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Abstract

This article proposes a Bayesian infinite mixture model for the estimation of the conditional density of an ergodic time series.
A nonparametric prior on the conditional density is described through the Dirichlet process. In the mixture model, a kernel is used
leading to a dynamic nonlinear autoregressive model. This model can approximate any linear autoregressive model arbitrarily closely
while imposing no constraint on parameters to ensure stationarity. We establish sufficient conditions for posterior consistency in
two different topologies. The proposed method is compared with the mixture of autoregressive model [Wong and Li, 2000. On a
mixture autoregressive model. J. Roy. Statist. Soc. Ser. B 62(1), 91–115] and the double-kernel local linear approach [Fan et al.,
1996. Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika 83, 189–206] by
simulations and real examples. Our method shows excellent performances in these studies.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Dirichlet process mixture models; Posterior consistency; No-gaps algorithm

1. Introduction

Conditional densities characterize the probabilistic aspects of a time series with Markovian structures. They deter-
mine, except for the initial distribution, the likelihood function of an observed time series (Tong, 1990). Estimating
the conditional density of a time series is very useful to understand the phenomena underlying the data and to make
future predictions. Let X = {Xn : n�1 − k} be an ergodic time series with conditional density f (Xi |Zi), where
Zi = (Xi−1, . . . , Xi−k)

T. We are interested in the problem of estimating f using a nonparametric approach.
Traditional nonparametric techniques such as kernel methods (Rosenblatt, 1969; Fan et al., 1996; Hyndman andYao,

2002), spline smoothing (Gu and Wang, 2003) and wavelet (Clemencon, 2000) have been widely used for conditional
density estimation. These methods have performed successfully for low-dimensional problems (i.e., k�3, where k

is the dimension of Zi), however few have been applied to higher-dimensional data (k > 3). For high-dimensional
data, the kernel method suffers from the sparse data problem (Hastie et al., 2001) while density estimation via spline
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smoothing usually involves high-dimensional numerical integrations (Jeon and Lin, 2006). In addition, the estimator
may be negative and their integrals with respect to x may not equal 1 (Hyndman and Yao, 2002).

In this paper, we consider a Bayesian nonparametric approach for estimating the autoregressive (AR) conditional
density. The Bayesian nonparametric modelling involves specifying priors on an infinite-dimensional functional space.
Many such priors have been developed since the pioneering work of Ferguson (1973) on the Dirichlet process (DP)
prior; see Choudhuri et al. (2005) for a comprehensive review. In our approach, we induce a prior on the conditional
density via a DP mixture model (DPMM), that is, the conditional density is modeled as a nonparametric mixture of
normal kernels where the mixing distribution function follows a DP. Bayesian nonparametric approaches via DP have
become increasingly popular as efficient Markov chain Monte Carlo (MCMC) schemes were developed (Escobar and
West, 1995; MacEachern and Müller, 1998). The DPMMs have been widely applied to density estimation (Escobar
and West, 1995; Müller et al., 1996). Consistency and rates of convergence issues for Dirichlet mixture approaches to
density estimation have been studied by Ghosal et al. (1999, 2000) and Ghosal and van der Vaart (2001). Our approach
can be considered as a natural extension of the well studied Dirichlet mixture approach to density estimation. Müller
et al. (1997) proposed a finite locally weighted mixtures of AR models via the DP, where the parameters of the mixture
components are assumed to be i.i.d variables from some random distribution drawn from a DP prior. Our model differs
from that of Müller et al. (1997) in that the number of mixture components in DPMM is unlimited. Furthermore,
ergodicity of the AR process is explicitly enforced in our model. We have studied posterior consistency issues for a
wide class of order-one Markov process in Tang and Ghosal (2006) and Ghosal and Tang (2005). We will extend the
consistency results to ergodic time series.

The Dirichlet process prior allows flexible nonparametric mixture modeling. It is more flexible than the finite mixture
AR models introduced by Wong and Li (2000). One main difficulty with finite mixture models is the determination
of the number of mixture components. However in a DPMM, the number of mixture components is not specified in
advance and can grow when new observations come in. In addition, with no or few assumptions, the DPMM allows the
data to drive the shape of the error distribution and thus provides more reliable inference. Similar to the kernel-based
approaches, the estimates from the DPMM have local properties in the sense that they are heavily determined by points
(Xi, Zi) that are close in the sample space; see Müller et al. (1996) and the references therein. However, a Bayesian
model-assisted approach, enabling exact inference based on the posterior distribution, seems promising to overcome
the difficulties with the classical nonparametric approaches discussed above. In this paper, these methods are compared
numerically.

