Y

f0(y | x) log
f̃ (y | x)
f (y | x)

dyq(x)dx. (5.2)

We construct such an f̃ in Theorem 5.3 which makes the first term in the right hand side of (5.2) sufficiently small. The
following lemma (which is similar to Lemma 3.1 in [43] and Theorem 3 in [16]) guarantees that the second term in the right
hand side of (5.2) is also sufficiently small if {Gx, x ∈ X} lies inside a finite intersection of neighborhoods of {G̃x, x ∈ X} of
the type (4.4).
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Lemma 5.5. Assume that f0 ∈ Fd satisfies


X


Y
y2f0(y | x)dyq(x)dx < ∞. Suppose f̃ (y | x) =

 1
σ
φ
 y−x′β

σ


dG̃x(β, σ ), where

∃ a > 0 and 0 < σ < σ such that

G̃x

[−a, a]p × (σ , σ )


= 1 ∀ x ∈ X, (5.3)

so that G̃x has compact support for each x ∈ X. Then given any ϵ > 0, ∃ a finite intersectionW of neighborhoods of {G̃x, x ∈ X}

of the type (4.4) such that for any conditional density f (y | x) =
 1
σ
φ
 y−x′β

σ


dGx(β, σ ), x ∈ X, with {Gx, x ∈ X} ∈ W,

X


Y

f0(y | x) log
f̃ (y | x)
f (y | x)

dyq(x)dx < ϵ. (5.4)

The proof is similar to Theorem3 in [16] and is omitted here. In order to ensure that theweak support ofΠX is sufficiently
large to contain all densities f̃ satisfying the assumptions of Lemma5.5,we define a collection of fixed conditional probability
measures on (ℜp

× ℜ
+,B(ℜp

× ℜ
+)) denoted by G∗

X satisfying

1. x → Fx(B) is a continuous function of x ∈ X, ∀ B ∈ B(ℜp
× ℜ

+).
2. For any sequence of sets An ⊂ ℜ

p
× ℜ

+
↓ ∅, supx∈X Fx(An) ↓ 0.

Next we state the theorem characterizing the weak support of PX which will be proved in Appendix B.

Theorem 5.6. If PX satisfies S1–S3, then any {Fx, x ∈ X} ∈ G∗
X lies in the weak support of PX.

Corollary 5.7. Assume S1–S3 hold and assume Fx ∈ G∗
X is compactly supported, i.e., there exists a, σ , σ > 0 such that Fx

([−a, a]p × [σ , σ ]) = 1. Then for a bounded uniformly continuous function g : ℜ
p
× ℜ

+
→ [0, 1] satisfying g(β, σ ) → 0 as

∥β∥ → ∞, σ → ∞,

PX


{Gx, x ∈ X} : sup

x∈X


ℜp×ℜ+


g(β, σ )dGx(β, σ )− g(β, σ )dFx(β, σ )

 < ϵ


> 0. (5.5)

Proof. The proof is similar to Theorem 5.6 with the L1 convergence in (B.1) replaced by convergence uniformly in x. This is
because under the assumptions of Corollary 5.7, the uniformly continuous sequence of functions

n
k=1 g(β̃k,n, σ̃k,n)Fx(Ak,n)

on X monotonically decreases to

C g(β, σ )dFx(β, σ ) as n → ∞ where C is given by [−a, a]p × [σ , σ ]. �

The proof of the following corollary is along the lines of the proof of Theorem 5.6 and is omitted here.

Corollary 5.8. Under the assumptions of Corollary 5.7 for any k0 ≥ 1,

PX


∩

k0
j=1 Uj


> 0, (5.6)

where Uj’s are neighborhoods of the type (5.5).

5.2. Strong consistency with the q-integrated L1 neighborhood

To obtain strong consistency in the q-integrated L1 topology, we need a very straightforward extension of Theorem 2
of [16] below.

Theorem 5.9. Suppose f0 ∈ KL(ΠX) and there exist subsets Fn ⊂ Fd with

1. logN(ϵ,Fn, ∥·∥1) = o(n),
2. ΠX(F

c
n ) ≤ c2e−nβ2 for some c2, β2 > 0,

then the posterior is strongly consistent with respect to the q-integrated L1 neighborhood.

Before stating the main theorem on strong consistency, we consider a hierarchical extension of MGLRx where the
bandwidths are taken to be random. We define a sequence of random inverse-bandwidths Ah of the Gaussian process
αh, h ≥ 1 each having ℜ

+ as its support. Since the first few atoms suffice to explain most of the dependence of y on x,
we expect that the variability due to the covariate in the stochastic processΦ{αh} decreases as h increases. This is achieved
through a carefully chosen prior for the covariance kernel ch of the Gaussian process αh.

Let α0 denote the base Gaussian process on [0, 1]p with covariance kernel c0(x, x′) = τ 2e−∥x−x′
∥
2
. Then αh(x) =

α0(A
1/2
h x) for each x ∈ X. The variability of αh with respect to the covariate is shrunk or stretched to the rectangle [0, A1/2

h ]
p

as Ah decreases or increases. Ah’s are constructed to be stochastically decreasing to δ0 in the following manner. We assume
that there exist η, η0 > 0 and a sequence δn = O((log n)2/n5/2) such that P(Ah > δn) ≤ exp{−n−η0h(η0+2)/η log h} for each
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h ≥ 1. Also assume that there exists a sequence rn ↑ ∞ such that rpnnη(log n)p+1
= o(n) and P(Ah > rn) ≤ e−n. We will

discuss how to construct such a sequence of random variables in the Remark 5.12 following Theorem 5.10.
The following theorem provides sufficient conditions for strong posterior consistency in the q-integrated L1 topology.

The proof is provided in Appendix D.

Theorem 5.10. Let πh’s satisfy (5.1) with αh ∼ GP(0, ch) where ch(x, x′) = τ 2e−Ah∥x−x′∥
2
, h ≥ 1, τ 2 > 0 fixed.

C1. There exist sequences an, hn ↑ ∞, ln ↓ 0 with an
ln

= O(n), hn
ln

= O(en), and constants d1, d2 > 0 such that G0{B(0; an)
× [ln, hn]}

c < d1e−d2n for some d1, d2 > 0.
C2. Ah’s are constructed as in the second last paragraph before Theorem 5.10.

Then f0 ∈ KL(ΠX) implies that ΠX achieves strong posterior consistency in q-integrated L1 topology at f0.

