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Abstract

This paper introduces a framework for analysis of cross-sectional dependence in the idiosyncratic
volatilities of assets using high frequency data. We first consider the estimation of standard measures
of dependence in the idiosyncratic volatilities such as covariances and correlations. Next, we study an
idiosyncratic volatility factor model, in which we decompose the co-movements in idiosyncratic volatilities
into two parts: those related to factors such as the market volatility, and the residual co-movements.
When using high frequency data, naive estimators of all of the above measures are biased due to the
estimation errors in idiosyncratic volatility. We provide bias-corrected estimators and establish their
asymptotic properties. We apply our estimators to high-frequency data on 27 individual stocks from
nine different sectors, and document strong cross-sectional dependence in their idiosyncratic volatilities.
We also find that on average 74% of this dependence can be explained by the market volatility.
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1 Introduction

Volatility of returns of an asset or a portfolio is a key ingredient of traditional empirical asset pricing
models. That asset returns have strong cross-sectional correlations is a well documented empirical fact.
These correlations arise due to the common risk factors such as the market factor. Due to these return
factors, the total stock volatilities are also correlated in the cross-section.

It is then natural to investigate whether the volatilities of the factor-adjusted returns, otherwise known
as the Idiosyncratic Volatilities (IVs), also have substantial co-movements. Recent papers by Herskovic,
Kelly, Lustig, and Nieuwerburgh (2014) and Duarte, Kamara, Siegel, and Sun (2014) present evidence
of considerable cross-sectional co-movements in large low-frequncy panels of IVs of daily stock returns.
Moreover, they argue that the common co-movements in IVs arise due to a priced risk factor.

We provide a flexible framework for studying cross-sectional dependencies in the IVs using high-frequency
data. Our framework incorporates important stylized facts about asset returns and their volatilities. Our
estimators provide a solution to the bias problems caused by the pre-estimation of volatilities. We also
provide valid inference methods.

First, we study behavior of standard measures of cross-sectional dependence in IVs using high-frequency
data. We show that the naive estimators of these measures are biased, and provide bias-corrected estimators.
We then obtain the relevant asymptotic distributions, which allow us to perform statistical tests.

Second, we study an idiosyncratic volatility factor model (IV-FM). The IV-FM decomposes the cross-
sectional dependence in IVs into two components. The first component is the cross-sectional dependence
due to popular factors. The IV factors can include the volatility of the return factors, non-linear transforms
of the spot covariance matrices such as correlations, as well as the average variance factor of Chen and
Petkova (2012). The second component in the IV-FM is residual dependence in IVs not explained by the
IV factors. Again, the standard estimators of this decomposition are biased due to the latency in volatility.
We provide bias-corrected estimators, and derive their asymptotic distributions. We build a test for whether
the IV-FM can fully account for the dependence between the IVs. Our test could be useful, for example,
in assessing the relevance of some classical assumptions made in conditionally heteroscedastic factor models
for returns (Engle, Ng, and Rothschild (1993), among others). In particular, a common assumption in this
literature restricts the asset’s total volatilities to be some linear combination of the volatility of the return
factors, which precludes additional factors affecting the IV.! We investigate the finite sample properties of
the methods in a Monte Carlo experiment, and find they have reasonable size and power.

We apply our estimators to high-frequency data on 27 individual US stocks from nine different sectors.
We study idiosyncratic volatilities with respect to two models, CAPM and the three-factor Fama-French
model. In both cases, the average correlation between the idiosyncratic volatilities is above 0.55. Moreover,
the average correlation between the IVs is on average the same among those pairs of stocks, which have close
to zero correlations between their idiosyncratic returns. In other words, the dependencies in IVs cannot be

explained by a missing return factor. This is in line with the recent findings of Herskovic, Kelly, Lustig, and

IThis condition arises when one assumes the latent factors are uncorrelated.



Nieuwerburgh (2014) who use daily and monthly return data. We then consider the idiosyncratic volatility
factor model with market volatility as the factor. We find that on average, the systemic component of IV
that arises due to IV exposure to market volatility, accounts for 74% of the cross-sectional dependence in
the IVs. We find that in 110 out of 351 pairs of stocks analyzed, this idiosyncratic volatility factor model
fully accounts for the cross-sectional dependence in I'Vs, so that their non-systemic components are no longer
significantly correlated.

The importance of accounting for estimation errors in volatilities has been demonstrated in other contexts.
Recently, Ait-Sahalia, Fan, and Li (2013) show that failure to account for the latency of volatility drives the
leverage effect puzzle.? An important aspect of our methods is that we fully account for the latency of IV.

We now describe the theoretical framework and the strategy for constructing our estimators and tests.
We define the IV with respect to a continuous-time factor model for returns with observable factors. This
framework was originally studied in Mykland and Zhang (2006) in the case of one factor and in the absence
of jumps. It was extended to multiple factors and jumps in Ait-Sahalia, Kalnina, and Xiu (2014). We
measure the dependence between two IV processes as their quadratic covariation (or quadratic covariation-
based correlation). In the case of co-movements in returns, standard estimators of quadratic covariation are
unbiased (see ? and Barndorff-Nielsen and Shephard (2004)). However, since we study co-movements in
latent IVs and not in observable returns, naive estimators are biased, see, e.g., Wang and Mykland (2014)
and Vetter (2012) for related results. We then go further and consider an IV factor model (IV-FM), which
decomposes the total IV into a systemic (or common) IV and the non-systemic IV. The IV-FM allows us
to quantify what portion of the cross-sectional dependence in IVs is driven by the IV factors. We show
that the IV dependence measures (and their ratios, scaled versions, or other functions) can be identified and
estimated in a unified way. In particular, all of them can be written as smooth known functions of multiple
quantities, each representing the quadratic covariation between possibly non-linear transforms of the spot
covariance matrix of the vector of observable processes. Our main statistical contribution (Theorem 1) is
derivation of the joint asymptotic distribution for the bias-corrected estimators of these quantities. By the
delta method, we obtain the asymptotic distributions of all quantities of interest. The resulting asymptotic
distributions allow us to conduct various statistical tests; for example, to test whether the IV factor model
can fully explain the cross-sectional dependence in the IVs.

Our paper is related to several strands of the literature. Our inference theory extends the results on
estimation of the integrated one-dimensional (total) volatility of volatility (Vetter (2012), Ait-Sahalia and
Jacod (2014)). The (total) leverage effect is also a quantity, for which the naive nonparametric estimators
are inconsistent due to the measurement errors in volatilities, see Wang and Mykland (2014), Kalnina and
Xiu (2014), Ait-Sahalia, Fan, Laeven, Wang, and Yang (2013) and Ait-Sahalia, Fan, and Li (2013) for
one-dimensional results. Due to the decomposition of total returns into systemic and idiosyncratic part,
our estimators involve aggregation of non-linear functionals of the return volatility matrix, hence our bias-

correction terms are related to the general theory developed in Jacod and Rosenbaum (2012) and Jacod and

28ee Wang and Mykland (2014), Kalnina and Xiu (2014), and Ait-Sahalia, Fan, Laeven, Wang, and Yang (2013) for related
results on the leverage effect.



Rosenbaum (2013). The decomposition of total volatility into systemic and idiosyncratic volatilities is also
considered in Mykland and Zhang (2006) and Ait-Sahalia, Kalnina, and Xiu (2014), but their theoretical
results only consider univariate idiosyncratic volatility. Barigozzi, Brownlees, Gallo, and Veredas (2014) and
Luciani and Veredas (2012) model large panels of total stock volatilities using high frequency data.

The remainder of the paper is organized as follows. Section 2 introduces the model and describes quan-
tities of interest. Section 3 describes the identification and estimation of these quantities of interest. Section
4 presents the asymptotic properties of our estimators. Section 5 investigates their finite sample properties.
Section 6 uses high-frequency stock return data to study the cross-sectional dependence in IVs using our

framework. Section 7 concludes. The Appendix contains the proofs.

2 Model and Quantities of Interest

We first describe a general factor model for the returns, in which the idiosyncratic volatility is defined. We
then introduce the idiosyncratic volatility factor model (IV-FM).

Suppose we have (log) prices on dg assets such as stocks and on dp factors. We stack them into the
d-dimensional process Y: = (S1,¢,.-.,Sdg.t, Fit,--- ,FdF’t)T where d = dg + dp. We assume Y; follows an

1t6 semimartingale,
t t
Yt:YoJr/bsd5+/0’des+Jt7
0 0

where W is a d’-dimensional Brownian motion (d’ > d), o, is a d x d’ stochastic volatility process, and J;
denotes a finite variation jump process. We assume also that the spot variance process ¢; = oya,! of Y; is a

continuous Itd semimartingale,?

t t
ct:co—i—/ bsds—i—/ o.dWs, (1)
0 0

see Section 4 for the full list of assumptions.

We assume a standard continuous-time factor model for the (log) prices of the assets:

Definition (Factor Model for Prices). For for all0 <t <T andj=1,...,dgs,*

dYys

0 =B AFY +dZ5,  with

28, F°), =0, (2)

We do not need the factors F; to be the same across assets to identify the model, but without loss of

generality, we keep this structure because it is standard in empirical finance. In the empirical application,

3Note that assuming that Y and c are driven by the same d’-dimensional Brownian motion W is without loss of generality
provided that d’ is large enough, see, e.g., equation (8.12) of Ait-Sahalia and Jacod (2014).
4If X and Y are two vector-valued It6 semimartingales, their quadratic covariation over the time span [0, 7] is defined

M-1
(X Y] =p—lim Y (Xi;0 = Xe)) (Vo0 = Yi) T

for any sequence to < t1 < ... <ty =T with sup {t;41 —t;} = 0 as M — oo, where p-lim stands for the probability limit.
J

Barndorff-Nielsen and Shephard (2004) discuss its estimation when both X and Y are observed.



we use two sets of factors: the market portfolio and the three Fama-French factors. The process Z;; is the
idiosyncratic component of the price of the j* stock with respect to the factors. We use the superscript ¢ to
emphasize that the above factor model only involves the continuous martingale parts of the two observable
processes Y;; and F;. The jump parts of these processes are left unrestricted. For j = 1,...,dg, B is a
R?7_valued process which represents the continuous beta.” The k-th component of B, captures the time-
varying sensitivity of the continuous part of the return on stock j to the continuous part of the return on
the k-th factor. We set B; = (B1.ts---,8ds.¢) " and Zy = (Z1,4,...,Zag,) . This framework was originally
studied in Mykland and Zhang (2006) in the case of one factor and in the absence of jumps. It was extended
to multiple factors and jumps in Ait-Sahalia, Kalnina, and Xiu (2014). See also Li, Todorov, and Tauchen
(2013), ?, and Rei}, Todorov, and Tauchen (2015). Our framework can be potentially extended to use
principal components instead of observable factors as in 7.

Idiosyncratic Volatility of stock j is the spot volatility of the residual process Z;, and we denote it by

czj. It can be written as
czju = cyje = (crje) (crre) erjs, 3)

for j = 1,...,ds, where cpp; denotes the spot covariance of the factors F', which is the lower dr X dp
sub-matrix of ¢;, and cp;; denotes the covariance of the factors and the jth stock, which are the last dg
elements of the j** column of ¢;.

We take the following quadratic-covariation based quantity as the natural measure of dependence between

the IV shocks of stocks i and j,

Pzizj = lezi, oalr : (4)
\/[CZz', CZi]T \/[CZ]‘, CZj]T
Alternatively, one can consider the raw quadratic covariation [cz;, ch]T. We use it later as the basis for
testing the presence of dependence in IVs.

To assess the importance of factors in driving the IV dependence, we introduce the Idiosyncratic Volatility
Factor model. The IV factors can include the volatility of the return factors, non-linear transforms of the
spot covariance matrices such as correlations, as well as the average variance factor of Chen and Petkova
(2012).

Definition (Idiosyncratic Volatility Factor Model, IV-FM). For all0 <t <T andj=1,...,dg, the

idiosyncratic volatility cz; follows,

dezjy = bydg +dcys, with (5)

(€2} dle =0. (6)

where g is the vector of IV factors, which a sub-vector of vech(c;), and where cgft is the non-systemic

idiosyncratic volatility.

We refer to bz; as the idiosyncratic volatility beta (IV beta). It is time-invariant. The residual component

5 Interestingly it is possible to define a discontinuous beta, see Bollerslev and Todorov (2010) and Li, Todorov, and Tauchen
(2014).



cy ft denotes j asset’s non-systematic idiosyncratic volatility (NS-IV henceforth). In the IV-FM, both the
regressand and the regressor are latent, and the components of the IV-FM, cz; +, ¢; and cg ft, are continuous
It6 semimartingales.

To measure the residual cross-sectional dependence between two IVs after accounting for the effect of the
IV factors, we use a quadratic-covariation based correlation measure between NS-IVs,

[cgis, cgs}T
NS _ J (7)

Pzizi = NS NS NS NST.
[z ez ]r [CZj €7 I

When testing for the presence of residual correlation between NS-IVs, we use the quadratic covariation

(Y5 e jS ]z without normalization.

We want to capture how well the IV factors explain the time variation of j** IV. For this purpose, we

use the quadratic-covariation based analog of the coefficient of determination. For j =1,...,dg,
T
2,IV-FM __ ij[Q»(I]Tij
Ry T, )
[CZj ) CZJ]T

It is interesting to compare the correlation measure between IVs in equation (4) with the correlation

between the non-systemic parts of IVs in (7). We consider their difference,

pzizi — Py zs 9)

to see how much of the dependence between IVs can be attributed to the IV factors. In practice, if we
compare assets that are known to have positive covolatilities (typically, stocks have that property), another
useful measure of the systemic part in the overall covariation between IVs is the following quantity,
- by:la,qlrbz;

Qi — i, (1)
This measure is bounded by 1 if the covariations between NS-IVs are nonnegative and smaller than the
covariations between IVs, which is what we find for every pair in our empirical application with high-
frequency observations on stock returns.

The next section outlines identification and estimation of the above key quantities. It also presents the
asymptotic distributions, which can be used to conduct statistical tests. We conduct three tests. First, we
test whether the total cross-correlation in IVs is nonzero for a given pair of assets, which corresponds to
the hypothesis [cz;, czj]7 = 0. Second, we test whether the IV factors contribute to the cross-correlation in
IVs by considering the null hypothesis [cz;, ¢l = 0. Third, we test the hypothesis of whether IV-FM can
explain all the cross-sectional IV dependence, i.e., [cgis , cgf lr =0.

It is interesting to compare our framework with the following null hypothesis studied in Li, Todorov, and
Tauchen (2013), Hy : czj = az;j +b}th, 0 <t <T. This Hy implies that the IV is a deterministic function

of the factors, which does not allow for a non-systemic error term. In particular, this null hypothesis implies

2,IV-FM _
RZj =1.