The paper is organized as follows. Section 2 introduces the DPMM. Section 3 suggests an appropriate MCMC scheme
for posterior inference. Sufficient conditions for posterior consistency are established in two different topologies de-
scribed in Section 4. Section 5 illustrates the performance of the DPMM and compares it with mixture of autoregressive
(MAR) models (Wong and Li, 2000) and the double-kernel local linear approach (Fan et al., 1996) through simulations.
Section 6 applies DPMM to the analysis of Canadian lynx data.

2. Dirichlet process mixture model

The DPMM introduced in this section provides a Bayesian nonparametric framework for modeling ergodic time series
via the DP. Section 7 discusses other Dirichlet mixture models using different AR link functions. Let X(n) ={Xi : i�n}
denote the observed time series. We assume that Z1 = (X1−k, . . . , X0)

T is fixed or has a known initial distribution. We
model the conditional density as a nonparametric mixture of normal kernels,

f (Xi |Zi) =
∫

� (Xi; g (u, �, �, Zi) , �) dP (u, �, �) , (1)

where g(u, �, �, Z)=u+� tanh(�T (Z − u1k)) is the AR link function, �= (�1, . . . , �k)
T, 1k is a k-dimensional vector

containing only 1, � is a scale parameter,

tanh(x) = exp(x) − exp(−x)

exp(x) + exp(−x)
= 2

1 + exp(−2x)
− 1

is the hyperbolic tangent function, �
(
x; u�, ��

)
denotes the normal probability density function with mean u� and

variance �2
�, and P is the mixing distribution randomly drawn from a DP. The shape of P is flexible and could be
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Fig. 1. y = tanh(x) versus y = x.

multi-modal, heavy-tailed, skewed, etc. If P is degenerate, (1) becomes a parametric model. If k = 0 or � = 0, (1)
reduces to the Dirichlet mixture models for i.i.d. observations (Lo, 1984). Model (1) is ergodic for any P because the
hyperbolic tangent function is bounded (Tang, 2006).

One particular motivation for choosing the kernel �(X; g(u, �, �, Z), �) in (1) is that it can approximate any linear
AR conditional density arbitrarily closely while imposing no constraint on parameters to ensure stationarity. Fig. 1
shows that tanh(x) ≈ x when x is near 0. If max

{|�1|, . . . , |�k|
}

is small enough,

�(X; u + � tanh(�T(Z − u)), �) ≈ �(X; u + ��T(Z − u), �). (2)

The right-hand side (RHS) of (2) is the conditional density of a linearAR model with mean u, autoregressive coefficients
��, and i.i.d. normal error terms. Thus, we can use the kernel to approximate any linearAR model by choosing sufficiently
small �, and then adjusting �. In practice, this may be achieved through the specification of the prior distribution.

We put a DP prior on P . The parameters of a DP consist of a base measure G0, and a scalar precision parameter
� > 0. The base distribution G0 is the best guess of what the true P is believed to be while the larger the value of � the
closer a realization of the process is to G0 (Ferguson, 1973). The DPMM model is equivalent to the following random
effect autoregressive model, where associated with each (Xi, Zi) is a latent variable �i = (ui, �

T
i , �i

)
:

Xi |Zi, �i , � ∼ N
(
Xi; ui + � tanh

(
�T
i (Zi − ui)

)
, �2

i

)
,

�1, . . . , �n|P i.i.d.∼ P , (3)

where N
(
·; u�, �2

�

)
denotes the normal distribution with mean u� and variance �2

�. Unlike that in a parametric model,

the unknown parameters are varying along with the index of the observation, and are actually drawn as i.i.d. samples
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from an unknown distribution. West and Harrison (1997) considered similar models as convenient forecasting tools,
where the random effects can have dependence.

The hierarchical representation (3) in terms of the latent variables �i’s is very useful for developing the MCMC
algorithm, as described in the next section. The random P could be further integrated out of the prior distribution, and
the joint distribution of �i’s is described by the generalized Polya Urn scheme (Blackwell and MacQueen, 1973):

�1 ∼ G0 (�1) ,

�i+1|�1, . . . , �i ∼ �

� + i
G0 (�i+1) +

i∑
j=1

1

� + i
	�j

(�i+1) , i�1, (4)

where 	�j
(·) denotes a point mass at �j . The distribution (4) implies that �i’s tend to share values in common. When

a new observation arrives, it either takes the same value as some �j that has been drawn, or uses a new one generated
from G0.