Remark 5.11. Verification of condition C1 of Theorem 5.10 is particularly simple. For example, if G0 is a product of
multivariate normals on β and an inverse Gamma prior on σ 2, the condition C1 is satisfied with an = O(

√
n), hn = en, ln =

O( 1
√
n ). It follows from [48] that f0 ∈ KL(ΠX) is still satisfied whenwe have the additional assumptions C1–C2 together with

S1–S3 on the priorΠX.

Remark 5.12. Since we need rpnnη(log n)p+1
= o(n), rpn can be chosen to be O(nη1) for some 0 < η1 < 1. Let d be such that

dη1/p ≥ 1 and set η0 = 3d. Let Ah = chBh, where Bd
h ∼ Exp(λ) and ch = (h(3d+2)/η log h)−1/d for any 0 < η < 1. Then

P(Ah > nη1/p) ≤ P(Bh > nη1/p) ≤ e−ndη1/p
≤ e−n and P(Ah > (log n)2n−5/2) ≤ exp{−n−3dh(3d+2)/η log h}.

Remark 5.13. The theory of strong posterior consistency can be generalized to an arbitrary monotone differentiable link
function L : ℜ → [0, 1] which is Lipschitz, i.e., there exists a constant K > 0 such that

L(x)− L(x′)
 ≤ K

x − x′
 for

all x, x′
∈ X. Also, as long as the πh(x)’s satisfy the hypothesis of Lemma A.1 and possess the required tail probability in

Lemma 5.15, general predictor dependent mixing weights can be used.

Below we will develop several auxiliary results required to prove Theorem 5.10. They are stated below as some of them
might be of independent interest. Let φβ,σ (x, y) :=

1
σ
φ
 y−x′β

σ


for y ∈ Y and x ∈ X. From [43], we obtain for σ2 > σ1 >

σ2
2

and for each x ∈ X,
Y

φβ1,σ1(x, y)− φβ2,σ2(x, y)
 dy ≤


2
π

1/2
β2 − β1

√
p

σ2
+

3(σ2 − σ1)

σ1
.

Construct a sieve for (β, σ ) as

Θa,h,l =

φβ,σ : ∥β∥ ≤ a, l ≤ σ ≤ h


. (5.7)

In the following lemma, we provide an upper bound to N(Θa,h,l, ϵ, dSS). The proof is omitted as it follows trivially from
Lemma 4.1 in [43].

Lemma 5.14. There exist constants d1, d2 > 0 such that N(Θa,h,l, ϵ, dSS) ≤ d1
 a
l

p
+ d2 log h

l + 1.

In the proof of Theorem 5.10, we will verify the sufficient conditions of Theorem 5.9. We calibrate Fd by a carefully
chosen sequence of subsets Fn ⊂ Fd. The fundamental problemwith mixture models


N(y;µ, σ 2Ip)dP(µ) in estimating a

multivariate density lies in attempting to compactify themodel space by {

N(y;µ, σ 2Ip)dP(µ) : P((−an, an]p) > 1−δ} for

each σ leading to an entropy apn growing exponentiallywith the dimension p. Herewemarginalize P in

N(y;µ, σ 2Ip)dP(µ)

to yield the following construction {
mn

h=1 πhN(y;µh, σ
2Ip) : ∥µh∥ ≤ an, h = 1, . . . ,mn,


∞

h=mn+1 πh < ϵ} leading to an
entropy mn log an where mn is related to the tail-decay of P(


∞

h=mn+1 πh > ϵ). With this idea in place, we extend the
construction of Fn for conditional densities below.

Before constructing a sieve, we briefly review alternative definitions [47] of a Gaussian process as a Banach space valued
element below. A Borel measurable random elementW with values in a separable Banach space (B, ∥·∥) is called Gaussian
if the random variable b∗W is normally distributed for any element b∗

∈ B∗, the dual space of B. Recall that in general, the
reproducing kernel Hilbert space (RKHS) H attached to a zero-mean Gaussian process W is defined as the collection of all
EHW for H ranging over the closed linear span of the variables b∗W in L2(ν,M)with inner product

⟨EW (·)H1; EW (·)H2⟩H = EH1H2. (5.8)

The RKHS can be viewed as a subset of B and the RKHS norm ∥·∥H is stronger than the Banach space norm ∥·∥.
In particular, ifW is a Borelmeasurable zero-meanGaussian randomelement in a complete separable subspace of ℓ∞(T ),

the Banach space of uniformly bounded functions g : T → R equipped with the uniform norm ∥g∥ = sup{|g(t)| : t ∈ T },
then the RKHS is actually the completion of the linear space of functions t → EW (t)H relative to the inner product (5.8)
where H,H1 and H2 are finite linear combinations of the form


i aiW (si) with ai ∈ R and si in the index set of W . See

Theorem 2.1 of [47] for details.
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Next we turn to constructing the sieve. Assume ϵ > 0 is given. Let Ha
1 denote a unit ball in the RKHS of the covariance

kernel τ 2e−a∥x−x′∥
2
and B1 is a unit ball in C[0, 1]p. For numbers M,m, r, δ, construct a sequence of subsets {Bh, h =

1, . . . ,m} of C[0, 1]p as follows.

Bh =



M

r/δHr

1 +
ϵ

m2
B1


∪


∪a<δ MHa

1 +
ϵ

m2
B1


, if h = 1, . . . ,mη

∪a<δn MnHa
1 +

ϵ

m2
B1, if h = mη

+ 1, . . . ,m.

The idea is to construct

Fn =


f : f (y | x) =

∞
h=1

πh(x)
1
σh
φ


y − x′βh

σh


, {φβh,σh}

mn
h=1 ∈ Θan,hn,ln ,

αh ∈ Bh,n, h = 1, . . . ,mn, sup
x∈X


h≥mn+1

πh(x) ≤ ϵ


(5.9)

for appropriate sequences am, ln, hn,Mn,mn, rn, δn to be chosen in the proof of Theorem 5.10.
The following lemma is also crucial to the proof of Theorem 5.10 which allows us to calculate the rate of decay of

P(supx∈X πh(x) > ϵ)with mn.