3 Estimation

We now discuss the estimation of our main quantities of interest introduced in Section 2,

[CZiaCZj]Ta PZi,Zj, [ngs7 Cg]S]Ta pZ'L AR QIZ‘z/,_Z};M? nd R2 V- FM7 (11)
fori,j =1,...,ds. We first show that each of them can be written as ¢ ([H1(c), G1(¢)] 1, ..., [Hx(c), G(c)| 1)
where ¢ as well as H, and G,, for r = 1,...,k, are known real-valued functions. Each element in this

expression is of the form [H(c), G(c)]r, i.e., it is a quadratic covariation between functions of ¢;. We then
show how to estimate [H(c), G(c)]r.

First, consider the quadratic covariation between ith and jth 1V, [cZi7ch]T. It can be written as
[H(c),G(c)]r if we choose H(c;) = ¢z and G(ct) = ¢z;4- By (3), both ¢z, ¢ and ¢z, are smooth functions
of ¢;. Next, consider the correlation pz; z; defined in (4). By the argument above, its numerator and each
of the two components in the denominator can be written as [H(c), G(c)]r for different functions H and G.
Therefore, pz; z; is itself a known smooth function of three objects of the form [H(c), G(c)]r.

To show that the remaining quantities in (11) can also be expressed in terms of objects of the form

[H(c),G(c)]T, note that the IV-FM implies

-1
ij = ([Q7 q]T) [qach]T and [cgzsﬂ cjng]T - [CZ’“ CZJ] - b-lz—z [q7Q]Tij7
for i,5 = 1,...,ds. Since cgz;s, cz;: and every element in ¢; are real-valued functions of ¢;, the above

equalities imply that all quantities of interest in (11) can be written as real-valued, known smooth functions
of a finite number of quantities of the form [H(c), G(c)]r.

To estimate [H(c), G(c)]r, suppose we have discrete observations on Y; over an interval [0,7]. Denote
by A, the distance between observations. Note that we can estimate the spot covariance matrix ¢; at time

(i — 1)A,, with a local truncated realized volatility estimator (Mancini (2001)),

Cin, = 7.+]

2Y)  1gan, vi<xas)s (12)
:0

where A?Y = Yia, — Y(i—1)a, and where k,, is the number of observations in a local window.°
We propose two estimators for the general quantity [H(c), G(¢)]r. The first is based on the analog of the

definition of quadratic covariation between two Itd processes,

(T/An]—2kn+1
AN 3 R R R R
[H(e), GOy =5~ > <(H(C(i+kn)An) - H(Cmn)) (G(C(iJrkn)A") - G(Cmﬂ)
n i=1
5
. Z (0gn HOwpG)(Cin,,) (/c\ga,iAn/c\gb,iAn + /C\gb,iAn/c\ha,iAn)>7 (13)
n g,h,a,b=1

where the factor 3/2 and last term correct for the biases arising due to the estimation of volatility ¢;. The
increments used in the above expression are computed over overlapping blocks, which results in a smaller

asymptotic variance compared to the version using non-overlapping blocks.

61t is also possible to define kernel-based estimators as in Kristensen (2010).



Our second estimator is based on the following equality, which follows by the It6 lemma,

d T
[H(c),G()lr = Y / (D HopG) (cy)el™dt, (14)
g,h,a,b=1 0
where th’ab denotes the covariation between the volatility processes cgn,; and cqp¢. The quantity is thus a

non-linear functional of the spot covariance and spot volatility of volatility matrices. Our second estimator
is based on this “linearized” expression,

d [T/AR]—2k,+1

_—_ LIN 3 R N R N R
[H(c),G(o)]lr = % Z (OgnHOawG) (Ciar,) ((Cgh,(i+kn)An_Cgh-,iAn)(Cab,(i+kn)An —Cab,iA,)
n g,h,a,b=1 i=1
2 ~ ~ ~
- ?(Cga7iA1L cgbﬂ;An + cgb:iAn chaaiAn)> . (15)

Consistency for a similar estimator has been established by Jacod and Rosenbaum (2012).” We go beyond
their result by deriving the asymptotic distribution and proposing a consistent estimator of its asymptotic
variance.

Note that the same additive bias-correcting term,

3 [T/An]72kn+1 d
3 Z < Z (Ogn HOapG)(Cin,,) (5ga,mn5gb,mn +Egb,iA,LEha,iAn)>7 (16)

n i=1 g,h,a,b=1

is used for the two estimators. This term is (up to a scale factor) an estimator of the asymptotic covariance
between the sampling errors embedded in estimators of fOT H(cy)dt and fOT G(ct)dt defined in Jacod and
Rosenbaum (2013).

The two estimators are identical when H and G are linear, for example, when estimating the covariation
between two volatility processes. In the univariate case d = k = 1, our estimator coincides with the volatility
of volatility estimator of Vetter (2012), which was extended to allow for jumps in Jacod and Rosenbaum
(2012). Our contribution is the extension of this theory to the multivariate ¥ > 1 and/or d > 1 case with

nonlinear functionals.

4 Asymptotic Properties

We start by outlining the full list of assumptions for our asymptotic results. We then state the asymptotic
distribution for the general functionals introduced in the previous section, and develop estimators for the
asymptotic variance. Finally, we outline three statistical tests of interest that follow from our theoretical

results.

7Jacod and Rosenbaum (2012) derive the probability limit of the following estimator:

5 4 [T/An]—2kn+1 )
2 —~ —~ —~ —~ —~ —~ —~ ~ ~
b Z (8gh,abH)(CiAn)((C(H—kn)An = Cing ) Clitkn)An — Cinrg) — ?(cga,iA7lcgb,iAn + Cgb,iAnCha,iAn))-
n . n
g,hab=1 =1



4.1 Assumptions

Recall that the d-dimensional process Y; represents the (log) prices of stocks and factors.

Assumption 1. Suppose Y is an It6 semimartingale on a filtered space (Q, F, (Ft)i>0,P),

t t t
Y}:Yo—i—/ bsds—i—/ USdWS+/ /6(s7z)u(ds7dz),
0 0 o JE

where W is a d’'-dimensional Brownian motion (d' > d) and p is a Poisson random measure on Ry X E,
with E an auziliary Polish space with intensity measure v(dt,dz) = dt ® \(dz) for some o-finite measure
X on E. The process b, is R*-valued optional, o, is R% x Rd/—valued, and 0 = 0(w,t,z) is a predictable
R? -valued function on Q x Ry x E. Moreover, ||§(w,t A T(w),2)|| A1 < Tyu(2), for all (w,t,z), where
(Tm ) is a localizing sequence of stopping times and, for some r € [0,1], the function Ty, on E satisfies
[ Tm(2)"A(dz) < co. The spot volatility matriz of Y is then defined as ¢y = o0/ . We assume that ¢, is a

continuous Ité semimartingale,®

t t
c = ¢ —I—/ bsds—|—/ osdWs. (17)
0 0

With the above notation, the elements of the spot volatility of volatility matrix and spot covariation of

the continuous martingale parts of X and c are defined as follows,

d’ d’

—gh,ab __ ~gh,m~abm —I/g,ab __ gm~ab,m

Cy = E ooy, et = E oo, (18)
m=1 m=1

The process a; is restricted as follows:

Assumption 2. g; is a continuous Ité semimartingale with its characteristics satisfying the same require-

ments as that of c;.

Assumption 1 is very general and nests most of the multivariate continuous-time models used in economics
and finance. It allows for potential stochastic volatility and jumps in prices. Assumption 2 is required to
obtain the asymptotic distribution of estimators of the quadratic covariation between functionals of the spot
covariance matrix ¢;. It is not needed to prove consistency. This restriction also appears in Vetter (2012),

Kalnina and Xiu (2014) and Wang and Mykland (2014).

4.2 Asymptotic Distribution

We have seen in Section 3 that all quantities of interest in (11) are functions of multiple objects of the form
[H(c), G(c)]r. Therefore, if we can obtain a multivariate asymptotic distribution for a vector with elements
of the form [H(c), G(c)]r, the asymptotic distributions for all our estimators follow by the delta method.
Presenting this asymptotic distribution is the purpose of the current section.

We first specify the smoothness restrictions on the functions H and G. For this purpose, we denote by

G(p) the set of real-valued functions H that satisfy the following polynomial growth condition. For p > 3,

G(p) = {H : H is three-times continuously differentiable and for some K > 0,

8Note that &5 = (Egh’m) is (d x d x d')-dimensional and &sdWs is (d x d)-dimensional with (5sdW;)9" = Zd, Egh’de;“.

m=19s



[07H (z)|| < K(1+ [|z[))’~7,j =0,1,2,3}.

The same assumption is used in other contexts by Jacod and Rosenbaum (2012), Jacod and Rosenbaum
(2013), and Li, Todorov, and Tauchen (2013).

Let Hy,G4,...,H,, G, be some arbitrary elements of G(p). We are interested in the asymptotic behav-
) _—_ AN _—  _AN\T _—~  _LIN _—  _LIN\T
ior of vectors ([Hl(c)@l(c)]T e [He(0), G0 ) and ([Hl(c),Gl(c)]T o [He(0), G0 )

The following theorem summarizes the joint asymptotic behavior of the estimators.

— _—_ AN _—_  LIN
Theorem 1. Let [H,(c),G,(c)|y be either [H,(c),Gr(c)lp or [Hy(c),Gr(c)lp  defined in (13) and (15),
respectively. Suppose Assumption 1 and Assumption 2 hold. Fiz ky, = 0A, "% and set 8p—1)/4(4p —r) <

w < % Then, as A, — 0,

AU/ : L=8 MN(0, 1), (19)

where Y = (Z;S) denotes the asymptotic covariance between the estimators [H,(c), G,(c)]; and
1<r,s<q

[H (c/),\GS(c)]T. The elements of the matrix Y are
Z;s _ E;s,(l) + 2257(2) + E;s,(.’})7
6 d d T
SRR DY / (O H, 0ut G 0,5 H 01 G (e1)) | C1 g, 1K) ab, )
0

g,h,a,b=1j,k,l,m=1

+ Cy(ab, jK)Cy(gh, )] dt,

d d T
s, (2 15160 Z _gh,jk—ab,lm | —ab,jk—gh,lm
ZT Y - ?0 ghab=1; kzl m:—l 0 (athraabGraijsalmGs(Ct)) [C? ’ Ct + Ct ! Cf dt7

d d T
r,8 3 .7 \=ab,lm — j
A v<3>:270 >y /0 (Dgn Hy- Db G 83 H 01 G5 (1)) {Ct(gh,]k)ctb’l + Cy(ab, lm)&™ 7"

g,h,a,b=1j,k,l,m=1

+ Cy(gh, Im)&™* 1 Cy(ab, jk)th’lm} dt,
with
Ci(gh, jk) = cgj1Chit + Cak,tChijt-

The convergence in Theorem 1 is stable in law (denoted L-s, see for example Aldous and Eagleson (1978)
and Jacod and Protter (2012)). The limit is mixed gaussian and the precision of the estimators depends on
the paths of the spot covariance and the volatility of volatility process. The rate of convergence A, 4 has
been shown to be the optimal for volatility of volatility estimation (under the assumption of no volatility
jumps).

The asymptotic variance of the estimators depends on the tuning parameter 6 whose choice may be
crucial for the reliability of the inference. We document the sensitivity of the inference theory to the choice

of the parameter 6 in a Monte Carlo experiment (see Section 5).
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4.3 Estimation of the Asymptotic Covariance Matrix

To provide a consistent estimator for the element X7:° of the asymptotic covariance matrix in Theorem 1,
we introduce the following quantities:

d [T/A,]—4kn+1
are™ = Z Z Z (Ogn Hy0ab G051 Hs 01 G5 (T})) [Cm” (gh, jk)Cin, (ab,lm)
g,h,a,b=1 j k.l m=1
+ Cia, (ab, jk)Cia, (gh, 1m) .
I d d (T/An]—4kn+1 1 i , z
=3 3 (Oan Hy as G 0in HoDhn Gia(G0)) | 570517550 AT +

g,h,a,b=1 j,k,l,m=1 i=1

lAn aban,ma~n,gh ~n,jk + = 1 nab ~n,jk~n,gh ~n,Im + 1. n,gh~n,lm~n,ab ~n,jk
2% Vi Vit2k, Yit2k, 5% i Vit2k, Vit 2k, 2% Vi Vitok, Yit2k,

[T/AR]—4kn,+1

5\2987(3) Z Z Z (8ghH,ﬁabGr@ijsalmGs(E?)) X

ghab 1j,k,l,m=1

ILZLE)

[c (gh, jR)FAM L Cin, (ab, Im)F 5K 4 Cin, (gh, Im)AP3™ % 1+ (Cia,, (ab, jE)F"F™ lm},

Z

n,jk _

ik ~n,jk ~ N (e —~ ~ —~
with ;7% = ¢/ — &7 and Cia, (gh, jk) = (Cgjiin, Chk.in, + Cokin, Chjin, )-

The following result holds,

Theorem 2. Suppose the assumptions of Theorem 1 hold, then, as A, — 0

6 A, (1 P r,s,(1
8 a2y e
3 ars(3) 6’\7“3(1) P r,8,(3)
=1y ARSI it
260 0
1516 9 25,(2 1 4r 63 P r,8,(2
140 4€2[Q7" ()+6 QTS() 3QTS()]4>ZTS()'

The estimated matrix EA]T is symmetric but is not guaranteed to be positive semi-definite. By Theorem 1,
Sris positive semi-definite in large samples. The form of the asymptotic variance is relatively complicated.
Estimating it using subsampling or bootstrap techniques is an interesting research question that is beyond
the scope of this paper.

Remark 1: Using results in Jacod and Rosenbaum (2012), it can be shown that the first convergence in
Theorem 2 holds at a rate of A, /2 While the last convergence rate is A, 1/4 by a straightforward extension

2 can be shown to have a rate of convergence A_1/4

r,8,(2)

of Theorem 1. Our estimator of X7
Remark 2: In the one-dimensional case (d = 1), much simpler estimators of X7’ can be constructed
using the quantities 377*3 lmfy\ﬁrgkh i or A hgmulmzmghzny as in Vetter (2012). However, in the
multidimensional case, the latter quantities do not identify separately the quantity 7% !™e;9"*¥ since the
combination gZktme ey 4 gikghglmay 4 Gikeygghlm g owg up in a non-trivial way in the limit of the
estimator.

— — AN — LIN

Corollary 3. For 1 <r <k, let [H.(c),Gr(c)|y be either [H,(c),G(c)ly or [Hy(c),Gr(c)]lp  defined in
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(15) and (13), respectively. Suppose the assumptions of theorem 1 hold, then we have:

o —

[Hy(c), Gi(c)lp — [Hi(e), Gi(0)]r
AGVAST? : L5 N, 1), (20)

[Hu(€). Gul©)ly — [Hu(), GulO)]r
In the above, we use the notation L to denote the convergence in distribution and I,; the identity matrix
of order k. Corollary 3 states the standardized asymptotic distribution, which follows directly from the
properties of stable-in-law convergence. Similarly, by the delta method, standardized asymptotic distribution
can also be derived for the estimators of the quantities in (11). These standardized distributions allow
the construction of confidence intervals for all the latent quantities of the form [H,(c), G,(c)]r and, more

generally, functions of these quantities.