The base distribution G0 is typically constructed according to mathematical convenience while the parameters of G0
are chosen to reflect prior beliefs. As the autoregressive function of the kernel in (1) is nonlinear, no G0 is conjugate
to the normal kernel. We specify G0 as the following product measure:

G0(u, �, �) = N
(
u; u0, �

2
u

)
Ga
(
�−2; v1, v2

) k∏
j=1

N
(
�j ; 0, �2

�

)
,

where Ga (·; v1, v2) denotes the Gamma distribution with mean v1/v2 and variance v1/v
2
2. The prior for the scale

parameter � is N
(
�; 0, �2

�

)
.

3. Posterior inference

As G0 is not conjugate to the normal kernel in (1), the standard MCMC scheme based on the generalized Polya urn
scheme (Escobar and West, 1995) is not efficient because it involves numerical integration. Instead, we use the “no-
gaps” MCMC scheme (MacEachern and Müller, 1998), which by-passes the numerical integration problem through
parameter augmentation.

Let � = (�1, . . . ,�p

)
denote the set of distinct �i’s, where p is the number of distinct elements of �1, . . . , �n and

�j =
(
ũj , �̃

T
j , �̃j

)
. Let s = (s1, . . . , sn) denote the configuration vector, that is, si = j if and only if �i = �j . Thus,

�={�i : i = 1, . . . , n} is reparameterized as
{
�1, . . . ,�p, s1, . . . , sn

}
. Let ni (i =1, . . . , p) be the number of elements

sj = i. In the no-gaps algorithm, the vector � is augmented with an additional set of variables as follows:⎧⎪⎪⎨
⎪⎪⎩�1, . . . ,�p︸ ︷︷ ︸

�F

, �p+1, . . . ,�n︸ ︷︷ ︸
�E

⎫⎪⎪⎬
⎪⎪⎭ .

The vectors �F and �E are, respectively, referred to as the full and the potential clusters. The augmentation relies upon
the constraint that there is no gap in the values of si , that is, nj > 0 for j = 1, . . . , p and nj = 0 for j = p + 1, . . . , n.
Let a subscript “−i” stand for all the variables except the ith one.

To implement the algorithm, initialize �, s and �F and repeat the following steps until the algorithm converges.
Empirical evidence indicates that initializing p=1 often leads to quick convergence, where � and �1 may be initialized
according to the prior expectations or the least-squares fit of linear AR models.

(1) For i = 1, . . . , n, repeat (ia) and (ib).
(ia) If nsi > 1, resample si from the multinomial distribution

Pr
(
si = j |�, s−i , �, X(n)

)
=
{

cn−i,j qij , j = 1, . . . , p−i ,

c
�

p−i + 1
qij , j = p−i + 1,

(5)
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where qij =�
(
Xi; g

(
ũj , �̃j , �, Zi

)
, �̃j

)
and c is a normalizing constant such that

∑p−i+1
j=1 Pr

(
si = j |�, s−i ,

�, X(n)
)= 1.

(ib) If nsi = 1, with probability 1 − p−1, leave si unchanged. Otherwise rearrange the indices of �j , update s and
nj ’s correspondingly such that si = p, and then resample si according to (5).

(2) Update �i =
(
ũi , �̃i , �̃

−2
i

)
for i = 1, . . . , n. The �i’s are conditionally independent given the cluster structure s

and scale parameter � under the posterior distribution. The posterior distribution of �i ∈ �F is proportional to the
product of the base measure G0

� (ũi; u0, �u)

[
k∏

l=1

�
(
�̃il; 0, ��

)]
Ga
(
�̃−2

i ; v1, v2

)
and the likelihood of the data associated with �i∏

j :sj =i

�
(
Xj ; g

(
ũi , �̃i , �, Zj

)
, �̃i

)
.