Lemma 5.15. Let πh’s satisfy (5.1) with αh ∼ GP(0, ch) where ch(x, x′) = τ 2e−Ah∥x−x′∥
2
, h ≥ 1, τ 2 > 0 fixed. Then for some

constant C7 > 0,

ΠX

 ∞
h=mn+1

πh


∞

> ϵ


≤ e−C7mn logmn +

mn
h=mηn+1

P(Ah > δn). (5.10)

Proof. LetWh = − log[1−Φ{α′

h}] where α′

h = infx∈X αh(x), Zh ∼ Ga(1, γ0). We will choose an appropriate value for γ0 in
the sequel. Let t0 = − log ϵ > 0. Observe that

ΠX

 ∞
h=mn+1

πh


∞

> ϵ


= ΠX

−

mn
h=mηn+1

log{1 − Φ(α′

h)} < t0

 .
Observe that ΠX


−
mn

h=1 log{1 − Φ(αh)} < t0


= ΠX(Λh < t0) where Λh ∼ Ga(mn, 1). Then it is easy to show that

ΠX(Λh < t0) - e−mn logmn . However, the calculation gets complicated when αh’s are i.i.d. realizations of a zero mean
Gaussian process. The proof relies on the fact that the supremum of Gaussian processes has sub-Gaussian tails.

Below we calculate the rate of decay of ΠX

∞

h=mn+1 πh


∞
> ϵ


with mn. We will show that there exists γ0,

depending on ϵ and τ but not depending on n, such that

ΠX

 mn
h=mηn+1

Wh < t0

 ≤ ξ(δn)
mn−mηnΠX

 mn
h=mηn+1

Zh < t0

+

mn
h=mηn+1

P(Ah > δn) (5.11)

where there exists a constant C5 > 0 such that ξ(x) = C5xp/2 for x > 0. Observe that ΠX

mn
h=mηn+1

Wh < t0


≤

ΠX

mn
h=mηn+1

Wh < t0, Ah ≤ δn, h = mη
n + 1, . . . ,mn


+
mn

h=mηn+1
P(Ah > δn).

Since ΠX

mn
h=mηn+1

Wh < t0


= ΠX

mn
h=mηn+1

(τ ′/τ)Wh < τ ′t0/τ


for some τ ′ < 1, we can re-parameterize t0 as

τ ′t0/τ and τ as τ ′. Hence without loss of generality we assume τ < 1.
Define g : [0, t0] → ℜ, t → −Φ−1(1 − e−t). It holds that g is a continuous function on (0, t0]. Assume α0 ∼ GP(0, c0)

where c0(x, x′) = τ 2e−∥x−x′∥
2
. For h = mη

n + 1, . . . ,mn,

P

sup
x∈X

αh(x) ≥ λ, Ah ≤ δn


≤ P


sup

x∈
√
δnX

α0(x) ≥ λ


.
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Belowwe estimate P(supx∈
√
δnX α0(x) ≥ λ) for large enough λ following Theorem 5.2 of [1]. However extra care is required

to identify the role of δn. Since N(ϵ,
√
δnX, ∥·∥) ≤ C1(

√
δn/ϵ)

p, ϵ

0
{logN(ϵ,


δnX, ∥·∥)}

1/2dϵ ≤ C2ϵ{1 +

log(1/ϵ)}

for some constant C2 > 0. Hence

P


sup
x∈rnX

α0(x) ≥ λ


≤ C3(


δnλ)

p exp[−1/2{λ− C2/λ(1 +

log λ)}2/τ 2]

≤ C3δ
p/2
n λp+2

{1 − Φ(λ/τ 2)} ≤ C4δ
p/2
n {1 − Φ(λ)}

for constants C3, C4 > 0. The last inequality holds for all large λ because τ < 1. Hence there exists t1 ∈ (0, t0) sufficiently
small and independent of n such that for all t ∈ (0, t1),ΠX{supx∈

√
δnX α0(x) ≥ g(t)} ≤ C4δ

p/2
n Φ{−g(t)}. Observe that

ΠX


sup

x∈
√
δnX

α0(x) ≥ g(t)


≤ C4δ
p/2
n Φ{−g(t)} < C5δ

p/2
n (1 − e−γ0t),

for any γ0 > 1. Further choose γ0 large enough such that 2(1 − e−γ0t) > 1 ∀ t ∈ [t1, t0]. Hence P(Wh ≤ t, Ah ≤ δn) ≤

ξ(δn)P(Zh < t) ∀ t ∈ (0, t0] where ξ(δn) = C5δ
p/2
n , with C5 = max{2, C4}. Applying Lemma E.1, we conclude (5.11) by

induction. Lemma E.1 is proved in Appendix E. As
mn

h=1 Zh ∼ Ga(mn, γ0),ΠX

mn
h=1 Zh < t0


≤ e−C6mn logmn for some

constant C6 > 0. Since ξ(δn)mn−mηnΠX

mn
h=1 Zh < t0


≤ (e−C7mn logmn) for some constant C7 > 0, the result follows

immediately. �

5.3. Prior specification and posterior computation

To illustrate the applicability of the proposed methods, we mention the prior choices and key steps for posterior
computation for the MGLRx model. Recall that

f (y | x) =


1
σ
φ


y − x′β

σ


dGx(β, σ ), (5.12)

Gx =

∞
h=1

πh(x)δ(βh,σ
2
h )
, (βh, σ

−2
h ) ∼ N(β0,Σ0)× Ga(ασ , βσ ), (5.13)

where πh(x) = Φ{αh(x)}


l<h{1 − Φ{αl(x)}}. We assume αh ∼ GP(0, ch), where ch(x, x′) =
1
τα
e−Ah∥x−x′∥

2
, τα ∼

Ga(να/2, να/2). See Remark 5.12 for constructing prior for Ah’s. If the yi’s are standardized, we would expect that the total
variance


∞

h=1 πhσ
2
h should be around1.Hence choose aσ = 1, bσ = 10 so that the E(σ−2

h ) = 0.1.We can resort to anMCMC
algorithm, which is a hybrid of data augmentation, the exact block Gibbs sampler of [32] and Metropolis Hastings sampling
to sample from the posterior of (5.12). [32] proposed the exact block Gibbs sampler as an efficient approach to posterior
computation in infinite-dimensional Dirichlet process mixture models, modifying the block Gibbs sampler of [21] to avoid
truncation approximations. The exact block Gibbs sampler combines characteristics of the retrospective sampler [34] and
the slice sampler [49,24]. Introduce γ1, . . . , γn such that πh(xi) = P(γi = h), h = 1, 2, . . . ,∞. Then

γi ∼

∞
h=1

πh(xi)δh =

∞
h=1

1(ui < πh(xi))δh

where ui ∼ U(0, 1).
We continue up to h = 1, . . . , h∗

= max{h∗

1, . . . , h
∗
n}, where h∗

i is the minimum integer satisfying
h∗

i
l=1 πl(xi) >

1 − min{u1, . . . , un}, i = 1, . . . , n. The Markov chain adaptively estimates the desired number of components h∗ at each
iteration of the MCMC, thus making it more efficient than a finite mixture model with a pre-specified large number of
components. Here we describe the key steps for the posterior computation.
1. Update ui’s and stick breaking random variables: Generate

ui|− ∼ U(0, πγi(xi))
where πh(xi) = Φ{αh(xi)}


l<h[1 − Φ{αl(xi)}]. For i = 1, . . . , n, introduce latent variables Zh(xi), h = 1, 2, . . . such that