4.4 Testing procedure

We now describe the three statistical tests that we are interested in. The test of absence of dependence

between the IV of the returns on asset ¢ and j can be formulated as:

H& teziyezilr =0 vs Hl1 tezi, ezjlr # 0.
The null hypothesis H} is rejected whenever,
‘[CZ/i,C\Zj ]T‘

JAVAR(czic2,)

The test of absence of dependence between the IV of stock j and all IV factors ¢ takes the following form:

A_1/4

n

> Zy.

H{ :[cziq)r =0 vs Hf :lezj,qlr #0.

Denoting by d, the number of IV factors, we reject the above null hypothesis HZ when,

-1 _—

A;Ll/4 ([C/ZJ:]T)T (m(chv‘J)) lczj, qlp > Xd2q,l—o¢'
The test of absence of dependence between the NS-IVs can be stated as:
HY e3P 3l )r =0 vs H = (e}, chf|r #0,
with the null rejected if

NS NS
‘[ zi +Czj ]T’

\/ AVAR(c?,c})
Our inference theory also allows to test more general hypotheses, which are joint across any subset
_— _—_ AN _—  LIN

of the panel. In the above statements, [H(c),G(c)]; can be either [H(c),G(c)l; or [H(c),G(c)lp

M(H(c), G(c)) is an estimate of the asymptotic variance of [H(?),B(c)]T, Z,, stands for the (1 — «)
quantile of the N(0,1), and X(,%q,l—a stands for (1 — «) quantile of the Xd2q distribution. For the first two

A71/4

> Zg.
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tests, the expression for the true asymptotic variance is obtained using Theorem 1 and its estimation follows
from Theorem 2. The asymptotic variance of the third test is obtained by an application of the delta method
to the convergence result in Theorem 1. The expression of the AVAR for the third test involves some of the
latent quantities defined in (11), which can be estimated using either AN- or LIN-type estimators. There-
fore in general, we have two tests for each null hypothesis, corresponding to the two type of estimators for
[H(c),G(c)]r. Under (2) and the assumptions of Theorem 1, Corollary 3 implies that the asymptotic size
of the two types of tests for the null hypotheses Hj and Hg is «, and their power approaches 1. The same
properties apply for the tests of the null hypotheses H§ as long as (2) and our IV-FM representation (5)
hold.

Theoretically, it is possible to test for absence of dependence in the IVs at the spot level. In this case
the null hypothesis is H' : [cz;,cz4]: =0 for all 0 <¢ < T, which is, in theory, stronger than our H{'. In
particular, Theorem 1 can be used to set up Kolmogorov-Smirnov type of tests for Hj' in the same spirit
as Vetter (2012). However, we do not pursue this direction in the current paper for two reasons. First,
the testing procedure would be more involved. Second, empirical evidence suggests nonnegative dependence
between IVs, which means that in practice, it is not too restrictive to assume [cz;, cz;]¢ > 0 V¢, under which

H} and H{!' are equivalent.

5 Monte Carlo

This section investigates the finite sample properties of our estimators and tests. The data generating
process (DGP) is similar to that of LTT and is constructed as follows. Denote by Y7 and Y3 log-prices of
two individual stocks, and by X the log-price of the market portfolio. Recall that the superscript ¢ indicates

the continuous part of a process. We assume
dXy = dX{ +dJs;, dX{ = /cx AW,
and, for j =1, 2,
dYj, = BidXy +dYF, +dJje,  dYS, = \Jez;:dW),.

In the above, cx is the spot volatility of the market portfolio, Wl, and WQ are Brownian motions with
Corr(d,V\V/'M,sz,t) = 0.4, and W is an independent Brownian motion; Ji,J2, and J3 are independent
compound Poisson processes with intensity equal to 2 jumps per year and jump size distribution N(0,0.022).
The beta process is time-varying and is specified as 5; = 0.5 + 0.1 sin(100¢).

We next specify the volatility processes. As our building blocks, we first generate four processes fi, ..., fa

as mutually independent Cox Ingersoll Ross processes,

dfye = 5(0.00 — f1,)dt + 0.35«/f17t< — 0.8dW; + mdBLt),
dfj7t = 5(009 — fj7t)dt + 0.35+4/ fl,tdBj,t , for j =2,3,4,

where By, ..., B4 and independent standard Brownian Motions, which are also independent from the Brown-
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ian Motions of the return Factor Model.” We use the first process fi as the market volatility, i.e., cx; = f1.4.
We use the other three processes fo, f3, and f4 to construct three different specifications for the IV processes
cz1,+ and cza ¢, see Table 1 for details. The common Brownian Motion W, in the market portfolio price pro-
cess X; and its volatility process cx ¢ = fi1,: generates a leverage effect for the market portfolio. The value
of the leverage effect is -0.8, which is standard in the literature, see Kalnina and Xiu (2014), Ait-Sahalia,
Fan, and Li (2013) and Ait-Sahalia, Fan, Laeven, Wang, and Yang (2013).

CZ1,t Cz2t
Model 1 0.14+1.5f3 0.14+1.5f54
Model 2 0.1+ 0.6cx ¢+ 0.4f5; 0.1+ 0.5cx,+ +0.5f3,

Model 3 0.1+ O.45CX7t + fgﬁt + 0-4f4,t 0.1+ 0.356_}(’,3 + 0~3f37t + 0.6f47t

Table 1: Different specifications for the Idiosyncratic Volatility processes cz; tand czg +.

We set the time span T' equal 1260 or 2520 days, which correspond approximately to 5 and 10 business
years. These values are close to those typically used in the nonparametric leverage effect estimation literature
(see Ait-Sahalia, Fan, and Li (2013) and Kalnina and Xiu (2014)), which is related to the problem of volatility
of volatility estimation. Each day consists of 6.5 trading hours. We consider two different values for the
sampling frequency, A,, = 1 minute and A,, = 5 minutes. We follow LTT and set the truncation threshold
uy, in day t at 35, A%49 where 7 is the squared root of the annualized bipower variation of Barndorff-Nielsen
and Shephard (2004). We use 10 000 Monte Carlo replications in all the experiments.

We first investigate the finite sample properties of the estimators under Model 3. The considered esti-

mators include:
e the IV beta of the first stock (b21),
e the correlation between the first idiosyncratic volatility and the market volatility (p Z1),

e the contribution of the non-systematic idiosyncratic volatility to the variation in the idiosyncratic

volatility in the case of the first stock (1 — R2ZII V_FM),
e the correlation between the idiosyncratic volatilities (pZL ZQ),
e the correlation between non-systematic idiosyncratic volatilities (pgls Z2)7
e the contribution of the NS-IV to the dependence between IVs (1 — IZ‘{?QM )

The interpretation of simulation results is much simpler when the quantities of interest do not change across
simulations. To achieve that, we generate once and keep fixed the paths of the processes (f;+)1<j<a and
replicate several times the other parts of the DGP. In Table 2, we report the bias and the interquartile
range (IQR) of the two type of estimators for each quantity using 5 minutes data sampled over 10 years.
We choose four different values for the width of the subsamples, which corresponds to § = 1.5,2,2.5 and

3 (recall that the number of observations in a window is k,, = 6/v/A,,). It seems that larger values of the

9The Feller property is satisfied implying the positiveness of the processes (fj,1)1<j<4-
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parameters produce better results. Next, we investigate how these results change when we increase the
sampling frequency. In Table 3, we report the results with A,, = 1 minute in the same setting. We note
a reduction of the bias and IQR at all levels of significance. However, the magnitude of the decrease of
the IQR is very small. Finally, we conduct the same experiment using data sampled at one minute over 5
years. Despite using more than twice as many observations than in the first experiment, the precision is not
as good. In other words, increasing the time span is more effective for precision gain than increasing the

sampling frequency. This result is typical for A}/ 4—converg;ent estimators, see, e.g., Kalnina and Xiu (2014).

AN LIN
0 1.5 2 2.5 3 1.5 2 2.5 3
Median Bias

[ -0.047  -0.025  -0.011  -0.003  -0.006  0.001  0.009  0.015

Pz 0182 -0.127  -0.096  -0.078  -0.186  -0.136  -0.105  -0.085

1—RZIVFM | 0176 0130 0103 0085 0181  0.140  0.112  0.092
71,72 20288 0212 -0.163  -0.133  -0.249  -0.190  -0.146  -0.120
Py 7o 0189 -0.113  -0.064  -0.034  -0.150  -0.091  -0.047  -0.021
1— QL EM 0.139 0.102 0.086 0.077 0.129 0.104 0.092 0.082

' IQR

bz 0222 0166  0.138 0121 0226 0168 0139  0.122

Pz 0.244 0200 0173  0.149 0218 0183 0157  0.139

1—-RZ[VFM | 0210 0188 0172 0152 0.181 0166  0.152  0.140
71,22 0404 0325 0263 0223 0338 028 0237  0.205
P 4o 0456  0.384 0315 0272 0388 0337 0285  0.250
1— QY EM 0.345 0306 0257 0216  0.327 0276  0.233  0.195

Table 2: Finite sample properties of our estimators using 10 years of data sampled at 5 minutes. The true
values are bz = 0.450, pz1 = 0.585, 1 — RJFM = 0.658, pz1,20 = 0.523, p3t 5 = 0.424, 1 — QP FM =
0.618.

Next, we study the size and power of the three statistical tests as outlined in Section 4.4. We use
Model 1 to study the size properties of the first two tests: the test of the absence of dependence between
the IVs (H} : [ez1,cz2]r = 0), and the absence of dependence between the IV of the first stock and the
market volatility (HZ : [cz1,cx]|r = 0). We use Model 2 to study the size properties of the third test
(HE : [cgls, C%S]T = 0). Finally, we use Model 3 to study power properties of all three tests.

The upper panel Tables 5, 6, and 7 reports the size results while the lower panels shows the results for
the power. We present the results for the two sampling frequencies (A,, = 1 minute and A,, = 5 minutes)
and the two type of tests (AN and LIN). We observe that the size of three tests are reasonably close to
their nominal levels. The rejection probabilities under the alternatives are rather high, except when the data
is sampled at 5 minutes frequency and the nominal level at 1%.'° We note that the tests based on LIN
estimators have better testing power compared to those that build on AN estimators. Increasing the window
length induces some size distortions but is very effective for power gain. Consistent with the asymptotic
theory, the size of the three tests are closer to the nominal levels and the power is higher at the one minute

sampling frequency. Clearly, the test of absence of dependence between IV and the market volatility has the

10We set the nominal level at 5% in the empirical application.
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AN LIN
0 1.5 2 2.5 3 1.5 2 2.5 3
Median Bias

b -0.022  -0.012  -0.003  0.004  -0.003  -0.000  0.006 0.012

pz1 -0.105  -0.085  -0.066  -0.050  -0.110  -0.089  -0.069  -0.052

1— RLY-FM | 0.107 0.091 0.073 0.056 0.113 0.095 0.075 0.058
Pz1,72 -0.147  -0.104  -0.073  -0.048  -0.133  -0.097  -0.067  -0.042
PYL 72 -0.135  -0.086  -0.058  -0.039  -0.119  -0.078  -0.052  -0.032
1— QL kM 0.071 0.045 0.035 0.029 0.067 0.047 0.038 0.032

' IQR

b 0.156 0.112 0.088 0.075 0.157 0.112 0.088 0.075

pz1 0.200 0.146 0.114 0.094 0.189 0.139 0.110 0.091

1— RY-FM | 0.201 0.146 0.118 0.100 0.184 0.138 0.113 0.096
Pz1,72 0.340 0.238 0.184 0.150 0.309 0.226 0.177 0.145
PYY 22 0.417 0.291 0.228 0.184 0.378 0.274 0.217 0.177
1— QU EM 0.355 0.266 0.201 0.158 0.339 0.251 0.191 0.151

Table 3: Finite sample properties of our estimators using 10 years of data sampled at 1 minute. The true
values are bz = 0.450, pz1 = 0.580, 1 — Ry{" "™ = 0.664, pz1,70 = 0.514, p3P 5 = 0.408, 1 — QI IM =
0.606.

AN LIN
0 1.5 2 2.5 3 1.5 2 2.5 3
Median Bias

b -0.019  -0.011  -0.007  0.000  -0.001  -0.001  0.002  0.008

Pz 0117 -0.091  -0.074  -0.062  -0.120  -0.094  -0.076  -0.063

1—RZIVEM | 0115 0.096  0.081  0.069 0119 0100  0.084  0.071
71,22 -0.168  -0.101  -0.064  -0.038  -0.149  -0.092  -0.057  -0.033
Py 4o 0141 -0.079  -0.035  -0.007  -0.127  -0.067  -0.029  -0.001
1— QU EM 0.121  0.094 0086 0087 0113  0.095  0.088  0.087

IQR

b 0215 0159 0128  0.110 0216 0158 0129  0.110

Pz 0.263 0196 0160 0135 0252 0189 0155  0.131

1—RZIVEM | 99282 0204 0168 0144 0260 0194  0.161  0.139
pz1,22 0472 0337 0263 0213 0436 0319 0252  0.206
PYL 72 0.541 0.412 0.324 0.266 0.510 0.391 0.311 0.256
1 - QY EM 0.357 0313 0247  0.198 0356  0.297  0.238  0.189

Table 4: Finite sample properties of our estimators using 5 years of data sampled at 1 minute. The true values
are bz1 = 0450, pz1 = 0.591, 1 — Ry "™ = 0.650, pz1,22 = 0.517, pi¥ 5, = 0.417, 1 — QI LM = 0.613.
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best power, followed by the test of absence of dependence between the two IVs. This ranking is compatible
with the notion that the finite sample properties of the tests deteriorate with the degree of latency embedded
in each null hypothesis.

A, = 5 minutes A,, = 1 minute
f=1.5 0=20 0=25 f=1.5 0=20 f=2.5
Type of the test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 1

a = 20% 19.5 21.0 194 204 194 20.7 20.2 196 19.7 199 19.8 20.1
a = 10% 9.7 106 106 126 9.7 103 10.2 9.7 10.0 10.2 9.8 10.2
a=5% 47 51 45 5.3 4.8 5.6 53 53 52 53 49 5.1
a=1% 09 1.1 09 1.2 09 1.1 1.1 1.1 12 141 1.0 1.0
Panel B : Power Analysis-Model 3
a = 20% 33.5 45.7 504 63.1 67.8 78.1 48,5 56.2 777 823 941 95.8
a=10% 20.5 315 35.7 483 53.3 65.8 33.9 410 65.6 71.6 88.0 91.2
a=5% 119 21.0 239 35.76 40.6 534 22.3 295 528 59.8 79.6 844
a=1% 33 69 87 156 184 286 8.9 124 28.6 345 574 64.1

Table 5: Size and Power of the test of absence of dependence between idiosyncratic volatilities for T =
10 years.