We update �̃i with a Gibbs step, ũi with a random walk Metropolis step and �̃i with a random walk Metropolis
step. The candidate ũ∗

i is generated from N
(
ũ∗

i ; ũi , Vu

)
and the candidate �̃∗

i = (�̃∗
l1, . . . , �̃

∗
lk

)T is drawn from the

product measure
∏k

l=1N
(
�̃∗
il; �̃il , V�

)
. The values of Vu and V� are determined automatically by the computer

program in the early stage of the burn-in period such that the average acceptance probabilities of ũi’s and �̃i’s
roughly lie in [0.20, 0.65] and then remain unchanged. The choice of Vu and V� makes a compromise between
the jump distance in the parameter space and the acceptance frequency, both of them ensure the efficiency of the
MCMC algorithm (Tierney, 1994). As no data are associated with �i ∈ �E, the posterior distribution for �i ∈ �E
is simply G0. Since the number of distinct components p is typically small, �i ∈ �E is generated only if a new
component is needed.

(3) Update � with a Gibbs step. The posterior distribution of � is normal

�|�, s, X(n) ∝ �
(
�; 0, ��

) n∏
i=1

� (Xi; g (ui, �i , �, Zi) , �i ) ∝ N
(
�; u�∗ , �2

�∗
)

,

where �2
�∗ =
[∑n

j=1�
−2
i tanh2

(
�T
i (Zi−ui1k)

)+�−2
�

]−1
and u�∗ = �2

�∗

[
n∑

j=1
�−2

i (yi−ui) tanh
(
�T
i (Zi−ui1k)

)]
.

MacEachern and Müller (1998) showed that the no-gaps algorithm converges almost surely under a very mild sufficient
condition. In our empirical studies, convergence of the no-gaps algorithm, assessed through multiple chain together
with informal graphical methods, was found to be quick. A burn-in period of 10, 000 was adequate for all examples.

Estimation of the conditional density is based on the evaluation of

f̂ (x|z) = N−1
N∑

t=1

E

[∫
�(x; g(u, �, �, z), �) dP(u, �, �)|�(t), �(t)

1 , . . . , �(t)
n

]
,

where
(
�(t), �(t)

1 , . . . , �(t)
n

)
denotes the posterior sample at step t after the burn-in period, and

E

[∫
�(x; g(u, �, �, z), �) dP(u, �, �)|�(t), �(t)

1 , . . . , �(t)
n

]

=
�
∫

�
(
X; g

(
u, �, �(t), z

)
, �
)

dG0(u, �, �)

� + n
+

n∑
j=1

�
(
x; g
(
u

(t)
j , �

(t)
j , �(t), z

)
, �(t)

j

)
� + n

.

The first term on the RHS of the above equation can be assessed using Monte Carlo integration, and the numerator of

the second term can be simplified as
∑p

j=1n
(t)
j �
(
x; g
(
ũ

(t)
j , �̃

(t)
j , �(t), z

)
, �̃(t)

j

)
.
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4. Posterior consistency

Consistency may be thought of as a validation of the Bayesian procedure. As the sample size goes to infinity, the
Bayesian assessment of the unknown parameter should be close to the true value if it exists. Consistency implies that
the inference will eventually be free of the prior distribution. This section establishes posterior consistency for model
(1) in two topologies.

Let 
 be the prior for � and DP �G0 be the DP prior on P . The distributions 
 and G0 discussed in this section
include, but are not limited to, that defined in Section 2. Let the true conditional density be of the form f0(x|z) =∫

�
(
z; g
(
u, �, �0, z

)
, �
)

dP0(u, �, �) for some �0 and P0 lying in the support of the prior distribution. Let F =
{f (x|z) = ∫ �(x; g(u, �, �, z), �) dP(u, �, �) : � ∈ supp(
), P ∈ supp

(
DP �G0

)} denote the space of the conditional
densities. The posterior distribution is said to be consistent at f0 if for every neighborhood U of f0, we have that
�
(
U |X(n)

)→ 1 a.s., where � denotes the posterior distribution. Here, all probability statements are given relative to
the true distribution.