Zh(xi) ∼ N(αh(xi), 1). Thus πh(xi) = P(Zh(xi) > 0, Zl(xi) < 0 for l < h). Then

Zh(xi)|− ∼


N(αh(xi), 1)IR+ , h = γi
N(αh(xi), 1)IR− , h < γi.
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Let Zh = (Zh(x1), . . . , Zh(xn))′ and αh = (αh(x1), . . . , αh(xn))′. Letting

6h

ij = e−Ah∥xi−xj∥, Zh ∼ N(αh, I) and αh ∼

N(0, 1
τα

6h),

αh|− ∼ N

(τα6

−1
h + In)−1Zh, (τα6

−1
h + In)−1.

Continue up to h = 1, . . . , h∗
= max{h∗

1, . . . , h
∗
n}, where h∗

i is the minimum integer satisfying
h∗

i
l=1 πl(xi) > 1 − min

{u1, . . . , un}, i = 1, . . . , n. Now

τα|− ∼ Ga


1
2


nh∗

+ να

,
1
2


h∗
l=1

α′

k6
−1
l αk + να


,

while κα is updated using a Metropolis Hastings step.
2. Update allocation to atoms: Update (γ1, . . . , γn)|-as multinomial random variables with probabilities

P(γi = h) ∝ N(yi; x′

iβh, τ
−1
h )I(ui < πh(xi)), h = 1, . . . , h∗.

3. Update component-specific locations and precisions: Let nh = #{i : γi = h}, l = 1, 2, . . . , h∗. Let Yh = (yi : γi = h) be a nh
dimensional vector and Xh is the corresponding nh × p dimensional covariate matrix.

βh|− ∼ N

(X′

hXh +Σ−1
0 )−1(X′

hYh +Σ−1
0 β0), (X

′

hXh +Σ−1
0 )−1

τh|− ∼ Ga


nh

2
+ ατ , βτ +


i:γi=h

(yi − x′

iβh)
2


, h = 1, 2, . . . , h∗.

Update Ah’s in a Metropolis Hastings step.
At each iteration of the MCMC, we obtain samples from the full conditional distributions of the parameters, which after

discarding a burn-in can be used to get summary statistics of posterior distribution of the parameters or functionals of
interest.

6. Posterior consistency in Gaussian mixture of fixed-π dependent processes

6.1. Kullback–Leibler property

The following theorem verifies thatΠX has KL property at f0 ∈ F ∗

d . The proof of Theorem 6.1 is somewhat similar to that
of Theorem 5.3 and can be found in Appendix F.

Theorem 6.1. f0 ∈ KL(ΠX) for each f0 in F ∗

d if PX satisfies
T1. G0 is specified by µh ∼ GP(µ, c), σh ∼ G0,σ where c is chosen so that GP(0, c) has continuous path realizations andΠσ is

absolutely continuous w.r.t. Lebesgue measure on ℜ
+.

T2. For every k ≥ 2, (π1, . . . , πk) is absolutely continuous w.r.t. to the Lebesgue measure on Sk−1.
T3. For any continuous function g : X → ℜ,

PX


sup
x∈X

|µh(x)− g(x)| < ϵ


> 0

h = 1, . . . ,∞ and for any ϵ > 0.

6.2. Strong consistency with the q-integrated L1 neighborhood

Next we summarize the consistency theorem with respect to the q-integrated L1 topology. The proof of Theorem 6.2 is
also similar to that of Theorem 5.10 and is provided in Appendix G.

Theorem 6.2. Let µh(x) = x′βh + ηh(x),βh ∼ Gβ and ηh ∼ GP(0, c), h = 1, . . . ,∞ where c(x, x′) = τ 2e−A∥x−x′∥
2
,

Ap(1+η2)/η2 ∼ Ga(a, b) for some η2 > 0.
F1. There exist sequences an, hn ↑ ∞, ln ↓ 0 with an

ln
= O(n), hn

ln
= O(en), and constants d1, d2, d3 and d4 > 0 such that

Gβ{B(0; an)}c < d1e−d2n and G0,σ {[ln, hn]}
c
≤ d3e−d4n.

F2. P(


∞

h=n πh > ϵ) - O(e−n1+η2 (log n)(p+1)
).

Then f0 ∈ KL(ΠX) implies that ΠX achieves strong posterior consistency at f0 with respect to the q-integrated L1 topology.

Remark 6.3. F2 is satisfied ifπh’s aremade to decaymore rapidly than the usual Beta(1, α) stick-breaking randomvariables,
e.g., if πh = νh


l<h(1 − νh) and if νh ∼ Beta(1, αh) where αh = h1+η2(log h)p+1α0 for some α0 > 0, then F2 is satisfied.

Large value of αh for the higher indexed weights favors smaller number of components.

Remark 6.4. A Gaussian kernel is used here for technical simplification. One can obtain similar results using a variety of
kernels e.g. t, Laplace, etc. However, the KL support conditions A1–A5 will be different for different kernels. Refer to [50] for
a catalog of conditions for various kernels in a density estimation framework.
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7. Discussion

We have provided sufficient conditions to show posterior consistency in estimating the conditional density via predictor
dependent mixtures of Gaussians which include probit stick-breaking mixtures of Gaussians and the fixed-π dependent
processes as special cases. The problem is of interest, providing a more flexible and informative alternative to the usual
mean regression. For both the models, we need the same set of tail conditions (mentioned in F ∗

d ) on f0 for KL support.
Although the first prior is flexible in the weights and the second one in the atoms through their corresponding GP terms, S1,
S2, T1 and T3 show that verification of KL property only requires that both the GP terms have continuous path realizations
and desired approximation property. Moreover, for the second prior, any set of weights summing to one a.s. T2 suffices for
showing KL property. Careful investigations of the prior for the GP kernel for the first model and the probability weights
for the second one are required for strong consistency. For the first one we need the covariate dependence of the higher
indexed GP terms in the weights to fade off. On the other hand, for the second model, the atoms can be i.i.d. realizations
of a GP with Gaussian covariance kernel with inverse-Gamma bandwidth while limiting the model complexity through a
sequence of probability weights which are allowed to decay rapidly. This suggests that full flexibility in the weights should
be down-weighted by an appropriately chosen priorwhile full flexibility in the atoms should be accompanied by a restriction
imposing fewer number of components. It would be interesting to see how the conditions on the bandwidth can bemodified
when we actually use a sieve Bayes prior, i.e. a prior with number of components kn diverging to ∞.