A,, = 5 minutes A,, = 1 minute
f=15 0 =2.0 0=25 f=1.5 0=20 =25
Type of test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 1
a=20% 22.6 20.1 200 21.0 19.8 215 21.6 206 21.6 21.5 21.1 215
a=10% 12.1 102 100 106 9.8 11.0 11.0 104 103 104 104 104
a=5% 6.2 50 45 52 46 54 55 54 52 51 52 53
a=1% 1.5 10 08 1.0 09 12 1.1 .1 1.0 09 08 1.0

Panel B : Power Analysis-Model 3
a = 20% 73.1 80.7 91.4 939 974 983 95.8 972 99.7 99.8 100 100
a=10% 60.0 69.0 84.0 88.3 94.6 96.1 91.1 933 99.2 994 100 100
a=5% 477 572 75.0 81.0 89.6 92.6 84.9 882 98.2 986 100 100
a=1% 241 323 522 60.1 73.7 789 67.7 720 93.0 945 99.2 99.4

Table 6: Size and Power of the test of absence of dependence between the idiosyncratic volatility and the
market volatility for T = 10 years.

17



A,, = 5 minutes A,, = 1 minute
=15 0=2.0 0=25 f=1.5 0=20 0=25
Type of test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 2
a=20% 19.9 23 204 23.7 20.2 232 19.7 20.5 203 21.7 20.0 22.3
a=10% 10.0 10.1 121 10.8 9.9 126 10.1 103 106 11.3 10.1 114
a=5% 50 63 51 63 51 6.7 55 55 53 59 52 6.0
a=1% 1.1 15 08 16 1.1 14 1.1 1.2 13 13 13 1.5

Panel B : Power Analysis-Model 3
a = 20% 25.1 321 29.0 36.5 42.8 51.7 31.0 35 50.0 54.6 68.0 723
a=10% 13.7 19.2 16.8 23.0 28.1 36.9 19.0 222 350 394 534 583
a=5% 74 113 93 142 183 252 11.0 13.7 239 28.0 40.0 44.9
a=1% 1.6 31 23 39 60 95 29 40 93 116 188 222

Table 7: Size and Power of the test of absence of dependence between NS-1Vs for T' = 10 years.

6 Empirical Analysis

We apply our methods to study the cross-sectional dependence in IV using high frequency data. We find
that stocks’ idiosyncratic volatilities co-move strongly with the market volatility. Also, we find that market
volatility is often the main source of the dependence observed in the IVs. This is a quite surprising finding.
It is of course well known that the total volatility of stocks moves with the market volatility. However, we
stress that we find that the strong effect is still present when considering the idiosyncratic volatilities.

We use full record transaction prices from NYSE TAQ database for 27 stocks over the time period
2003-2012. After removing the non-trading days, our sample contains 2517 days. The selected stocks have
been part of S&P 500 index throughout our sample. Our 27 stocks contain three liquid stocks in each of
the nine sectors of the index (Consumer Discretionary, Consumer Staples, Energy, Financial, Health Care,
Industrial, Materials, Technology, and Utilities). For each day, we consider data from the regular exchange
opening hours from time stamped between 9:30 a.m. until 4 p.m. We clean the data following the procedure
suggested by 7, remove the overnight returns and then sample at 5 minutes. This sparse sampling has been
widely used in the literature because the effect of the microstructure noise and potential asynchronicity of
the data is less important at this frequency, see also ?.

The parameter choices for the estimators are as follows. Guided by our Monte Carlo results, we set the
length of window to be approximately one week for the estimators in Section 3 (this corresponds to 6 = 2.5
where k, = 0A, 1/2 is the number of observations in a window). The truncation threshold for all estimators
is set as in the Monte Carlo study (35;A%% where 57 is the bipower variation).

We consider two sets of factors in the factor model for returns: the S&P500 market index and the three
Fama-French factors (FF3 henceforth). All factors are sampled at 5 minutes over 2003-2012."!

Figures 1 and 2 contain plots of the time series of the estimated 1 — R%,j of the return regressions, i.e.,

the estimated monthly contribution of the idiosyncratic volatility to the total volatility, for each stock in the

1 The high-frequency data on the Fama-French factors were obtained from Ait-Sahalia, Kalnina, and Xiu (2014).
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two models (CAPM and FF3).!? In Table 8, we report the average of these monthly statistics over the full
sample. As we can see in Table 8, the idiosyncratic returns have a relatively high contribution to the total
variation of the returns in the two models. The minimum value (across all the stocks) for 1 — RS is 61.5%
for the one-factor model and 53.5% in the FF3 model. Figures 1 and 2 show that the time series of all stocks
follow approximately the same trend with a considerable drop in the contribution around the crisis year 2008,
which shows that the systemic risk became relatively more important during this period. Overall our results
suggest that IV contributes to more than a half of the total variation for each stock. Therefore, studying
the source of variation in I'Vs is potentially useful. We proceed to investigate the dynamic properties of the
panel of idiosyncratic volatilities.

We first investigate the (total) dependence in the idiosyncratic volatilities. We have 351 pairs of stocks
available in the panel. For each pair of stocks, we compute the correlation between the IVs, pz; 7z;. The
upper and lower panels of Table 13 display the correlations estimated using the LIN-type estimators in the
CAPM and FF3 as the factor model for prices.'> The values in parenthesis correspond to the p-values of the
test of dependence in the IVs (see Section 4.4 for an expression of the test statistic). The reader should be
careful when interpreting these p-values because they are not adjusted for multiple testing. Clearly, there
is evidence for strong dependence between the IVs. Indeed, the absolute values of the t-statistics are bigger
than 1.96 for 350 pairs over 351. Only the dependence between the IV of the Goldman Sachs (GS) and IBM
gives rise to the absolute value of the t-statistic smaller than 1.96. Using the Bonferroni correction, the p-
value of the test of absence of dependence in all pairs is less than 0.0001. The estimated correlation is positive
for each pair of stocks. We also observe substantial heterogeneity in the correlation with a maximum value
of 94.4% (Exxon Mobil (XOM) and Chevron Corp (CVX)) and a minimum value of 24.8% (Duke Energy
(DUK) and Avery Dennison Corporation (AVY)). Table 9 is a summary of the results of Table 13; it shows
the number of pairs with the estimated correlation greater than a set of thresholds. For example, it shows
that the correlation is greater than 50% for more than two thirds of the pairs (265). Interestingly, the results
of the test are unchanged for the FF3 model, and the estimated correlations are very close to those obtained
in the CAPM. This result is not surprising given the relatively small difference between the values of R%- y
in the two models.

We next ask the question of whether potential missing factors in the factor model for returns might
be responsible for the strong dependence in IVs. Omitted factors in the factor model for returns induce

correlation between the estimated idiosyncratic returns, Corr(Z;, Z;).!* We report in Table 12 the estimated

12For the j" stock, our analog of the coefficient of determination in the return factor model for this stock is R%,j =

1 dofezjqdt
J& evjedt

requires a choice of a block size for the spot volatility estimation; we choose two hours in practice (the number of observations
in a block, say [, has to satisfy l%An — 0 and Z%An — 00, so it is of smaller order than the number of observations k,, in our
estimators of Section 3).

13This choice is motivated by our simulation results where LIN type of estimators and tests appear to have better finite
sample properties than AN type estimators.

14 Our measure of correlation between the idiosyncratic returns Z; and Z j is

Jo czijedt
K
\/fOT CZi’tdt\/fOT CZj‘tdt

where cz;; ¢ is the spot covariation between the idiosyncratic returns Z; and Z;. Similarly to R

. We estimate R%,j using the general method of Jacod and Rosenbaum (2013). The resulting estimator of R%j

COI‘I‘(ZZ'7 Zj) =

i,j=1,...,ds, (21)

2

y j» We estimate Corr(Z;, Zj)

19



correlations Corr(Z;, Z;). Table 10 presents a summary of how estimates of Corr(Z;, Z;) in Table 12 are
related to the estimates of correlation in IVs, pz; z;, in Table 13. In particular, different rows in Table
10 display average values of pgz; z; among those pairs, for which Corr(Z;, Z;) is below some threshold.
For example, the last-but-one row in Table 10 indicates that there are 56 pairs of stocks with estimated
Corr(Z;, Z;) < 0.01, and among those stocks, the average correlation between IVs, pz; z;, is estimated to be
0.579. This estimate pyz; z; is virtually the same among pairs of stocks with high Corr(Z;, Z;). Therefore,
we know that among 56 pairs of stocks, a missing return factor cannot explain dependence in IVs. Moreover,
these results suggest that missing return factor cannot explain dependence in IVs for all considered stocks.
These results are in line with recent findings of Herskovic, Kelly, Lustig, and Nieuwerburgh (2014) with daily
and monthly returns.

To understand the source of the strong dependence in the IVs, we consider the Idiosyncratic Volatility
Factor Model (IV-FM) of Section 2. We use the market volatility as the single IV factor. We start by
considering individual stocks separately. In Table 11, we report the estimates of the idiosyncratic volatility
beta (BZi), the correlation between the idiosyncratic volatility and the market volatility (pz;), and the
contribution of each non-systemic IV (NS-IV) to the aggregate variation in IV (1 — Rzzll V=EMYy The absolute
values of the t-statistics based on the covariation between IV and the market volatility are bigger than
1.96 for each stock. For every stock, the estimated IV beta and the correlation pz; are positive, suggesting
that the idiosyncratic volatility co-moves with the market volatility. For 16 stocks out of 27, the NS-IV
contributes to more than 50% of the variation in their IV, with the average being 56%.

Next, we turn to the implications of the IV-FM for the cross-section. In Table 14 we report, for each pair
of stocks, the correlation between the NS-IVs, pgfzj. The values are much smaller than the correlations
between the total IVs (pz; z;) in Table 13. Next, Table 15 reports, for each pair of stocks, the contribution
of the dependence in the NS-IVs to the total dependence in the IVs (1 — QIZ‘Z/'Z};M ). Overall, the fraction
of dependence explained by the market volatility is very large. As it is apparent in the tables, there are
only two pairs, for which the contribution of the NS-IVs is greater that 50%. Therefore, market volatility
seems to be the main source of the dependence. Its average contribution of the systemic IVs to the total
dependence in the idiosyncratic volatilities is 73.8% in the CAPM and 73.5% in the FF3 model.

Given the large fraction of the cross-sectional dependence in IVs that is explained by the market volatility,
it is interesting to investigate if our IV-FM can fully explain the IV dependence across stocks. For this
purpose, we conduct inference on dependence in the NS-IVs. Table 14 displays the estimated correlation
between the NS-IVs. The residual correlations are smaller than the total IV correlations. There are only 26
pairs of stocks with this correlation higher than 50% in the CAPM model and 27 pairs in the FF3 model.
Interestingly, they all remain positive. The t-statistics based on covariation between NS-IVs are larger than
1.96 for 241 pairs in the CAPM and 244 pairs in the FF3 model (see the values in parenthesis of both Tables
14 and 13). From Table 11, each stock has at least eight other stocks with whom it produces a t-statistic
bigger than 1.96. Using the Bonferroni correction, the p-value of the test of absence of dependence in all pairs

is less than 0.0001. We conclude that despite the market volatility explaining most of the cross-sectional

using the method of Jacod and Rosenbaum (2013).
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dependence in IVs, it does not explain all of it. Additional IV factors may help to explain all the dependence

in the idiosyncratic volatilities.

Sector Stock Ticker | CAPM | FF3 Model
Financial American Express Co. AXP 65.2 56.5
Goldman Sachs Group GS 65.5 56.9
JPMorgan Chase & Co. JPM 63.0 54.8
Energy Chevron Corp. CVvX 64.2 55.8
Schlumberger Ltd. SLB 74.0 64.3
Exxon Mobil Corp. XOM 61.5 53.5
Consumer Staples Coca Cola Company KO 75.2 65.4
Procter & Gamble PG 74.8 65.1
Wal-Mart Stores WMT 73.7 64.0
Industrials Caterpillar Inc. CAT 63.2 54.8
3M Company MMM 63.4 55.0
United Technologies UTX 63.8 55.5
Technology Cisco Systems CSCO 65.5 56.9
International Bus. Machines IBM 63.3 55.2
Intel Corp. INTC 63.0 54.8
Health Care Johnson & Johnson JNJ 75.6 65.7
Merck & Co. MRK 78.6 68.5
Pfizer Inc. PFE 75.9 66.1
Consumer Discretionary Home Depot HD 69.1 60.1
McDonald’s Corp. MCD 75.8 65.9
Nike NKE 74.5 64.7
Utilities Air Products & Chemicals Inc | APD 66.8 58.0
Allegheny Technologies Inc ATI 71.3 61.8
Avery Dennison Corp AVY 70.7 61.5
Material Duke Energy DUK 80.9 70.3
CenterPoint Energy CNP 82.8 72.0
Exelon Corp. EXC 80.8 70.2

Table 8: Average of the monthly contribution of the IV of stocks to their total volatility (1—R%j) over the
period 2003:2012 in percentages. The first column provides information on the sectors, the second the names
of the companies and the third their tickers. The fourth and and fifth columns show l—R%j for the CAPM
and FF3 return model.
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pziz; | CAPM | FF3 Model
> 0.9 2 2
> 0.8 13 13
> 0.7 60 58
> 0.6 158 163
> 0.5 265 265
> 0.4 323 323
> 0.3 350 350
> 0.2 350 350
>0.1 350 350
#0 350 350

Table 9: Number of pairs of stocks with significant dependence between their IVs and the estimated cor-
relation greater than the threshold given in the first column. The second column shows the results for the
CAPM model. The results for the FF3 model are reported in the third column.