The notion of consistency depends on the notion of a topology. We consider the integrated L1 and sup-L1 metrics
on the conditional densities. The integrated L1 distance between two conditional densities f1 and f2 is defined as

dv (f1, f2) =
∫

‖f1(·|z) − f2(·|z)‖v(z) dz =
∫ ∫

|f1(y|z) − f2(y|z)|v(z) dy dz, (6)

where v(z) is a probability density function assumed to be strictly positive for any z ∈ Rk . Different v leads to different
metrics, but all these topologies are equivalent. The sup-L1 distance is defined as

ds(f1, f2) = sup
z∈Rk

‖f1(·|z) − f2(·|z)‖. (7)

The sup-L1 metric is much stronger than the integrated L1 metric.
Posterior consistency has been explored for a wide class of order-1 Markov processes in Tang and Ghosal (2006) and

Ghosal and Tang (2005). A classical tool for posterior consistency in the i.i.d. case is the Schwartz’s theorem (Schwartz,
1965; Ghosal et al., 1999), which was extended to ergodic Markov processes by Tang and Ghosal (2006). The theory
essentially requires two sufficient conditions:

(1) Kullback–Leibler positivity:� (f :K (f0, f ) <�) >0 for any � > 0, whereK (f0, f )=∫∫ 
0(z)f0(y|z) log (f0(y|z)/
f (y|z)) dy dz and 
0(z) is the invariant distribution of Zi’s.

(2) Uniformly exponentially consistent tests: There exist � > 0 and a sequence of tests �n (Xn) for testing f =f0 versus
f ∈ Uc such that

Ef0

(
�n

)
< exp(−n�) and sup

f ∈Uc

Ef

(
1 − �n

)
< exp(−n�),

for all n > n0, where U is any neighborhood of f0 and n0 is a positive integer.

The condition of Kullback–Leibler positivity implies the ergodicity of theAR process, and needs to be shown irrespective
of the topology under consideration. For order-1 Markov process (k = 1), Tang and Ghosal (2006) showed that the
space F is compact in the sup-L1 metric under the assumptions that the AR link function is bounded and uniformly
equicontinuous for Z ∈ R and certain other regularity conditions, and then constructed uniformly exponentially
consistent tests for each of finitely many balls that partition F; see also Theorem 2 below. For bounded link functions,
uniformly exponentially consistent tests can also be constructed in certain weaker topologies using the Hoeffding’s
inequalities (Tang and Ghosal, 2006; Tang, 2006). For more general link functions, the construction of tests is typically
difficult. The construction of tests can be avoided using a martingale-based approach, which is introduced for i.i.d.
cases by Walker (2003, 2004), and extended to Markov processes in Tang and Ghosal (2006) and Ghosal and Tang
(2005). Although the martingale-based approach does not work for the sup-L1 metric, it does not require the boundness
assumption on the AR link function. Tang and Ghosal (2006) showed the posterior consistency of the DPMMs for
Markov processes in the integrated L1 metric under the following sufficient conditions: (1) Kullback–Leibler positivity,
(2) the link function is uniformly equicontinuous for Z ∈ C for any compact C ⊂ R, and (3) certain other regularity
conditions; see also Theorem 1 below.



4430 Y. Tang, S. Ghosal / Computational Statistics & Data Analysis 51 (2007) 4424–4437

The following two theorems show the consistency of Model (1) in the integrated L1 and sup-L1 metrics. We omit
the proof as the arguments are essentially similar to that in Tang and Ghosal (2006). Although we focus on model (1)
in this paper, most results in Tang and Ghosal (2006) and Ghosal and Tang (2005) can be extended easily to DPMMs
for ergodic time series with other AR link functions.

Theorem 1. If the supports of 
 and G0 are both compact, the posterior consistency holds at f0 in the integrated L1
metric. That is, for any � > 0, �

(
U |X(n)

)→ 1 a.s., where U = {f : ∫ ‖f (·|z) − f0(·|z)‖v(z) dz��}.

Remark 1. Proof of Theorem 1 is similar to that for Proposition 5.1 and Theorem 7.1 of Tang and Ghosal (2006) using
the following facts:

• For any compact C ∈ Rk , the family of functions

{x 
→ g(u, �, �, z) : z ∈ C, � ∈ supp(
), (u, �) ∈ supp(G0)}
is uniformly equicontinuous; that is, for any � > 0, there exists 	>0 such that supu,�,�|g(u, �, �, z1)−g(u, �, �, z2)|<	
whenever ‖z1 − z2‖ < �.

• The space of conditional densities F is compact with respect to the semi-metric dC defined as dC(f1, f2) =
supz∈C‖f1(·|z) − f2(·|z)‖.

Theorem 2. Under the assumption of Theorem 1 and that no point in the support of G0 satisfies
∏k

j=1�j = 0, the

posterior consistency holds at f0 in the sup-L1 metric. That is, for any � > 0, �
(
U |X(n)

) → 1 a.s., where U = {f :
sup

z∈Rk‖f (·|z) − f0(·|z)‖��}.