Another interesting direction is to consider rates of convergence of the posterior and Bernstein von-Mises (BvM)
type results. For infinite dimensional parameters [14], there has been quite a few positive BvM results very recently for
linear functionals of a probability density function [36] and for general classes of linear and non-linear functionals in
a Gaussian white noise model [5]. We conjecture that such BvM-type results hold for linear functionals of conditional
density (e.g. conditional mean, conditional cdf) too under appropriate conditions on the prior and the true data generating
conditional density.
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Appendix A. A useful lemma

To prove Theorem 5.6, we need an auxiliary lemma which we state below.

Lemma A.1. If {πh(x), h = 1, . . . ,∞} constructed as in (5.1) satisfies S1 and S2 then

PX


sup
x∈X

|π1(x)− Fx(A1)| < ϵ1, . . . , sup
x∈X

|πk(x)− Fx(Ak)| < ϵk


> 0 (A.1)

for a measurable partition {Ai, i = 1, . . . , k} of ℜ
p
× ℜ

+, ϵi > 0 and a conditional cdf {Fx, x ∈ X}.

Proof. Without loss of generality, let 0 < Fx(Ai) < 1, i = 1, . . . , k ∀ x ∈ X. We want to show that for any ϵi > 0, i =

1, . . . , k, (A.1) holds. Construct continuous functions gi : X → ℜ, 0 < gi(x) < 1 ∀x ∈ X, i = 1, . . . , k − 1 such that

g1(x) = Fx(A1), gi(x)

l<i

{1 − gl(x)} = Fx(Ai), 2 ≤ i ≤ k − 1, gk(x) = 1 ∀x. (A.2)

As 0 < Fx(Ai) < 1, i = 1, . . . , k ∀ x ∈ X, it is trivial to find gi, i = 1, . . . , k satisfying (A.2) since one can solve back for the
gi’s from (A.2).

k
i=1 Fx(Ai) = 1 enforces gk ≡ 1. SinceΦ is a continuous function, for any ϵi > 0, i = 1, . . . , k − 1,

PX


sup
x∈X

|Φ{αi(x)} − gi(x)| < ϵi


> 0 (A.3)

and for i = k,

PX


sup
x∈X

|Φ{αk(x)} − 1| < ϵk


= PX


inf
x∈X

αk(x) > Φ−1(1 − ϵk)


. (A.4)

ChooseM > Φ−1(1 − ϵk)+ ϵk. We have 0 < M < 1 and
sup
x∈X

|αk(x)− M| < ϵk


⊂


inf
x∈X

αk(x) > Φ−1(1 − ϵk)


.
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Hence by assumption, PX


infx∈X αk(x) > Φ−1(1 − ϵk)


> 0. Let Sk−1 denote the k-dimensional simplex. For notational

simplicity let pi(x) = Φ{αi(x)}, gi(x) = Fx(Ai), i = 1, . . . , k − 1 and gk(x) = 1. Let z = (z1, . . . , zp)′, fi : Sk−1 → ℜ, z →

zi


l<i(1 − zl), i = 2, . . . , k and f1(z) = z1. Let p(x) = (p1(x), . . . , pk(x)) and g(x) = (g1(x), . . . , gk(x)). Then we need to
show that

PX


∥f1(p)− f1(g)∥∞ < ϵ1, . . . , ∥fk−1(p)− fk−1(g)∥∞ < ϵk−1, ∥fk(p)− 1∥∞ < ϵk


> 0.

Note that for 2 ≤ i ≤ k,

∥fi(p)− fi(g)∥∞ ≤ (i − 1) ∥pi − gi∥∞ +


l<i

∥fl(p)− fl(g)∥∞ .

Thus one can get ϵ∗

i > 0, i = 1, . . . , k, such that
∥pi − gi∥∞ < ϵ∗

i , i = 1, . . . , k


⊂

∥f1(p)− f1(g)∥∞ < ϵ1, . . . ,

∥fk−1(p)− fk−1(g)∥∞ < ϵk−1, ∥fk(p)− 1∥∞ < ϵk

.

But since PX{∥pi − gi∥∞ < ϵ∗

i , i = 1, . . . , k} =
k

i=1 PX{∥pi − gi∥∞ < ϵ∗

i }, the result follows immediately. �

Appendix B. Proof of Theorem 5.6

Fix {Fx, x ∈ X} ∈ G∗
X. Without loss of generality it is enough to show that for a uniformly continuous function

g : ℜ
p
× ℜ

+
× X → [0, 1] and ϵ > 0,

PX


{Gx, x ∈ X} :


ℜp×ℜ+×X


g(β, σ , x)dGx(β, σ )q(x)dx − g(β, σ , x)dFx(β, σ )q(x)dx

 < ϵ


> 0.

Furthermore, it suffices to assume g(β, σ , x) → 0 uniformly in x ∈ X as ∥β∥ → ∞, σ → ∞.
Fix ϵ > 0, there exist a, σ , σ > 0 not depending on x such that Fx([−a, a]p × [σ , σ ]) > 1 − ϵ for all x ∈ X. Let

C = [−a, a]p × [σ , σ ].
ℜp×ℜ+X


g(β, σ , x)dGx(β, σ )− g(β, σ , x)dFx(β, σ )


q(x)dx

≤


X


∞
h=1

πh(x)g(βh, σh, x)−


C
g(β, σ , x)dFx(β, σ )


q(x)dx + ϵ

where πh’s are specified by (5.1) with ch satisfying S1 and S2 and (βh, σh) ∼ G0. Now for each x ∈ X, construct a Riemann
sum approximation of


C g(β, σ , x)dFx(β, σ ).

Let {Ak,n, k = 1, . . . , n} be a sequence of partitions of C with increasing refinement as n increases. Assume
max1≤k≤n diam(Ak,n) → 0 as n ↑ ∞. Fix (β̃k,n, σ̃k,n) ∈ Ak,n, k = 1, . . . , n. Then by DCT as n → ∞,

X


n

k=1

g(β̃k,n, σ̃k,n, x)Fx(Ak,n)


q(x)dx →


X


C
g(β, σ , x)dFx(β, σ )q(x)dx. (B.1)

Hence there exists n1 such that for n ≥ n1
ℜp×ℜ+X


g(β, σ , x)dGx(β, σ )− g(β, σ , x)dFx(β, σ )


q(x)dx


≤




X


∞
h=1

πh(x)g(βh, σh, x)−

n
k=1

g(β̃k,n, σ̃k,n, x)Fx(Ak,n)


q(x)dx

+ 2ϵ.