CAPM FF3 Model
|Corr(Z;, Z;)| | Pairs  Avg [Corr(Zi, Z;)| Avg priz; | Pairs  Avg |Corr(Z;, Z;)|  Ave prizi
< 0.6 351 0.043 0.585 351 0.043 0.586
<04 350 0.042 0.584 350 0.042 0.585
<0.3 348 0.040 0.583 348 0.041 0.584
<0.2 343 0.037 0.583 343 0.038 0.584
<0.1 323 0.031 0.580 323 0.031 0.581
< 0.075 303 0.028 0.579 304 0.028 0.581
< 0.05 265 0.023 0.570 266 0.023 0.571
<0.025 | 152 0.013 0.568 152 0.013 0.566
<0.01 56 0.005 0.579 56 0.005 0.574
<0.005 | 29 0.003 0.580 27 0.003 0.580

Table 10: We report the number of pairs of stocks with the absolute value of the correlation between their
idiosyncratic returns smaller than the threshold given in the first column, the average of the absolute value
of the idiosyncratic returns correlation for those pairs as well as the average of the IVs correlation for the
same pairs. The results are presented both for the CAPM and the FF3 models.
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CAPM FF3 Model
Stock | B 5 1-RZVTM@) pal #| B 5 1-RVTMG) pual #
AXP 1.600 0.685 53.1 0.010 13 | 1.584 0.684 53.2 0.011 13
GS 2.313  0.498 75.2 0.024 13 | 2.341 0.505 74.5 0.018 13
JPM 1.899 0.540 70.9 0.004 8 | 1.894 0.538 71.0 0.004 9
CVX | 0.611 0.714 49.0 0.008 20 | 0.603 0.715 48.9 0.008 20
SLB 1.064 0.723 47.8 0.005 16 | 1.043 0.718 48.4 0.005 15
XOM | 0.576 0.762 42.0 0.004 21 | 0.575 0.760 42.2 0.004 19
KO 0.327 0.753 43.2 0.013 13 | 0.328 0.753 43.3 0.012 14
PG 0.427 0.784 38.5 0.002 18 | 0.424 0.784 38.5 0.002 19
WMT | 0.445 0.752 43.5 0.007 22| 0.444 0.753 43.3 0.007 22
CAT 0.589 0.649 57.9 0.002 13 | 0.590 0.648 58.0 0.003 14
MMM | 0.389 0.733 46.3 0.000 16 | 0.386 0.729 46.9 0.000 15
UTx | 0.501 0.717 48.6 0.004 17 | 0.501 0.716 48.7 0.004 17
CSCO | 0.571 0.667 55.5 0.002 20 | 0.562 0.664 55.9 0.002 21
IBM 0.339 0.650 57.7 0.015 9 | 0.343 0.657 56.8 0.011 9
INTC | 0.454 0.669 55.3 0.003 23 | 0.451 0.663 56.0 0.003 22
JNJ 0.404 0.822 324 0.007 22 | 0.401 0.819 32.9 0.007 21
MRK | 0.535 0.558 68.9 0.001 24 | 0.534 0.557 68.9 0.001 24
PFE | 0.434 0.584 65.9 0.002 22 | 0.425 0.583 66.0 0.001 22
HD 0.500 0.652 57.5 0.005 19 | 0.499 0.652 57.5 0.004 16
MCD | 0.516 0.628 60.5 0.002 15 | 0.518 0.630 60.3 0.002 15
NKE | 0.528 0.664 55.9 0.000 25| 0.526 0.664 55.9 0.000 24
APD | 0.535 0.724 47.6 0.001 24 | 0.527 0.716 48.8 0.001 24
ATI 1.698 0.576 66.8 0.001 20 | 1.726 0.584 65.9 0.001 19
AVY | 0.315 0.429 81.6 0.001 15| 0.312 0.427 81.7 0.001 14
DUK | 0.415 0.461 78.7 0.002 19 | 0.415 0.466 78.3 0.002 20
CNP 0.740 0.540 70.8 0.001 20 | 0.737 0.541 70.7 0.001 20
EXC 0.927 0.776 39.8 0.001 21| 0.926 0.774 40.1 0.001 21

Table 11: Estimates of the IV beta (b,), the correlation between the IV and the market volatility (p,) and
the contribution of the NS-IV to the variation in the IV (1 — ]%I V-EM)  We use the market volatility as
the TV factor. P-val is the p-value of the test of the absence of dependence between the IV and the market
volatility for a given individual stock. In the column with the heading #, we report the number of stocks
with their NS-IV having a relatively large covariation with the NS-IV of the stock listed in the first column
(in particular, when the t-statistic based on the covariation between the NS-IVs is larger than 1.96 in the

absolute value).
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23




7 Conclusion

This paper provides tools for the analysis of cross-sectional dependencies in idiosyncratic volatilities using
high frequency data. First, using a factor model in prices, we develop inference theory for covariances and
correlations between the idiosyncratic volatilities. Next, we study an idiosyncratic volatility factor model,
in which we decompose the co-movements in idiosyncratic volatilities into two parts: those related to factors
such as the market volatility, and the residual co-movements. We provide the asymptotic theory for the
estimators in the decomposition.

Empirically, we find that our IV Factor Model with market volatility as the only factor explains a large
part of the cross-sectional dependence in IVs. However, it is not able to explain all of it. It therefore opens
the room for the construction of additional IV factors based on economic theory, for example, along the lines

of the heterogeneous agents model of Herskovic, Kelly, Lustig, and Nieuwerburgh (2014).
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Figure 1: Monthly contribution of the idiosyncratic volatility to the total volatility (1—?%%, j) over the period
2003:2012. The dotted blue line plots this measure calculated in CAPM model. The solid red line plots the
same measure obtained in the FF3 model. We use the ticker of the stocks to label the graphs.
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2003:2012. The dotted blue line plots this measure calculated in CAPM model. The solid red line plots the
same measure obtained in the FF3 model. We use the ticker of the stocks to label the graphs.
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B Proofs

Throughout, we denote by K a generic constant which may change from line to line. When it depends on a

parameter p we use the notation K, instead. We assume by convention > i =0 when a > a'.

B.1 Proof of Theorem 1

This theorem is proved in three steps. For simplicity, in the first two steps, we focus on the estimation of
[H(c),G(c)]r with H,G € G(p). The joint estimation is discussed in Step 3.
By a localization argument (See Lemma 4.4.9 of Jacod and Protter (2012)), there exists a A-integrable

function J on F and a constant such that the stochastic processes in (17) and (18) satisfy
1o 1ol], liells €1, 7 < A, [[6(w, ¢, 2)[|" < T (2) (22)
Setting by = by — [ 6(t, 2)1qjs(t,2) <13 A(dz) and Y/ = fot b.ds + fot osdW,, we have

Yt:Y0+Y;+ZAYS.

s<t

The local estimator of the spot variance of the unobservable process Y’ is given by,

& =TA > AR YNALY)T =@ 1<gn<a (23)
e =0

Note that no jumps truncation in needed in the definition of ¢;* since the process Y is continuous. There-

’

_——_ _LIN
fore, it is more convenient to work with ¢ rather than ¢}' (defined in (12)). Let [H(c),G(c)];  and
_—_ AN’ , _—~—_ LIN
[H(c),G(c)];  be the unfeasible estimators obtained by replacing ¢} by ¢, in the definition of [H(c), G(c)]
AN

and [H(c/),E(c)]T

Stepl: Dealing with price jumps

We prove that, as long as (8p —1)/4(4p — r) < w < 3, we have

_— LIN _—  LIN' _— AN _——— AN’
A(HE. GOl ~HO.GE)y ) =20 and A7Y([H(,G@)y - [H(O,GO]y ) 0.
(24)
To show this result, let define the functions
d
Z thaabG) (.13) (ygh - xgh) (yab - xab)v S(J?, y) = (H(y) - H(JZ)) (G(y) - G(.Z‘))
g,h,a,b=1
d
Z thaabG) (x) (wgaxhb + 29 h“)
g,h,a,b=1
for any R? x R? matrices « and y. The following decompositions hold,
_— AN _—_ AN’ 3 [T/ An] = 2kn+1 oy 2 /
HE.GOl —HO.Gly =5 > [(8@ ) - SEe,) - - (UE) -UEM)],
_—~  LIN _—~_ _LIN' 3 [T/ An]=2kn+1 ) ,
H).GOl,  —HE.GEly =5 Y [(RE.@,) — RE L)) — - (UE) - UEM)]-

i=1
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By (3.11) in Jacod and Rosenbaum (2012), there exists a sequence of real numbers a,, converging to zero
such that

E(|[¢l' — ¢, ”|| ) < annqu*’”)w“*q, for any ¢ > 0, (25)
Since H and G € G(p), it is easy to see that the functions R and S are continuously differentiable and satisfy

107 (z )l < K@+ ||z +[ly])*~" for 1 <g,ha,b<d and J € {S,R}, (26)
loU (@)l < K1+ |J=])*. (27)

where 0J (resp OU ) is a vector that collects the first order partial derivatives of the function J (resp U)
with respect to all the elements of (z,y) (resp x). By Taylor expansion, Jensen inequality, (26) and (27), it
can be shown that, for J € {S, R}

N
)+ K& —¢"|*

Ay A _ i i
|J(c} etn,) — J(Czn, zikn) Peh(ler =&+ ik, — Ciltr,

(2

K@+ e~ + (15,
+ K|y, — AzTJer P, and

U @) = U@EM| < KL+ &P le —&m1l) + Kler — e

K2

By (3.20) in Jacod and Rosenbaum (2012), we have E(||¢j"||") < K,, for any v > 0. Hence by Holder
inequality, for € > 0 fixed,

- ’\/71 /\/n € 1/1+€ ’\/71 - € €
E(le 20 - &) < (Bl —&m1+9))  (B(lem | @rm2a+a/e)

, 1/1+€
< K, (B(ler -2 +9))

e/1l+e

1 1
T

Using the above result and (25), it easy to see that, for (24) to hold, the following conditions are sufficient:

1 3 3 3
L)w—|—7—1 >0, Up-rw+1-2p—-2>0, and(2—r)w+—->0.
1+e€ 4 4

9 _
( 1+e€ 4=

Using the fact that 0 < w < %, and taking e sufficiently close to zero, we can see that the required condition
for (24) to hold is, (8p —1)/4(4p — r) < w < %, which completes the proof.

Step 2 : First approximation for the estimators

_—— LINy
Taking advantage of Step 1, it is enough to derive the asymptotic distributions of [H(c),G(c)];  and

’

_— AN/ _—~—_ LIN _— AN’
[H(c),G(c)]; . We show that the two estimators [H(c), G(c)];  and [H(c),G(c)];  can be approximated
by some quantity with an error of approximation of order smaller than A,, 14 To see this, we set

[T/AR]—2k,+1

HOGE - 2 ((%H‘%b(’)( @ e @ - e

ghab 1

2

~ gaAn hb An gbAn ha

- F(Cz + ¢ ¢ ) )
n

with ¢ = ¢(;_1)a, and the superscript A being a short for the word ”approximate”. For notational simplicity,

we do not index the above quantity by a prime although it depends on E;” instead ¢} . We aim to prove that

LIN' — A — AN’

A (@, GOl ~HE,GE)) S50 and A7VA([HE. Gl ~[H©), Golp) 2> 0. (28)

33



To prove (28), we introduce some new notations. Following Jacod and Rosenbaum (2012), we define

= (ATY)AMY)T — A, B =5"—c!, and 7] =Gy, — ¢, (29)
which satisfy
kn—1
o= Z @y + (€lyy = e)B) and 3f = B, — B + Du(cly, — ). (30)

The following holds

d [T/AR]—2kn+1

HE@.GOly |~ [HO,Gelr = — 3 > b,
q7hab 1

aw 4 3 [T/An]—2kn+1 d

HO.G@ly —[HE,GOl =5 Y (= X @uHouwG)En " "),
n i=1 g,h,a,b=1

with
Ui (9. hya,6) = (0 HOWG) (@) = (O HOmG) (1) )71,
= (H@E,) — HEM) (6@, - GED).

By Taylor expansion, we have

d
(00159 G) @) = (950G (1) = D (020G + 32, 0GOS ) (1)1
z,y=1
1 & _
+ 5 Z (8?k,£y,ghsaﬂbG + 6gy,ghsajzk’,ab(; + a?k,zy,abGaghS =+ 6§y,abGajzk,ghS) (E’?)ﬂzn’zyﬁ»?’]k
7,k,z,y=1
and
S( H—k Z aghS fyz man + Z k ghS i man ank Z Ty, ghS 7gh72n w
J,k,g,h z,y,9,h
1 n, n, n,xY on 1 n, n n,x
t5 0 D BynagnSCCTIN G e ST By SO
z,Y,3,k,9,h J.k.x,y,9,h

for S € {H,G}, & = A + (1 = N)&, C"% = As&™ + (1 — As)ely,, , CCMY = pgef + (1 — pg)e; for
A |, i, Aa, e € [0, 1]. Rigourously ¢ and A depend on g, h, a, and b. To avoid too cumbersome notation
we do not emphasize this additional dependence while we do take it into account in our derivations.

We recall some well-known results. For any continuous It6 process Z;, we have

q
E( sup || Zisw — 2, ‘]—'t) < K592, and HE(ZHS - Zt> | < Ks. (31)
wel0,s]
Set Fj* = F(i—1)a,,- By (4.10) in Jacod and Rosenbaum (2013) we have,
ko —1 .
E(‘ o' 7 ) < K,AY for all ¢ > 0 and E( 3 a?HH ]fi”) < K,A%KY? whenever ¢ > 2. (32)

Jj=

Combining (40), (38), (39) with Z = ¢ and the Holder inequality yields for ¢ > 2,

5

q‘fﬁ) < K, A4, (33)

Bi'

v

|7y < m,A1, and B(|
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The bound in the first equation of (41) is more tighter than that in (4.11) of Jacod and Rosenbaum (2012)
due to the absence of volatility jumps. This tighter bound will be useful later on for deriving the CLT for
the approximate estimator (Step 3). By the boundedness of ¢; and the polynomial growth assumption, we
have

n,T gk n, h nab
‘(agk,my,abGath + 6§y,thaj2'k,abG) (Ezn)ﬂ yﬁ ! 7 < K(l + ||~rl||)2(p 2)”571” ||71 ||2

J

Recalling & = A + (1 — A\)&" and using the convexity of the function z2(?~2) we can refine the last
inequality as follows:

<KL+ BIPE) BRI (34)

: n,xy on,jk_mn,gh _n,ab
’(ajk,xy,abGath+a§y,tha kabG)( & )ﬂz yﬂz ! Vi I Vi

By Taylor expansion, the polynomial growth assumption and using similar idea as for (34), we have

X¢ = D OnHOWG) ()" = Y (0gnH 3 0 G + 0gnGOj oy H)(e7) (0" + ﬁ" Pt 4

g,h,a,b g,h,a,b,5,k

> (OghHOwWG) (E") = (OgnHOwG)(c}) = > (9gnHOZ, 1y G + 0ab GO 1y G) () (Bl )y 40 4 o7

g,h,a,b g,h,a,b,z,y

with E( |gpf||]—"f) < KA, and E(\éf”}"{‘) < KA, which follow from applying Cauchy-Schwartz inequality
together with (41). Given that k,, = (A, )~'/2, a direct implication of the previous inequalities is

[T/An]—2k,+1 _ T/Ap]—2kn+1
1/4 [T/AR]— 3An1/4[ / ]Z 5ni>0
2ken i=1 ' .

3A,
2%,

i=1
Therefore, in order to prove the two claims in (28), it suffices to show

3AT 1/4 [T/An]=2kn+1

ok > (OnHOZ G + OgnHOY, G (e )y iyt 0, (35)
n i=1 g,h,a,b,j.k
3A_1/4 [T/An]—2k,+1 .
2; Z ((’9th8 k,ap G+ 8thagk wG)(c)B; ’gh%n aan’jk — 0. (36)
n i=1 g,h,a,b,j,k

For any cadlag bounded process Z, we set

O0<u<s

ﬁt,s(Z) = \/E< sup || Ziyu — Zt||2|]:f),

0<u<jA,

ni;(Z2) = \/E( sup [ ZG-1)antu — Z(z'fl)An||2|f?)'

In order to prove (35) and (36), we introduce the following lemmas.