Remark 2. The assumption of Theorem 2 ensures that the family of functions {x 
→ g(u, �, �0, Z) : z ∈ Rk, � ∈
supp(
), (u, �) ∈ supp(G0)} is uniformly equicontinuous, and hence that the space of conditional densities F is
compact with respect to the sup-L1 metric. This theorem can be proved in a way similar to that for Theorem 8.1 of
Tang and Ghosal (2006).

Remark 3. The assumption that no point in the support of G0 satisfies
∏k

j=1 �j = 0 may not be dropped. See Remark
8.1 of Tang and Ghosal (2006). When k = 1, the assumption �1 �= 0 is not restrictive since the order-1 Markov process
reduces to the i.i.d. model under either condition � = 0 or �1 = 0.

We have put the compactness assumption on the supports of 
 and G0 to show consistency for technical reasons. We
can use truncated prior distribution. If the compact support is chosen to be large enough, the truncation should have no
or little effect on the numerical results. In application, we use the prior specified in Section 2.

5. Simulations

This section illustrates the performance of the DPMM with simulated examples. Throughout, we set the prior
parameters as follows: � = 1, u� = 0, �2

� = 1012, u0 = x̄, �u = 3ŝ, u� = 0, �� = 1/(3ŝk), v1 = 1/(1000s2) and

v2 = 1/1000, where x̄ is the mean and ŝ is the standard error of the observed time series. The �� is chosen to be
small to reflect the prior belief that the underlying process is approximately a linear model or mixture of linear models.
The prior densities for �, ui’s and �i’s are quite flat in the parameter space to reflect the vague prior belief. Our
experience suggests that the posterior inference is not very sensitive to the particular prior parameter choice within a
wide range.

In simulation one and two, the DPMM is compared with the MAR of Wong and Li (2000) and double kernel local
linear approach of Fan et al. (1996) for estimating the conditional density of order-1 AR process. The MAR models
are fitted with the MIXREG package in R software. The kernel methods are fitted with the HDRCDE package in R
software, where the bandwidth is chosen according to the normal reference rule (Hyndman andYao, 2002). We also try
a series of different bandwidths in the kernel approach. For all examples studied in this paper, the shapes of the kernel



Y. Tang, S. Ghosal / Computational Statistics & Data Analysis 51 (2007) 4424–4437 4431

AR(1)

Fig. 2. Simulation one: plots of true and estimated conditional densities: (a) Truth, (b) DPMM, (c) AR(1), (d) Kernel method.

conditional density estimates seem quite insensitive to the choice of bandwidth in the z-direction. Similar to Fan and
Yim (2004), for each simulated sample, the performance of each method is evaluated by the root mean-squared error
(RMSE)

RMSE =

√√√√√∑j

[
f̂
(
xj |zj

)− f
(
xj |zj

)]2
I
(
zj ∈ [a, b], xj ∈ [a, b])∑

j I
(
zj ∈ [a, b], xj ∈ [a, b]) ,

where
(
zj , xj

)
’s are grid points that are even distributed across certain regions of interest and [a, b] is an interval where

most observed data lie.
Simulation 1: This simulation illustrates the DPMM for handling non-normal data. A sample of size 150 is simulated

from a simple AR(1) model

Xi = � + �Xi−1 + εi (i�1), (8)

where X0 =0, �=0.8, �=0.2 and {εi} are independent random variables from the Cauchy distribution f (εi)=4/[
(1+
16ε2

i )] truncated to the interval [−3, 3]. Fig. 2 plots the true and estimated conditional densities. AR(1) fails to detect
the sharp central peak in the true conditional density because of the normal assumption on the error terms. The kernel
estimate in Fig. 2(d) is not smooth. There is a trade-off between goodness of fit and smoothness in the kernel approach
while choice of the right amount of smoothing is not a serious problem in DPMM. The conditional density estimated
by DPMM (Fig. 2(b)) is the closest to the truth.

Table 1 presents the mean and standard error of the RMSE evaluated over 100 random samples of size 150. For each
replication, we estimate f

(
xj |zj

)
on a 51 × 51 grid on the space [a = −2, b = 4] × [−2, 4]. The DPMM shows the

best performance in term of the RMSE criterion.
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Table 1
Summary of the RMSE for simulation one and two

Simulation one Simulation two

Mean Std Mean Std

DPMM 0.076 0.035 0.090 0.022
MAR 0.170 0.015 0.093 0.035
Kernel 0.206 0.071 0.419 0.006

The mean and standard error (std) of the RMSE are evaluated over 100 simulated samples.