Consider the set

Ω1 =


(πh, h = 1, . . . ,∞) : sup

x∈X

π1(x)− Fx(A1,n1)
 < ϵ

n1
, . . . , sup

x∈X

πn1(x)− Fx(An1,n1)
 < ϵ

n1


.

By Lemma A.1 which is proved in Appendix A, PX(Ω1) > 0. Since


∞

h=1 πh(x) = 1 a.s. there ∃ Ω with PX(Ω) = 1,
such that for each ω = {πh, h = 1, . . . ,∞} ∈ Ω, gn(x) =

n
h=1 πh(x) → 1 as n → ∞ for each x in X. Note that this

convergence is uniform since, gn(·), n ≥ 1 are continuous functions defined on a compact set monotonically increasing to
a continuous function identically equal to 1. Hence for each ω = {πh, h = 1, . . . ,∞} ∈ Ω, gn(x) → 1 uniformly in x. By
Egoroff’s theorem, there exists a measurable subset Ω2 of Ω1 with PX(Ω2) > 0 such that within this subset gn(x) → 1
uniformly in x and uniformly in ω inΩ2. Thus there exists a positive integer nϵ ≥ n1 not depending on x and ω, such that
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h=nϵ+1 πh(x) < ϵ on Ω2. Moreover, one can find a K > 0 independent of x such that g(β, σ , x) < ϵ if ∥β∥ > K and
σ > K . Let A1 = {(β, σ ) : ∥β∥ > K , σ > K}. LetΩ3 = Ω2 ∩ {(βn1+1, σn1+1) ∈ A1, . . . , (βnϵ−1, σnϵ−1) ∈ A1}. For ω ∈ Ω3,

ℜp×ℜ+X


g(β, σ , x)dGx(β, σ )− g(β, σ , x)dFx(β, σ )


q(x)dx


≤


X


n1
k=1

πk(x)g(βk, σk, x)− g(β̃k,n, σ̃k,n, x)Fx(Ak,n1)

 q(x)dx + 4ϵ

and 
X


n1
k=1

πk(x)g(βk, σk, x)− g(β̃k,n, σ̃k,n, x)Fx(Ak,n1)

 q(x)dx

≤

n1
k=1


X

πk(x)
g(βk, σk, x)− g(β̃k,n, σ̃k,n, x)

 q(x)dx + ϵ.

There exists sets Bk, k = 1, . . . , n1 depending on n1 but independent of x such that if (βk, σk) ∈ Bk,

g(βk, σk, x)− g(β̃k,n1 ,

σ̃k,n1 , x)
 < ϵ. So for ω ∈ Ω4 = Ω3 ∩ {(β1, σ1) ∈ B1, . . . , (βn1 , σn1) ∈ Bn1},
ℜp×ℜ+X


g(β, σ , x)dGx(β, σ )− g(β, σ , x)dFx(β, σ )


q(x)dx

 < 5ϵ.

Now since PX(Ω2) > 0 and the sets {(βn1+1, σn1+1) ∈ A1, . . . , (βnϵ−1, σnϵ−1) ∈ A1} and {(β1, σ1) ∈ B1, . . . , (βn1 , σn1) ∈

Bn1} are independent fromΩ2 and have positive probability, it follows that PX(Ω4) > 0. �

Appendix C. Proof of Theorem 5.3

Without loss of generality, assume that the covariate space X is [ζ , 1]p for some 0 < ζ < 1. The proof is essentially
along the lines of Theorem 3.2 of [43]. The f̃ in (5.2) will be constructed so as to satisfy the assumptions of Lemma 5.5 and
such that


X


Y
f0(y | x) log f0(y|x)

f̃ (y|x)
dyq(x)dx < ϵ

2 for any ϵ > 0. Define a sequence of conditional densities fn(y | x) = 1
σ
φ(

y−x′β

σ
)dG̃n,x(β, σ ), n ≥ 1 where for σn = n−η ,

dGn,x(β, σ ) =

Iβ1∈[−n,n]f0(x′β | x)
p

j=2
δ0(βj)δσn(σ ) n

−n f0(x1β1 | x)dβ1
. (C.1)

Define

fn(y | x) =

 nx1
−nx1

1
σn
φ


y−t
σn


f0(t | x)dt nx1

−nx1
f0(t | x)dt

. (C.2)

Proceeding as in Theorem 3.2 of [43], an application of DCT using the conditions A1–A5 yields
X


Y

f0(y | x) log
f0(y | x)
fn(y | x)

dyq(x)dx → 0 as n → ∞.

Therefore one can simply choose f̃ = fn0 for sufficiently large n0. fn0 satisfies the assumptions of Lemma 5.5 since
{Gn0,x, x ∈ X} is compactly supported. Also {Gn0,x, x ∈ X} ∈ G∗

X as x → Gn0,x(A) is continuous. Hence there exists a
finite intersectionW of neighborhoods of {Gn0,x, x ∈ X} the type (5.5) such that for any {Gx, x ∈ X} ∈ W , the second term
of (5.2) is arbitrarily small. The conclusion of the theorem follows immediately from Corollary 5.8. �

Appendix D. Proof of Theorem 5.10

Consider the sequence of sieves defined by (5.9) for given ϵ > 0 and for sequences an, hn, ln,Mn,mn, rn to be chosen later
with δn = K1ϵ/(Mnm2

n) for some constant K1. We will first show that given ξ > 0, there exist c1, c2 > 0 and sequences mn

and Mn, such thatΠX


F c

n


≤ c1e−nc2 and logN(δ,Fn, ∥·∥) < nξ .

For f1, f2 ∈ Fn, we have for each x ∈ X,

∥f1(· | x)− f2(· | x)∥1 ≤

mn
h=1

π (1)h − π
(2)
h


∞

+ 2ϵ.
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Let Θπ,n = {πmn = (π1, π2, . . . , πmn) : αh ∈ Bh,n, h = 1, . . . ,mn}. Fix π
mn
1 , π

mn
2 ∈ Θπ,n. Note that since

|Φ(x1)− Φ(x2)| < K2 |x1 − x2| for a global constant K2 > 0, we haveΦ(αh,1)− Φ(αh,2)


∞
≤ K2

αh,1 − αh,2


∞
.