Lemma 1. For any cadlag bounded process Z, for all t,s >0, j,k >0, set n.s = i, s(Z), then we have:

[t/An] [t/An]
AE(ka)—H), AE(ZW%)
[t/An]

B

The first three claims of Lemma 6 are proved in Jacod and Rosenbaum (2012). The last result can be proved

)<n”+k and A E( Z 7714k>*>0.
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similarly to the first two.

Lemma 2. Let Z be a continuous Ité process with drift term bf and spot variance process cf, set n, s =
ne.s(b%,c?), then the following bounds can be established:

IE(Z|Fo) — 7| < Ktno,,
IB(Z] ZF — tcZ9%| Fo)| < K32 (VA + 104
E((Z] 2 —tcg /") ('™ — ™) | Fo)| < Kt
(
(

|E ZjZkZlZm|f0) A2(Co,jk Zlm+ O,jl ka_’_coZ,ijg,kl)‘ SKt5/2
\E(Z] ZFZ!\ Fo)| < Kt?

6

|E(H ij|]_-0 Z Z Z CZ]ljl/ Zv]k]k’ ZJme | < Kt7/?

=1 <l k<k’ m<m/

The first four claims of Lemma 7 are parts of Lemma 4.1 in Jacod and Rosenbaum (2012). The two remaining

statements can be shown similarly.

Lemma 3. Let ()" be a r-dimensional F]' measurable process satisfying ||E((F|Frq)| < L' andE(H(”H ’.7:2” 1)

Lq, let also ¢} be a real-valued F;' measurable process that fulfills E(||<p?+j71|| ’]—"{11> < L9 for ¢ > 2 and
1 <5 <2k, —1, then we have

2k, —1
(H Z LPH»] 1CZ+]H

" ) < K LY(Lgky/ + L'1R3).

Proof of Lemma 5

Set

=P (P &M = E(G|IFR) = E(0r  CIFRL) = of B(CMFR,), and & =€ — €™

Given that ||[E(¢?|Fr )| < L', we have ||| < L'|¢™ ,|. By the convexity of the function #¢ which holds

for ¢ > 2, we have,

2k, —1 2k, —1 2k, —1

H Z el < K(IY enler Y amle).
j=1 j=1

Therefore, on one hand we have

2k, —1 2k, —1 2k, —1
’ _ / —
| Z fiij”q < Kkj ' Z Hfiij”q < Kk L Z |<P;L+j—1|qa
j=1 j=1 j=1

which given that, IE( 171> < L9, satisfies:

2y —1 2y —1
|| Z ferjH | 1 <KL/qkq ! Z E |Lp74+.] 1|q|]:1n71) SKL/ququ
j=1
On the other hand, we have IE(||§H_]|| |Fity) < B8 19[F ) < LgL? and E(§ z+J| ' ;) = 0, where the

first inequality is a consequence of IE(||£Z+J|| |Fity) < E(1&191F71) < LgL? which can be proved using
the Jensen inequality and the law of iterated expectation. Hence applying Lemma B.2 of Ait-Sahalia and
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Jacod (2014) we have

2k, —1
E(| Z G 19IF) < KoLk,

To see the latter, we first prove that the required condition E(||£1]|9|F,) < LyL?) in the Lemma B.2 of
Ait-Sahalia and Jacod (2014) can be replaced by E(|[&" ;[|91F ) < LgL?) for 1 < j < 2k, — 1 without
altering the result.

Lemma 4. We have:

E(’y n,jk _n,m _n,gh _n,ab | )

4 . .
,ga _n,hb n,gb _n,ha n,jl _n,km n,jm n,kl
Vi Vitok, Yitok, ¢ T (G T e )

k2 (C i (1 7 (1 7 G

AN, 4 4A 4
gl n,km n,jm n,klx=n,gh,ab n  n,ga _n,hb n,gb _n,hay=n,jk,lm
T3 (c; e + e g T3 (c; ™ =" g

7 7 7 7
4(k, A 2 ;
( ng n) E?,gh,abé?,]k,lm S K A n( A 711/8 77341%)'

Throughout, we use the expression ”successive conditioning” to refer to the following equalities,

1y — ToYo = To(y1 — Yo) + yo(x1 — xo) + (21 — 20)(y1 — Yo)
T1Y121 — ToYozo = ToYo(z1 — 20) + To2zo(y1 — Yo) + Yozo(x1 — 20) + Zo(Yo — y1)(20 — 21)

+yo(zo — x1)(20 — 21) + 20(x0 — 1) (Yo — 1) + (21 — 20)(y1 — Yo)(21 — 20)

which hold for any real numbers xg, yo, 20, 1, Y1, 21-

Proof of Lemma 4

To prove Lemma 4, we first note that ~;"’ k'yz” m g Fn ok, -measurable. Then, by the law of iterated expec-

tation we have

]E(’}/n ,Jk _nidm _mn,gh _n,ab

n,jk_n,lm n,gh _n,ab 0 n
P it 2k, Yidok, f") ]E(% v Bk, Y ok i+2kn)|‘7:i)'

From equation (3.27) in Jacod and Rosenbaum (2012), we have

2 hb gb  n.h 2kn D ghab
Fiian,) = 1 (6350, ok, T Gion, Citon,) = — 3 Citan, | < KVA W 0ok, on,)s
n
2 il sk i Kl 2kn Dk 1/8
E(CZ] PR I M) — —5 G "< KVALAYE 4 nfay).

n,gh _n,ab
|E(FY’L+2]€” ’Yz+2kn

n,jk_mn,l
[E(y;" " F) =

I also holds that

n ) _ 2 ( n,ga n,hb +ec n,gb n,ha ) _ anAnfn,gh,ab
i+2ky, T Citok, Citok, z+2knci+2kn 3 Cit2k,
n

gk mul ,gh b
[E (477 B, Vi, 7

s n,lm n s n,lm n
< V(PP + 0, o, )| ) < KBRS ™| F7)

ik .l
+ K/ ARE(Y 7511 03 o, 2n, |

where the last inequality follows from Lemma 6. Using (39) successively with Z = ¢ and Z = ¢ (recall that

") < KAL(AY® + Ni'ak,)s

the latter holds under Assumption 2), together with the successive conditioning, we have

2knAn —n,gh,ab 2

n,jk _n,Im 2 ,ga  mn,hb n,gb n ha _ ,ga n, hb
|]E(’Yz Vi’ [k: (315, Citor, T Citor, Citok, ) + 3 Cit2kn F(Cz +
n

C n,gb nha)

'L

37



_ anAnE?,gh,ab] ‘En)| < KA”A’}]/ZL,

3
; 2 2k, A 2 ; ;
|]E<,_Yl?1,jk,_y;1,lm [?(c@,gacﬂ,hb+c'{z,gbcn,ha)+ 7;) HE?,gh,ab:| - {kf(c?’]lcy’km+C?’Jm6?’kl)+
n n

3 7 3 K3

an An 7n,jk,lmj|
T

3 @
2k, A,

2 hb b n,h
% [7 (9agmhb | nigb nihay :

(et 4 ot ] P ) < KAn(AY® + 0ty

The last inequality yields the result.

Lemma 5. Let (" be a r-dimensional F]* measurable process satisfying ||E((F|Fr,)|| < L' andE(H(qu ]:i"_l> <

Lg, let also ¢} be a real-valued F;' measurable process that fulfills ]E(||<p?+j_1||Q‘f[L_1) < L7 for ¢ > 2 and
1<j <2k, —1, then we have

2k, —1 .
n n
E H Z <Pi+j—1Ci+jH
j=1

We introduce some new notations. Following Jacod and Rosenbaum (2012), we define

) < K LULokd/* + L'9%2).

’

of = (ATY)(AIY)T = A, B =7" ¢}, and o =Ly, — T, (37)
which satisfy
kn—1
n 1 n n n n n n n
B = A Z (ai+j + (Ci+j —ci')Ayn) and v = Biyk, — B + An(cz’—&-kn —cf). (38)
n n j:O

We recall some well-known results. For any continuous It6 process Z;, we have

q

Zt+w - Zt Ft) < Kqu/27 and HE<Zt+s - Zt) ‘FtH < Ks. (39)

IE( sup
we[0,s]

Set F* = Fi—1)a, - By (4.10) in Jacod and Rosenbaum (2013) we have,

5

Combining (40), (38), (39) with Z = ¢ and the Holder inequality yields for ¢ > 2,

5

For any cadlag bounded process Z, we set

kn—1
Z a?+qu|]-T) < KqA%kZ/2 whenever ¢ > 2. (40)

q

]-'i”) < K,AY for all ¢ > 0 and E(

n
Q;

Jj=

q q

ol |Fe) = Kyaet, and B( |0z

]-'i") < K,AY4, (41)

ma(2) = %@( sup [|Zur = Zi|1 7).
0<u<s

0<u<jA,

nii(Z) = \/E< sup | Zgi-1)a,+u — Z(i—l)AnHQU:z‘n)'

Lemma 6. For any cadlag bounded process Z, for allt,s >0, j,k >0, set n, s =y s(Z), then we have:

[t/Aq] [t/An]
AnE< > 771‘,1%) — 0, AnE( > 771‘,21%> —0,
=1 =1
[t/Aq]
E(m‘Jrj,k ]:i") < Nij+k and An]E( Z 771',41%) — 0.
i=1

The first three claims of Lemma 6 are proved in Jacod and Rosenbaum (2012). The last result can be proved
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similarly to the first two.

Lemma 7. Let Z be a continuous Ité process with drift term bf and spot variance process cf, set n,s =
ne.s(b%,c?), then the following bounds can be established:

IE(Z|Fo) — 7| < Ktno,,
IB(Z] ZF — tcZ9%| Fo)| < K32 (VA + 104
E((Z] 2 —tcg /") ('™ — ™) | Fo)| < Kt
(
(

|E ZjZkZlZm|f0) A2(Co,jk Zlm+ O,jl ka_’_coZ,ijg,kl)‘ SKt5/2
\E(Z] ZFZ!\ Fo)| < Kt?

6

|E(H ij|]_-0 Z Z Z CZ]ljl/ Zv]k]k’ ZJme | < Kt7/?

=1 <l k<k’ m<m/

The first four claims of Lemma 7 are parts of Lemma 4.1 in Jacod and Rosenbaum (2012). The two remaining

statements can be shown similarly.

Lemma 8. The following results hold:

(B8 B B0 )] < KA (A 40, ), (42)
(BB B (i — e IF < KA A +al,). (43)
BB (i = e ™, — e IFD] < KAYHA 4y, (44)
(BB I F] < KAYA (AL + 1o, ), (45)
[y 77 M ) < KA A + o, ). (46)

Proof of (42) in Lemma 8

We start by obtaining some useful bounds for some quantities of interest. First, using the second statement
in Lemma 7 applied to Z =Y’ we have

[E(a |17 < KAY (VA +nil). (47)

Second, by repeated application of the Cauchy-Schwartz inequality and making use of the third and last
statements in Lemma 7 as well as (39) with Z = ¢, it can be shown that

‘E(a?’jka?’lm|ff) A2< ,jl n, km + ¢ ,jm n, kl)‘ < KAi/z (48)
Next, by successive conditioning and using the bound in (39) for Z = ¢ as well as (47) and (48) , we have

for0<u<k, —

(B 70| < KAY2 (VA +07), (49)
‘E(a;l,]f ;LJrl;rL|]_-n) _ (C?,jlczb,km _"_C;L,]m n, kl)‘ < KA5/2 (50)

To show (42), we first observe that Bf’jkﬁf’lmﬁﬂ’gh can be decomposed as

K2

kn—1 kn—2 kp—1

n,jk pn,lm ,gh ,jk n,lm n,gh ,jk: nlm n,gh n,gh ~n,jk ~n,lm
ﬁ ﬁ ﬂz kgAg Z C z u Ci,u kgAg Z Z [ 7, z v 1, v + Ci,u Cz’,v Ci,’u
n u=0 n =0 v=u+1
kn—2 kp—1
n,lm ~n,gh ~n,jk ,Jk n,lm ngh n,gh ~n,jk ~n,lm n,dm ~n,gh ~n,jk
+ Ci,u Ci,v Ci,v :| k3 A?’ Z Z 7,u z u z v + C Cz u C’L v + Ci,u Ci,u Ci,v :|
u=0 v=u+1
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kn—3 kn—2 kn,—1

,]k nlm n,gh n,jk ~n,gh ~n,lm n,dm ~n,jk ~n,gh n,lm ~n,gh ~n,jk
k3A3 Z Z Z |:zu 7,V zw +<z’,u sz Czw +Ci,u Ci,v Ci,'w +Czu Cz,’u Ci,w

" u=0 v=u+1w=v+1
n,gh ~n,lm n,jk n,gh ~n,jk ~n,lm
+ Ci,u Ci,'u Cz w + C Cz v Cz w :| ’

with (7', = oy, + (¢}, — ¢ )An, which satisfies E([|¢}", [|7]F}") < KAJ for ¢ > 2.
Set

kn—1 -2 knp—1
n njk nlm ngh n n,]k nlm ,gh
gi kgAg C i 51 kSAS C
u=0 v=u+1
kn—2 kp—1 kn—3 kn—2 k,—1
n _ 2 : 2 : ,]k nlm ngh n o ,jk nlm n,gh
& k?’A?’ C “’ and &'( kSAB Z Z Z C zv Hu :
nTN 4=0 v=u+1 N u=0 v=u+1w=v+1

The following bounds can be established,

[E(& (WF)] < KAn,  |EE (2)1F)] < KAq, [E(E(3)F)] < KA, and

7

[E(EHAIF)] < KAYHAY* +10ik,)-

?

Proof of |[E((1)|FM)| < KA,

The result readily follows from an application of the Cauchy Schwartz inequality together with the bound
E(IG L [171F7) < KA for g > 2.