Fig. 3. Simulation two: plots of true and estimated conditional densities: (a) Truth, (b) DPMM, (c) MAR, (d) kernel method.

Simulation 2: We simulate 100 random samples of size 150 from the following 3-component MAR model:

f (Xi |Xi−1) = 1
6�
(
Xi; 1

5Xi−1 + 2, 1
24

)+ 1
2�
(
Xi; 1

2Xi−1 + 1
4 , 1

8

)+ 1
3�
(
Xi; − 1

2Xi−1 − 3
2 , 1

12

)
(i�1),

where X0 = 0. Fig. 3 plots the true conditional density and that estimated using one random realization. Both DPMM
and MAR recover the true shape of the conditional density reasonably well. The kernel method fails for this example.
Table 1 summarizes the results based on 100 replications, where f

(
xj |zj

)
is estimated over 51 × 51 grid points evenly

distributed on [−2, 2]× [−2, 2]. DPMM and MAR show comparable performance while the mean of RMSE produced
by the kernel method is almost four times bigger than that by DPMM and MAR. The advantage of DPMM is that
the number of mixture components is not specified in advance and is automatically determined by data. This example
demonstrates the ability of the DPMM in detecting multimodality.

Simulation 3: A nearly non-stationary time series of size 100 is simulated from

Xi = 0.99Xi−1 + εi (i�1), (9)
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Fig. 4. Simulation 3: simulated nearly non-stationary data: (a) simulated time series, (b) true conditional density, (c) density estimated by DPMM.

where X0 = −10 and {εi} are independent and follow t3-distribution. Fig. 4 plots the simulated data. This partic-
ular realization is interesting. The AR process defined by model (9) is ergodic while the observed series seem to
be non-stationary. The best MAR model (model order k is fixed at 1) identified by the BIC criterion is a non-
stationary AR(1) model with conditional expectation E(Xi |Xi−1) = 0.388 + 1.025Xi−1. In DPMM, the ergodic-
ity of the process is enforced. The conditional density estimated by DPMM (Fig. 4(c)) seems close to the truth
(Fig. 4(b)).

6. Analysis of Canadian lynx data

This section analyzes the famous Canadian lynx data. The data set consists of the annual record of the Canadian
lynx trapped in the Mackenzie river district in northwest Canada for the period 1821–1934 inclusive, with a total of
114 observations. The data have been analyzed by many methods; see Wong and Li (2000) for a survey. The log-
transformed time series is displayed in Fig. 5. Clearly, the data are cyclical with a period of approximate 10 years
and the ascent periods (around 6 years) tend to exceed the descent periods (around 4 years) by approximately 50%.
So this series is time-irreversible and nonlinear. The histogram (Fig. 6(a)) indicates that the marginal distribution
is bimodal. It would be interesting to explore whether the conditional distribution is multimodal. Some parametric
models such as ARIMA and threshold autoregressive model (Tong, 1990) are not suitable for this question since they
implicitly assume that the underlying conditional density is unimodal. Wong and Li (2000) calculated the rate of ascent
((change in X/number of years) during an ascending period) and rate of descent ((change in X/number of years)
during a descending period) for each cycle and found that the rates of descent were more variable than the rates of
ascent. Since in theory the conditional variances for multimodal conditional distributions tend to be larger than that for
unimodal conditional distributions, the phenomenon observed by Wong and Li (2000) suggests that there might exist
multimodality in the conditional densities.

We fit the DPMM. Partly for simplicity, we use the prediction mean square error (PMSE) criterion to determine the
model order k

PMSE = m−1
n∑

i=n−m+1

(Xi − X̂i)
2, (10)
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Fig. 5. Common logarithm of the Canadian lynx data.

(a) (b)Histogram
PMSE estimated by DPMM us-

ing last 30 observations

Fig. 6. Lynx data: (a) Histogram, (b) PMSE estimated by DPMM using last 30 observations.

where X̂i’s are the one-step ahead prediction of Xi and the last m observations are used to evaluate PMSE. Fig. 6(b)
plots the PMSE estimated using the last m = 30 observations. The PMSE drops dramatically from k = 1 to 2 and
remains approximately constant when k�2, suggesting a DPMM of order k = 2 might be suitable for this data. The
PMSE criterion seems insensitive to the choice of m in this example, as the estimated PMSE exhibits similar pattern
for m= 10, 15, 20, 25, 35, 40. The estimated conditional densities for the last cyclical period (from i = 106 to 113) are
depicted in Fig. 7 (solid line), together with the actual values of xi at i − 1, i and i + 1. The conditional densities are
unimodal when the series is ascending to a peak and show weak bimodalities during a descending period (i=106–108).