The above fact together with the proof of Lemma A.1 show that if we can make
αh,1 − αh,2


∞
< ϵ

m2
n
, h = 1, . . . ,mn, we

would have
mn

h=1

π (1)h − π
(2)
h


∞

< ϵ. From the proof of Theorem 3.1 in [48] it follows that for h = 1, . . . ,mη
n and for

sufficiently largeMn, rn,

logN(2ϵ/m2
n, Bh,n, ∥·∥∞) ≤ K3rpn log


Mnm2

n
√
rn/δn

ϵ

p+1

+ 2 log
K4Mnm2

n

ϵ
(D.1)

for global constants K3, K4 > 0. For M2
n > 16K5r

p
n (log(rn/ϵ))1+p, rn > 1 we have for h = 1, . . . ,mη

n ,

P(αh ∉ Bh,n) ≤ P(Ah > rn)+ e−M2
n /2. (D.2)

Hence for sufficiently largeMn, we have for h = mη
n + 1, . . . ,mn,

logN(3ϵ/m2
n, Bh,n, ∥·∥∞) ≤ 2 log

K4Mnm2
n

ϵ
. (D.3)

For h = mη
n + 1, . . . ,mn,

P(αh ∉ Bh,n) ≤ P(Ah > δn)+

 δn

a=0
P(αh ∉ Bh,n | Ah = a)gAh(a)da

≤ P(Ah > δn)+ (1 − Φ(Φ−1(e−φ
δn
0 (ϵ/m2

n))+ Mn))

where φκ0 (ϵ) denotes the concentration function of the Gaussian process with covariance kernel c(x, x′) = τ 2e−κ∥x−x′∥
2
.

Now
φ
δn
0 (ϵ/m

2
n) ≤ − log P(|W0| ≤ ϵ/m2

n) = K6
log(ϵ/m2

n)


for some constant K6 > 0. Hence if Mn ≥ K7
log(ϵ/m2

n)
 for some K7 > 0, then it follows from the proof of Theorem 3.1

in [48] that

P(αh ∉ Bh,n) ≤ P(Ah > δn)+ e−M2
n /2. (D.4)

From (D.1) and (D.3),

log(N(ϵ, B1,n × · · · × Bmn,n, ∥·∥∞)) ≤ 2mn log
K4Mnm2

n

ϵ
+ mη

nr
p
n log


Mnm2

n
√
rn/δn

ϵ

p+1

. (D.5)

Also from (D.2) and (D.4),
mn
h=1

P(αh ∉ Bh,n) ≤ mne−M2
n /2 +

mηn
h=1

P(Ah > rn)+

mn
h=mηn+1

P(Ah > δn).

We will show that withmn = O( n
log n ),ΠX(F

c
n ) < e−nξ0 for some ξ0. By assumption C1, we have

ΠX(Θ
c
an,hn,ln) - mnO(e−n) - O(e−n). (D.6)

With mn = O(n/ log n),
mηn

h=1 P(Ah > rn) ≤ mη
ne−n - e−n,

mn
h=mηn+1

P(Ah > δn) ≤ (mn − mη
n)e−n−η0m

η0+2
n logmn -

e−mn logmn .
With mn =

n
log n ,mn logmn >

n
2 for large enough n and it follows from Lemma 5.15 that

ΠX


sup
x∈X

∞
h=mn+1

πh(x) > ϵ


- O(e−n/2). (D.7)

Thus withMn = O(n1/2),
mn
h=1

P(αh ∉ Bh,n) - e−n. (D.8)

Eqs. (D.6)–(D.8) together imply thatΠX(F
c
n ) - O(e−n).

Also mη
nr

p
n log


Mn

√
rn/δn
ϵ

p+1
= o(n) for the choice of the sequence rn. With mn = n/(C log n) for some large C > 0, one

can make
log(N(ϵ, B1,n × · · · × Bmn,n, ∥·∥∞)) < nξ (D.9)
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for any ξ > 0. Also from Lemma 5.14,

mn logN(Θan,hn,ln , ϵ, ∥·∥∞) ≤ mn log

d1


an
ln

p

+ d2 log
hn

ln
+ 1


< nξ (D.10)

for any ξ > 0. Combining (D.9) and (D.10), logN(Fn, 4ϵ, ∥·∥1) < nξ for any ξ > 0. �

Appendix E. Another useful lemma

We state without proof the following lemma needed to prove Theorem 6.1.

Lemma E.1. For non-negative r.v.s. Ai, Bi, if P(Ai ≤ u) ≤ CiP(Bi ≤ u) for u ∈ (0, t0), t0 > 0, i = 1, 2, P(A1 + A2 ≤ t0) ≤

C1C2P(B1 + B2 ≤ t0).

Appendix F. Proof of Theorem 6.1

Proof. Once again we approximate f0(y | x) by f̃ (y | x) =
 1
σ
φ
 y−µ
σ


dG̃x(µ, σ ), so that the first term of (5.2) is arbitrarily

small. We construct such an f̃ analogous to that in Theorem 5.3. Lemma F.1 is a variant of Lemma 5.5 which ensures that the
second term in (5.2) is also sufficiently small. Before that we need a different notion of neighborhood of {Fx, x ∈ X} which
we formulate below.

{Gx, x ∈ X} : sup
x∈X


ℜ×ℜ+


g(µ, σ )dGx(µ, σ )− g(µ, σ )dFx(µ, σ )

 < ϵ


. (F.1)

Lemma F.1. Assume that f0 ∈ Fd satisfies


X


Y
y2f0(y | x)dyq(x)dx < ∞. Suppose f̃ (y | x) =

 1
σ
φ
 y−µ
σ


dG̃x(µ, σ ), where

∃ a > 0 and 0 < σ < σ such that

G̃x

[−a, a] × (σ , σ )


= 1 ∀ x ∈ X, (F.2)

so that G̃x has compact support for each x ∈ X. Then given any ϵ > 0, ∃ a neighborhood W of {G̃x, x ∈ X} which is a finite
intersection of neighborhoods of the type (F.1) such that for any conditional density f (y | x) =

 1
σ
φ
 y−µ
σ


dGx(µ, σ ), x ∈ X,

with {Gx, x ∈ X} ∈ W,
X


Y

f0(y | x) log
f̃ (y | x)
f (y | x)

dyq(x)dx < ϵ. (F.3)

The proof of Lemma F.1 is similar to that of Lemma 5.5 and is omitted here. To characterize the support of PX, we define
a collection of fixed conditional probability measures {Fx, x ∈ X} on (ℜ × ℜ

+,B(ℜ × ℜ
+)) denoted by G∗∗

X satisfying x →
ℜ×ℜ+ g(µ, σ )dFx(µ) is a continuous function of x for all bounded uniformly continuous functions g : ℜ × ℜ

+
→ [0, 1].