Proof of [E(£(2)|FM)| < KA,
Using the law of iterated expectation, we have, for u < v,
(G G G I = BB G VP e DI FT). (51)
By successive conditioning, (48) and the Cauchy-Schwartz inequality, we also have
|E(<:{;lmg?{th| rut1) — AZ(c 7+ZZ+1C?+TZ-’:-1 + C:L-JZHC?!Z&) - Ai(dﬁﬁﬂ - C?7gh)(0?4ilzﬁ1 - C?’lmﬂ < KAi/z-

Given that E(|¢[%IF|9|F7) < AZ, the approximation error involved in replacing E(¢/5" ¢ gh|]-'f+u+1) by

1+v z+v
A2(H9 i g Y 4 A2 (I — I (I — ™) i (51) is smaller than A2
From (3.9) in Jacod and Rosenbaum (2012) we have
kol l
B0 (i — aIF] < KAYA(V A, + i) (52)

Since (c},, — ¢}') is Fj'.,-measurable, we use the successive conditioning,the Cauchy-Schwartz inequality,
(47), (48) and the fifth statement in Lemma 7 applied to Z = ¢ to obtain

B (el — et = M| < KAy

1+u 1+u +u
gk o mnl ,gh ,gh
|E(O‘?+ju O‘Z-:Ln(cmi — ¢ )|FM] < KA5/2 (53)
)L ) gk Jk ,gh ,gh
E((ciya — e ™) ey — e — ) IF < KA,

which can be proved using . The following inequalities can be established easily using (47), the successive
conditioning together with (39) for Z = ¢,

< KAY?

n,jk; n,lg n,mh n,lh n,mg n
‘E(ai-i-u (Citut1Cidtur1 T Cius1Citug)IFT)

< KAL?

n,jk n,jk n,lg n,mh n,lh n,mg n
‘E((cH»u -G )(cz+u+1cz+u+1 + Cl+u+1cl+u+1) |‘7:Z
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Jk m,gh ,gh N/ R
(B (it y = oM et — )

< KNY2(VAn +0y,)
The last three inequalities together yield [E(&](2)|F)| < KA,,.
Proof of [E(£(3)|FM)| < KA,
First, note that, for u < v, we have
gk ~nlm n,gh| n gk il .gh n
E(<ZL+]U C::»vj,n z+£7]J |]: ) = (CH»]'U. CZ:»':IE( Hf'f) | i+u+1 "7:7, ) (54)
By successive conditioning and (47) , we have
.gh e
| ( 1+gw| z+v+1>‘ < KAE’/Q( An +77i+v+1,w7v)~ (55)
Using the first statement of Lemma applied to Z = ¢, it can be shown that
E((c%) — el D))IFT) — A — D < K(w—v— 1)Aun < KAY?p,
| ((Cz+w Cz+v+1))| i ) n(w v ) z+v+1| (w v ) nMitv+l,w—v = n Ni+v+l,w—v-
The last two inequalities together imply
n,gh| n n,gh n,gh .gh
‘E(Ci+zu | i+v+1> - ( z+v+1 -G g )An - Ai(w v — 1 z+€;+1‘ < KA3/2 \/ n + Nito+1,w— v) (56)

Since E(|¢;" ik|a| Fny < A4, the error induced by replacing E( Z+’%h| T us1) by ( :ﬁﬁl IMA, + A2 (w —
v— 1)bz+v+1 in (54) is smaller that A2

Using Cauchy Schwartz inequality, successive conditioning, (53), (39) for Z = ¢ and the boundedness of by
and ¢; we obtain

n jk n lm n,jk n,gh n 5/2
z+u z+u 7,+u+1 -G )l‘Fz-‘ru S KAn

,jk n,dmin,gh
1+u 1+u bz+u+1|]:7zn+u)

(o

]E( < KA?
B (g (e = et — )7
(o

(e

< KAVANY2 (AL + 0,

n jk‘ cm ilm n,lm n ,gh 0
z+u ’LJr’LL G ) |]:

<Ayt

1+u+1

\Jk gh ) ) ,gh

7,+Ju —c? )(07+:er _C? m)b?+9u+1‘]:in) < KA:L/2
2Jk 2Jk ) N ,gh ,gh

E((cm — I = e = IFE)

The above inequalities together yield |E(&](3)|F/)| < KA,,.

< KA,.

Proof of [E(£(4)|F)| < KA3/4(A1/4 +nk,)
We first observe that £'(4) can be rewritten as
kpn—1lw—-1v-1

OB e DI I erre e

w=2 v=0 u=0

where
n,jk ~n,lm ~n,gh __ n,jk n,m n ,gh n,jk n,dm/ n,gh n,gh n,jk n,lm n,dmy _n,gh
<i+u <i+v Cier - az+u aerv i+w + a7,+u ATL z+v ( i+w ¢ ) z+u A ( 7,+v -G )aier

2 n,jk/ n,m n,lm n,gh n,gh n,jk n,jky\ _n,m n,qh 2/ n,jk n,jk\ n,m/ n,gh n,gh
An 1+u (Cz+v -G )(Ci+w -G )+ An(ci—l-u -G )az+v 4w + A ( H—u -G )ai—H) (Ci+w -G )

gk Jgky, mil 1 .gh n,jk Gk il 1 .gh .gh
+ AL = TN — et + AL — IS — e (e — )|
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Based on the above decomposition, we set

with x(j) defined below. Our target is show that [E(x(j)|F")| < KA3/4(A1/4 + 0y, ) d=1,....8.
To start, set
kn—1w—1v—1
W= s 3 3 L alilalilali
w=2 v=0u
Upon changing the order of the summation, we have
“1lw—1 v—1
W=Gxp 22 > (X odi ool
w=2 v u

Define also

V)= gy 2 2 (el )l Rl P )

Note that E(x(1)|F") = E(x/(1)|F).
It is easy to see that, by Lemma 5, we have for ¢ > 2,

v—1

n,jk

E(|| Yoty
u=0

The Cauchy-Schwartz inequality yields,

—lw—1 wv-—1
z : n,jk n, lm n,gh| n
( az+u ) z+v ( z+w | i+v+1)’

w=2 v=0 u=0

q’]-'{‘) < K A%/,

n,lm
’L+’U

En)wzw”ilm“\fm”‘w )"

X {E(‘E(aﬁrgﬁ T ot ‘ ‘.7—'")} < KAk AY AN (VAL + 07,

where the last iteration is obtained using (55) as well as the inequality (a + b)*/? < a'/? 4 b'/2 which holds
for a and b positive real numbers and the third statement in Lemma, 6.
It follows from this result that

E(x(U)|F)| < KAYA(/By + )

Next set,

kpn—1w—1 wv-—1

z : z : z : n Jk n gk n,m n,gh
X(2 - 3 ( A H—u i ))ai+v ai—i—w?
n w=2 v=0 u=0
kn—1lw—1 wv—1

2 : 2 : 2 : n,jk n Jm n,dmy n,gh
X(3 - 3 ( az-i—v ) H—u - ¢ )ai-i-w’
n w=2 v=0 u=0
kn—1lw—-1 wv—1

n,jk _ n.jk N} N .gh
X = gy 30 3 (S Al — ) A
n w=2 v=0 u=0

Given that, for ¢ > 2, we have,

v—1
. . q . .
B(|| X0 aneil = et ||| 77) < K,k and Bl - e 7| F) < KA
u=0
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one can follow essentially the same steps as for x(1) to show that
2)|FM)| < KAY (VA +nf,) and [E(x(5)|FP) < KA (VAL +n7Y,,) for j=3,4.

Define

1 n,J n,lm
X/(‘r)) = m Z Z (Zaiijf)aijrlv A E((Cziguf)b 79h ‘ z+v+1)

1 " ;
X(0) = Gy 20 2 (D0 Anle = el ™) ol An (e — ")
kn—1lw—1

2Jk l 0 ,gh ,gh
W) = s 30 3 (S ol Auletl — et -

w=2 v=0 u=0

where we have E(x(5)|F") = E(x/(5)|F]*). Recalling (56), we further decompose x’(5) as,

with

kn—1lw—1 wv—1
WO = s 20 2 (el et (B(el - el AL ) = (el e A B AL w - v = 1))
ken A w=2 v=0 u=0
kpn—1w—1
n,gh ngh n,jk\ n,m
(k A )3 Z ZA z+v = (Zaz+u) 1+v
w=2 v=0
1 kn—1lw—1 wv-—1
Jk ,gh ,ghy\ _n,m
x/(5)[3] = nAn )P Z Z (Z%+Ju) (i — G ey
nen w=2 v=0 u=0
1 kn—1lw—1 wv-—1
Jk n,gh n,ghy\ _n,m
X/(B)M‘] = (ki A ) Z Z (Za1+Ju)A2 — U= 1)(b1+gv+1 bv+€; )ai—i-v
n=n w=2 v=0 u=0
1 kpn—1w—1
n,gh gk n,lm
X/(5)[5]ZWZZAEL( _U_lbl_i_%(zal_,’_]u) Z+’U'

w=2 v=0

x/(5)[2] =

Using (56), (55), (52) and following the same strategy proof as for x(1), it can be shown that

E(vG)IIF)| < KAV /B +0,), for j=1,....5,

which in turn implies

E(xG) )| < KAY VA, +07y,), for j=1,..,5.

The term x(6) can be handled similarly to x(5), hence we conclude that

E(x(0)| )| < KAY (VA + )

Next, we set

kn—1 —
= oy (Z (Zafﬁf) (et = e A e - C?,gh))
n|n w2 —

v=0 =
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To handle this term, we define,

kn—1 w—1 wv—1
1 X gk N N/ ,gh ,gh
XD = 3 ( (D @l ) An(e = ™A el = )
n/=n w=2 v=0 wu=0
1 kn—1 w—1 wv—1
gk N N ,gh ,gh
xRl = 3 (Z (Do) Au(erlyr — e ™A = o >)
n/=n w=2 v=0 u=0
1 kn—1 w—1 wv—1
ik 1 1 n,gh “n,gh
(M8 = 555 2 ( S (D el ) Anely = AL (w —v = D - B
ne=n w=2 v=0 wu=0
1 kn—1 w—1
h k l 1
x(MH] = Y ( AL (w — v = 1B, (Zo‘?+ju) (s —c m)>v
ne=n w=2 v=0
so that
4
X(M) =>_ x(Ml
j=1
Using arguments similar to that used to handle x(1), it can be shown that,
|E(X(7)[‘7]|fzn)| < KA;/4(A;/4 +77i,kn)a for j=1,...,3,
To handle the remaining term x(7)[4], we set,
kn—1lw—1v—1
, k l N/ ,gh ,gh
x(T)[4][1] = (ke A A 3 Z Z ZO‘H-Ju Citus1 — Ciu (5551 — i)
w=2 v=0 u=0
kn—1w—1v—1
,gh ) h n,jk n,l N
x(7)[4][2] = 3 Z Z Z et — o) (el — )
w=2 v=0 u=0
kn—1lw—1v—1
h } gk R l
X' (T)[4][2] = 3 Z Z Z :L#ZL ;") E(a?ﬁu (C?+$1 ?+1Zn)|f?+u)
w=2 v=0 u=0
kn—1lw—1v—1
l ) gk n.gh »gh
x(7)[4][3] = (EndAn)? Z Z Z it — o) (5 — )
w=2 v=0 u=0
—lw—-1v—-1
l l ,gh ,ghy\ _n.jk
x(T)A4][4] = (O] Z DD (A = S = ey
w=2 v=0 u=0
kpn—1w—1v—1
l l .k n,gh h
x(7)[4][5] A DD D (= (s - )
w=2 v=0 u=0
kn—1lw—1v-—1
l l ik h h
X MRIB = 3 2 D D (! = el B - Pk
w=2 v=0 u=0
kpn—1w—1v-—1
k I l .gh h
x(7)[4][6] 3 Z Zza?+]u ?—HTH 7+1T)(C;L+€; - ZL+ZL+1)
w=2 v=0 u=0
kn—1lw—1v—1
,gh , h n,jk/ n,l l
X(7)[4H = 3 Z Z Z 7,+gu ¢ i Oéi—&-ju (C?+;n _C:L—Hﬁl)
w=2 v=0 u=0
kn—1lw—1v—1
Jk (o n.gh ,gh )l l
x(7)[4][8] = 3 Z Z Zaz+ju z+€;+1 —C?fu )(CIZLZ,” _C?+1T+-1)
w=2 v=0 u=0
AQ kn—1lw—1v—1
gk l ) ,gh ,gh
X(M)A]19] (knAy) (k,AL)3 Z ZZQH—Ju (¢4 — atur) Gy — 6
TL

w=2 v=0 u=0
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which satisty,

Using arguments similar to that used to handle x(1), it can be shown that,
EQ(TMIGIF < KAV AV +ig,), for j=1,....8,
which yields
7| FI < KA AY* +nig,),

Now set,

kn—1lw—1v—1

n,jk _ n,jk N N ,gh .gh
X8 = 1 D0 D0 S e e ),

" w=2 v=0 u=0

This term can be further decomposed in 6 (non overlapping) components. Then using the following bounds,

B (e = e ) — et e — | )| < KA,

E (7 = )i — et - c?ﬁf F)| < KAYAAY +,)
E((eF28 = M)ty = et = om|Fr)| < KA,

E((fF = M) (e — e s — ) < K,

E((eff = M) e — ™yt - ?ﬁJ‘ )| 7)< KA,

B((2 = el = ™y et — 6| Fr )| < KA,

which follow from successive conditioning and existing bounds, we deduce that
8)|F) < KAy,
This completes the proof.

Proof of (43) and (44) in Lemma 8

Observing that

kp—1
n,jk/ n,dm n,lm n,gh ,gh ,]k nlm _ nlm n,gh _  n,gh
B; (ci—i-kn -G )(ci—&-kn _Cz k A Czu Citk, — G )(C¢+kn ¢,
w—=0
kn—1 —2k,—1
n,jk pn,dm/ n,gh 7gh ,7k nlm n,gh mgh ,jk: nlm ngh _ _n,gh
Bi Bz (CiJrkn - C’L kQ A2 <1 U z U z+kn -G kQ AQ C1 U 1 v 7.+kn ¢ )
N =0 nTNou=0 v=0
kpn—2kn,—1
n,lm ,_]k n,gh n,gh
k2A2 Z ZQu G Gk, =)
u=0 v=0

(43) and (44) can be proved using the same strategy proof as for (42).
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Proof of (45) and (46) in Lemma 8

Note that we have,

n,jk _n,0m on,gh _ on,gh gn,jk on,lm n,gh on,jk gn,lm n,gh on,lm on,jk n,gh on,lm on,jk
'Y Y ﬁz = ﬁ ﬁz-&-k /8i+kn + Bz ﬁi ﬁz - ﬁz 61' ﬁz’+kn - BZ Bl 5i+kn
n,gh on,jk ; n,m n,lm n,gh on,jk/ n,m n,lm n,gh on,dm / n,jk n,jk n,gh on,Im,/ n,jk n,jk
+ BB (e — e ) = BT B (e, — ) + B B (e, — ) = BB (e, — )

,gh Jk Jk 0 |
+ ﬁz‘ng (Ci+jkn - C:‘” )(CZH:Z - C? m)v

and

n,gh n,jk nlm n,gh on,jk on,lm n,gh an,jk on,lm n,gh on,m on,jk n,gh an,m on,jk
’Yz Vi 5z+k Bz+k Bi+k +/61+k B " B; _5z+k B 5i+k _Bwk B; Bz’+kn
n,gh ,]k n,lm n,lm n,gh an,jk/ n,m n lm n,gh on,m / n,jk n,jk n,gh gn,m,; n,jk n,jk
+5l+k Bz+k (c Citk, — G ) — 5i+k B (Ci+k -G )+5z+k 5z+k (ci Citk, — i) — 5i+knﬂi (Ci—i-kn —¢;7")
n,gh / n,jk n,jk n,lm n,lm n,gh on,jk on,im n,gh on,jk pn,lm n,gh on,lm on,jk n,gh on,lm on,jk
+ 67,+k (c Citk, — C )(Ci—i-k - =B @_Hg 5i+k" - B; /Bi B; + 8,777 B; Bi—i—kn + 8,75, 5i+kn
n,gh on,jk ! A .gh an.ik n,l 1 .gh an,l ik ik .gh an,l ik ik
= BB (i, — )+ BB (e, — a0 = B B (g, — )+ BB (e, — )
n,gh/ n,jk n,jk n,lm n,lm n,jk on,m  n,gh n,gh n,jk on,lm/ n,gh n,gh
- IBi (C¢+kn -G )(CiJrk -+ Berk ﬁerk (ci Citk, — G )+ BB (C¢+kn —¢; )

y ik  m.gh n,gh dm anjk ¢ n.gh n,gh n,jk 1 nl y .gh .gh
-5 mﬂ?ﬁm (C?+gk — ") = B mﬁi-&-jk (Ci+gk - )"‘Bm-jk (c ;l+l?: - m)(c?+gkw, —c; )

gk mil 1 .gh h lm ; n,jk n,jky; n,gh .gh 1 ik ik .gh .gh
BRI — Y — ) B (R — eV ) - B — e - )
Jk Jk )l l ,gh ,gh
+ (C?Jrjk = )(C:LHT c’ m)(cwrgkn — ).