Fig. 7 also displays the conditional densities estimated by the MAR (dashed line) and the kernel method (dotted
line). The MAR estimates are based on the model fitted by Wong and Li (2000):

f (Xi |Xi−1, Xi−2) = 0.3163�(Xi; 0.7107 + 1.1022Xi−1 − 0.2835Xi−2, 0.0877)

+ 0.6837�(Xi; 0.9784 + 1.5279Xi−1 − 0.8871Xi−2, 0.2020).

Similarly, the MAR estimates are bimodal only when the series is descending to a trough. However, the MAR estimates
exhibit much sharper peaks than the DPMM estimates. On the contrary, the estimated kernel conditional densities seem
quite flat. The kernel estimates show strong bimodality at step i = 106 and weak multimodality at many other steps.
However, all multimodalities except the one at i = 106 will disappear if we increase the bandwidth in the z-direction
gradually. Wong and Li (2001) also fitted the data with the logistic mixture autoregressive model. Although the shapes
of the estimated conditional densities vary greatly with the methods, all the above models support that the conditional
densities contain multimodalities.

7. Discussion

We have introduced a Bayesian nonparametric model for estimating the conditional density of ergodic time series
and shown that it is consistent in two different topologies. The merit of mixture-type AR models lies in their ability to
describe the conditional density and model changing conditional variance of the time series (Wong and Li, 2000). We
further demonstrate that the Dirichlet mixture model is more flexible than the finite MAR model of Wong and Li (2000)
in the analysis of data with multimodality and with non-normality. It is straightforward to incorporate exogeneous
variables into the model. Although we focus on the analysis of time series, the proposed model could be viewed as a
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(a)

(c)

(e)

(g)

(f)

(d)

(b)

i = 109

i = 106

i = 108

i = 107

i = 110 i = 111

i = 112 i = 113(h)

Fig. 7. Lynx data: estimated conditional densities f̂ (·|xi , xi−1) from i = 106 to 113: DPMM (solid curve), MAR (dashed curve) and kernel method
(dotted curve). The symbols ‘*’,‘o’ and ‘x’ on the horizontal axis represent the actual values of xi at i − 1, i, i + 1, respectively.

semi-parametric model suitable for the regression problem, where Xi’s are the dependent variables and Zi’s are the
explanatory variables. Posterior consistency in semi-parametric regression models with independent errors has been
established by Amewou-Atisso et al. (2003).

Because of the special properties of the hyperbolic tangent function, we have chosen it as the AR link function to
model a strictly ergodic time series. However, other choices are possible. Tang (2006) shows that the Dirichlet mixture
model (1) is uniformly ergodic for any bounded link function g. For more general link functions, the parameters of the
model are usually subject to complex constraints in order to ensure the AR process to be stable, causing difficulty in
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specifying prior distributions. For linear AR models to be stationary, the roots of the AR characteristic polynomial need
to lie in the unit circle. Sufficient conditions for finite mixture AR models to be stationary were established by Wong
and Li (2000), and that for Dirichlet mixture models for Markov processes were explored in Tang and Ghosal (2006). In
Huerta and West (1999), a prior structure is defined directly on the roots of the AR characteristic polynomial to model
stationary linear time series. Similarly, a potential way to model ergodic nonlinear time series is to put hyperpriors on
the roots of the AR characteristic polynomial through the DP.

Partly for simplicity, we use the PMSE criterion to determine the order of the AR process in the analysis of Canadian
lynx data. It works well for this example. However, the PMSE criterion works only for long time series, and may be
sensitive to the choice of m especially when m is small (m is the number of observations for evaluating PMSE). As
suggested by the referees, a more elegant way to deal with the model order is to treat it as an additional model parameter
using the reversible jump MCMC methods (Richardson and Green, 1997). Such a full Bayesian approach for model
selection has been applied to the problem of parametric Bayesian inference of AR processes (Vermaak et al., 2004). It
is possible to extend this approach to Dirichlet mixture models.
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