Theorem F.2. Assume the following holds.
T1. G0 is specified by µh ∼ GP(µ, c), σh ∼ G0,σ where c is chosen so that GP(0, c) has continuous path realizations andΠσ is

absolutely continuous w.r.t. Lebesgue measure on ℜ
+.

T2. For every k ≥ 2, (π1, . . . , πk) is absolutely continuous w.r.t. to the Lebesgue measure on Sk−1.
T3. For any continuous function g : X → ℜ,

PX


sup
x∈X

|µh(x)− g(x)| < ϵ


> 0

h = 1, . . . ,∞ and for any ϵ > 0.
Then for a bounded uniformly continuous function g : ℜ × ℜ

+
: [0, 1] satisfying g(µ, σ ) → 0 as |µ| → ∞, σ → ∞,

PX


{Gx, x ∈ X} : sup

x∈X


ℜ×ℜ+


g(µ, σ )dGx(µ, σ )− g(µ, σ )dFx(µ, σ )

 < ϵ


> 0. (F.4)

Proof. It suffices to assume that g is coordinatewise monotonically increasing on ℜ × ℜ
+. Let ϵ > 0 be given and

ψ(x) =

ℜ×ℜ+ g(µ, σ )dFx(µ, σ ). Let nϵ be such that PX(Ω1) > 0 whereΩ1 = {


∞

h=nϵ+1 πh < ϵ}. Then inΩ1,
ℜ×ℜ+


g(µ, σ )dGx(µ, σ )− ψ(x)

 ≤

nϵ
k=1

πk |g(µk(x), σk)− ψ(x)| + ϵ.

Define Ω2 = {supx∈X |g(µk(x), σk)− ψ(x)| < ϵ, k = 1, . . . , nϵ}. For a fixed σk, there exists a δ such that
supx∈X |g(µk(x), σk)− ψ(x)| < ϵ/2 if supx∈X

µk(x)− g−1
σk
ψ(x)

 < δ where g−1
σk

denotes the inverse of g(·, σk) for
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fixed σk. Hence there exists a neighborhood Bk of σk such that for σk ∈ Bk and supx∈X

µk(x)− g−1
σk
ψ(x)

 < δ, we have
supx∈X |g(µk(x), σk)− ψ(x)| < ϵ. Since for each k = 1, . . . , nϵ,PX


σk ∈ Bk, supx∈X

µk(x)− g−1
σk
ψ(x)

 < δ


=
σk∈Bk

PX


sup
x∈X

µk(x)− g−1
σk
ψ(x)

 < δ

dG0,σ (σk) > 0,

PX(Ω2) > 0. The conclusion of the theorem follows from the independence ofΩ1 andΩ2. �

f̃ in (5.2) will be constructed so as to satisfy the assumptions of Lemma F.1 and such that


X


Y
f0(y | x) log f0(y|x)

f̃ (y|x)
dy

q(x)dx < ϵ
2 for any ϵ > 0. Define a sequence of conditional densities fn(y | x) =

 1
σ
φ(

y−µ
σ
)dG̃n,x(µ, σ ), n ≥ 1 where for

σn = n−η ,

dGn,x(µ, σ ) =
Iµ∈[−n,n]f0(µ | x)δσn(σ ) n

−n f0(µ | x)
. (F.5)

As before define the approximator

fn(y | x) =

 n
−n

1
σn
φ


y−t
σn


f0(t | x)dt n

−n f0(t | x)dt
. (F.6)

f̃ will be chosen to be fn0 for some large n0. fn0 satisfies the assumptions of Lemma F.1 since {Gn0,x, x ∈ X} is compactly
supported. Moreover {Gn0,x, x ∈ X} ∈ G∗∗

X as x →

ℜ×ℜ+ g(µ, σ )dGn0,x(µ, σ ) is continuous function of x for all bounded

uniformly continuous function g . Hence there exists a finite intersection W of neighborhoods of {Gn0,x, x ∈ X} the type
(F.1) such that for any {Gx, x ∈ X} ∈ W , the second term of (5.2) is arbitrarily small. The conclusion of the theorem follows
immediately from a variant of Corollary 5.8 applied to neighborhoods of the type (F.1). �

Appendix G. Proof of Theorem 6.2

Proof. As before we establish q-integrated L1 consistency of Gaussianmixtures of fixed-π dependent processes by verifying
the conditions of Theorem 5.9. Let φµ,σ (x, y) :=

1
σ
φ
 y−µ(x)

σ


for y ∈ Y and x ∈ X. Construct Bn as

Bn =


Mn


rn
δn

Hrn
1 +

ϵln
√
π

4
√
2

B1


∪


∪a<δn MnHa

1 +
ϵln

√
π

4
√
2

B1


with δn =

K1ϵln
Mn

for some constant K1 > 0. Let

Θn =

φµ,σ : ∥β∥ ≤ an, η ∈ Bn, ln ≤ σ ≤ hn


. (G.1)

It is easy to see that

logN(Fn, 4ϵ, ∥·∥) ≤ K2mnrpn


log


8
√
2Mn

√
rn/δn

ϵ
√
π ln

p+1

+mn log
K4m2

n

ϵ
mn log

K3Mn

ϵln
+ mn log


d1


an
ln

p

+ d2 log
hn

ln
+ 1


. (G.2)

Note thatΠX(F
c
n ) ≤ mnP(Θc

n)+ P(


∞

h=mn
πh > ϵ) and P(Θc

n) ≤

P(∥β∥ > an)+ P(σ ∈ [ln, hn]

c)+ P(η ∈ Bc
n)

. It follows

from the proof of Theorem 3.1 of [48] that

P(η ∈ Bc
n) ≤ P(A > rn)+ e−M2

n /2

if M2
n > rpn


log


8
√
2Mn

√
rn/δn

ϵ
√
π ln


. Since Ap(1+η2)/η2 ∼ Ga(a, b), Lemma 4.9 of [48] indicates that P(A > rn) - exp

{−rp(1+η2)/η2n }. Hence withMn = O(n1/2),mn = O{n/(log n)p+1
}
1/(1+η2) and rpn = O{nη2/(1+η2)}, P(Θc

n) - e−n and

P


∞

h=mn

πh > ϵ


- exp{−m1+η2

n (logmn)
(p+1)

} - e−n. (G.3)

Also, the first term in the right hand side of (G.2) can be made smaller than nξ sincemnr
p
n = O(n/(log n)p+1). Also by F1, the

last two terms of the right hand side of (G.2) can be made to grow at o(n). �
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