From (38), it is easy to see that observe that 8} is F}',; -measurable and satisfies [|E(5}|F}")|| < KA.

Using the law of iterated expectation and existing bounds, it can be shown that

|]E ﬁn lm n,jk ‘J—_-n)| < KA3/4

(B B
[B(B™ B B | F| < KA,
BB (e, — e "B IF < KA
BB (e — M| Fr)| < KAy
E((c]5 = T (e = (et — M F| < KA. (57)

By Lemma 3.3 in Jacod and Rosenbaum (2012), we have

gh gn.ab 1, ., hb gb nh knAn _pn ghab
IE(B 1+gk :L—i-ak kn) — 2 (Cz+gka C?+k +Cz+gknczl+ka) 3 ?+gk PI<KVA Al/S + 0k k)
n

Hence, for /9" € {g/9" :Lfkh 9"} which satisfies E(|¢""|7| ) < KAY* and E(p1"|F1) < KAY?,

it can be proved that

; 1 ; knA ;
h on, k l .gh 4l k Kl _n,jk,l
(B " B B FI) = B (™ | (i e + el ) = e | |7 )| < KAV AN + i)
n

Next by successive conditioning and making use of existing bounds one obtains,

|E(S0n ,gh n,]klm)| <KA1/4(A1/4+771 n)

K2

hongl nk
B e i )| < KA)?,

which implies

(B} " B B | < KA AV 4 1,). (58)

It is easy to see that (42), (57) and (58) and the inequality n;, < 1}y, together yields (45) and (46).
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Step 3: Asymptotic Distribution of the approximate estimator

To start, we decompose the approximate estimator as

H(@), 00y = [H@, 0y — [H .Gy,

with
— (Al) 3 d [T/A7L]_2kn+1 . . , , ) ,
HEGE = g (O H0G) e L~ ),
" g,h,a,b=1 i=1
and
_ (az g3 A& [T/AaZ2Zk+d R T T
[H(e), GOl =15 > (Ogn HOubG) (E7) (27998 mh0 - gimoobg nohay.
" g,h,a,b=1 i=1

In this section, we set for convenience, c' | = c(j_1)a, and F; = F;_1)a,- Given the polynomial growth
assumption satisfied by H and G and the fact that k, = 6(A,,)~/2, by Theorem 2.2 in Jacod and Rosenbaum
(2012) we have

V%([H(T)E( Z / Ay HOap G) (c0) (% 4 9 h“)dt) 0,(1),

q7hab 1

which yields

1 oY 3 . ’ gachh | 9bcha P
7 (HOGE =5 > | (OnHOwG) (el e + e )t | = 0.

g,h,a,b=1

_— (A1)
To study the asymptotic behavior of [H(c), G(c)]; , we follow Alt-Sahalia and Jacod (2014) and define the

following multidimensional quantities

(U7 = R ATYATY)T — ey ()7 = At
¢ = BC@IFL), @)l = Cw) — @),
with
Cp= ()
We also define for m € {0, ..., 2k, — 1} and 4,1 € Z,

-1 if0<m<k,

(M) =
+1 Zf kn <m < 2k,,
2k, —1
e@p = > e()f = (m+1)A (2, -1)
g=m+1
" 1/A, ifu=v=1

1 otherwise,
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(I—m—-1)V(2k, —m—1)

3
(wvim)iy = 5 > e(Wge(Wgpm:  T(w, )y =v(w,v3m)g o,
g=0Vv(j—m)

2kn,—1

M(u7 U3 ulv vl)n = ZZ,vZZ’,v’ Z F(uv U):Ln]-—‘(u/a 'U/):Ln
m=1

The following decompositions hold,

2kp—1 2kp—2 2k, —1
( > ce@)FCE T + Y D0 ewe)iCuig C)y

2k, —1j-1
+ s<u>?s(v)glc(u)?ﬁhd“)mb)'

Changing the order of the summation in the last term, we obtain

2 2k, —1 2k, —2 2k, —1
h b h b ,gh ,ab
R = o ZZ( > eie@i @i T + 30 Y e)ie)id()g )iy

" u=1v=1 7=0 7=0 gq=j+1
2k, —2 2k, —1
b gh
SIS e <<u>;r;).
7=0 q=j+1

(A1
Therefore, we can further rewrite [H(c), G(c)];  as

_— (A1 (A11) __— (A12) _— (a13)

H(c).Clc)ly = [H©).CG@)]l; +[H©O.GOly  +[H©,GOl . with
o d 2

[H(c/);E(c) “ ) Z Z w(H, gh,u; G,ab,v)7, w=1,2,3,

and

[T/ An]—2kn+1 2k, —1
A11(H, gh,u; G, ab,v)7} = 2 Z Z Ign HOupG) ()1 )e (u);‘s(v)?c(u)?+gjhé(v)?+(;b,

- [T/An]=2kn+1 2k, —2 2k —1
AT2(H, gh,u; G,ab, v)§ = 5= Z NS OnHOWG) (e () e(0)iC ()¢ (),

Jj=0 g¢=j+1
[T/An]—2kn+1 2k, —2 2k, —1

m(H,gh,u;G,abm)%:ﬁ Z SN (O HOG) (el )e(v) e ()¢ (v)H ¢ (u)or,

j=0 g¢=j+1

where we clearly have A13(H gh,u; G, ab,v)i = A12(G ab,v; H, gh,u)%.. Changing the order of the summa-
tions we have,

(T/An] (2kn—1)A(i—1)

ATL(H, gh,u; G abv)f = o5 Y > (OgnHapG) (] _1)e(u)}e(v) ¢ (u) "¢ (v) 1,
=1 j=0V(i+2k,—1—[T/A])
[T/An] G—DA(2kn—1)  (2kn—m—1)A(i—m—1)

A12(H gh,u; G, ab,v) Z Z Z (Ogn HOubG) (€} j_m) %
F=0V (i42kn —1—m—[T/An])
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e(u)7e(v) 1 mCon ()i Can (V)i

Set

(T/An] 2kn—1
ATL(H,gh G 0 = g 3 3 (O HOwG) el )= 0,

" i=2k, j=0
[T/AR] (i—1)A(2kpn—1) (2kyp,—m—1)

A12(H, gh, u; G, ab, v)} %3 >, Z Y OenHOwG) (1))} e (W) Con (W) an (0)7

i=2kn =0
and

[T/An] 2kn—1
ATL(H.gh.w:Guab v} = gz D (2 c)y=(u)}) O HOwG) (e, S )" €0

i=2k, =0

(T/AR]
=T(w,0)§ Y OanHOwG)(c} o, )S(w)] " ¢(0)]
=2k,
3 [T/A) (i—1)A(2kn—1) (2k,,—m—1)
A12(Hagh7u7G7 aba 'U)ZIL’ = ﬁ Z (athaabG)( i—2kn, ) Z Z E(U)?s(v)?erCgh( )2 mCab( )za
" =2k, m=1 J=0
[T/An]
= > (OgnHOwG)(c} a1, ) pon (1, 0)7 Can(v)7,
i=2k,,
with
2k, —1
Pgn(u,v) Z L'(u, v)5,Con(u)
m=1

The following results hold:

A1/4 (Alw(H gh,u; G, ab,v)p m(H, gh,u; G, ab, v)%) 250 forall (H, gh,u,G,ab,v) and w = 1,2.
(59)

NG (EU(H, gh,u; G, ab,v)} — Alw(H, gh,u; G, ab, v)%) 50 forall (H, gh,u,G,ab,v) and w = 1, 2.
' (60)

Proof of (59) for w =1

The proof is similar to Step5 on page 548 of Ait-Sahalia and Jacod (2014). Our proof deviates from the
latter reference by the fact that, in all the sums, the terms ¢ (u)?’ghg (v)?’ab are scaled by random variables

rather that constant real numbers. First observe that we can write,

A1l — A1l = A11(1) + A11(2) + A11(3)  with
(an_l)/\[T/An] (an_l)/\(i_l)

am= Y. (;; > (Do HOwG) (e 1>e<u>?s<v>?><<u>?’gh<<v>z"“b

i=1 " j=0V(i+2kn—1—[T/AL])
—_— [T/An] 3 (an_l)/\(i_l)
A11(2) = > w( > (Ogn HOuwpG) (¢ j_1)e(u)e(v)}
i=[T/Ap]—2kn+2 ™ \j=0V(i+2kn—1—[T/AL])
(2kn—1)
— Y (9nHOWG)(C ) 1>s<u>?s<v>;><<u>?gh<<v>?’“b.
j=0
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o [T/An]—2kn+1 3 (2kn—1)A(i—1)
amE =y Qk< > (g HOuG)(cl )= (u)je(v)]
=2k, N\ =0V (i4+2kn—1—[T/AL])
(2kn—1)
- Z (Ogn HOap G) (i ;— 1)€(U)}L5(U)?>C(U>?’ghg(v)?’ab~
j=0

It is easy to see that Zl\2( 3) = 0. Using (39) with Z = ¢ and (40), it can be shown that
E(lC(FI*F) < Koy E(ICE)7NUFLL) < K AL2 (61)

zg 1)|S

K. Hence, the random quantities (2k3 Zg%w_(mkz 71; A (athaabG)( b 1)5(u)?5(v);’) and

k3 Z k”fl ( OgnHOupG) (¢} ;1 )e(u)}e(v)? are FJ' | — measurable and are bounded by 7;; , defined as

The polynomial growth assumption on H and G and the boundedness of ¢; imply that |(9gnH 04 G)(c}!

K if (u,v) = (2,2)
;73,1) = K/kn if (U,U) = (1’2)7 (27 1)
K/k? if (u,v) = (1,1).

Similarly, the quantity,

3 (2kn—1)A(i—1) (2kn—1)
w( > (Ogn HOapG) (¢l ;_1)e(u)je(0)} = > (OgnHOwG) (e} ;- 1)€(u)}‘€(v)§-’>,
"\ =0V (i4+2kn,—1—[T/AL]) j=0

is FJ* | — measurable and bounded by 27, ,. Note also that, by (61) and the Cauchy Schwartz inequality,

we have,
KA, if (u,v) = (2,2)
E(I¢(u)] " ()P | Fr ) < BUIC@)MPIFR ) VPEIC)FIPIFE )Y < S KAY?  if (u,0) = (1,2), (2,1)
K if (u,v) = (1,1).

Making use of the above bounds and the fact that k, = 0A,"%, we have E(\//ll\l(l)D < KAY? and
E(|ﬁ(2)|) < KAY? for all (u,v). These two results together imply Zl\l(l) = O(A,_ll/4) and Zl\l(Q) =
O(Aﬁl/‘l) which yields the result.

Proof of (59) for w =2

We proceed similarly to Step 6 on page (548) of Ait-Sahalia and Jacod (2014). First, observe that we have

A12 - A2 = AL2(1) + A12(2)  with

o 2k, —1)A[T/AL] 7 (i—1) 3 (2kp,—m—1)A(t—m—1)
A12(1) = ( Z ﬁ( Z (athaabG)( Ci—1—j— m)E(u)}LE(U)?er)

i=2 m=1 """ =0V (i+2k,—1-m—[T/A,])

Con(u)i- )Cab( )i

o (T/AL] (i—1)A(2kn—1) 3 (2kp—m—1)A(i—m—1)
e =Y ( > (o > (O HOwG) (el ) (W)}e(0)] )
i=[T/Ap]—2kn+2 m=1 =0V (i4+2kn —1—m—[T/A,])
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(2kp,—m—1)

Y OHOWONE )W) ) Con ()i )m()

§=0
It is easy to see that the quantity,

3 (2kn—m—1)A(i—m—1)

W= o ( > (O HOWG) (15 )e(W)e(0)] )
=0V (i+2k, —1—m—[T/Ay))

is Fi* ,,_1 measurable and bounded by v, . Let,

(i—1) (2kp—m—1)A(i—m—1)

=3 o > (O HOwG)(E 1))} ) G (W)

m=1 """ j=0V(i+2k,—1—-m—[T/A,])

It follows that, ] is F;* ;-measurable. We have,

E mn

| Fo) < ()
KA, ifu=1 K, fu=1

IE(C(w)§ | Fiem—1)] < , E([¢(u)7 I [ Ficm—1) <
KA,  ifu=2 K. AZ? ify =2

Using Lemma 5, we deduce that for z > 2

K.(3

E(l&i7) < K.

n )k ifu=1_ K.k, ifv =1
ik itu=2" | K.k ifu=2

Using the above result, and similarly to step 6 on page 548 of Ait-Sahalia and Jacod (2014), we obtain that,
ﬁm( ) 2 0. A similar argument yields 1/4 A12(2) = 0 which completes the proof of (59) for w = 2.

Proof of (60) for w =1

Define

2k —1
O )" = g )3 (O HOWG) (1) = (O HOmG) (€, )(w)}e(0)]
By Taylor expansion, the polynomial growth assumption on H and G and using (39) with Z = ¢ we have
(O HOWG) (s 1) = D HOwG) (s, )| Fi, )| € K (k) < K/By for =0, 2k, — 1

E(|(0gn HOuG) (€} j 1) = (Ogn HOabG)(ei o, )11 Fi o, )| < K (knAn)?/? < KAY® for > 2

(O, )" F )1 <

i—2kn> <K QAZ/ * (Y4,.»)? where the latter follows from the Holder inequal-

Next, observe that ©(u, v)(()c)’i’n is F* ; -measurable and satisfies |O(u, v)(()c)’i’"

KA, and E(|6(u, v)7"" |9
ity. We aim to prove that,

Z @ u ’U c),z nC( )n,ghC(v)?,ab

1=2ky,

(T/An] ]

1/4
’I'L

o1



goes to zero in probability for any H,G.g, h,a,b; u,v =1,2.1

To show this result, we first introduce the following quantities:

tm

1/4
77/

[T/A,]
> O )y TR ()W) |7 n]
1=2k,,
[T/A,]

> O ) (W)~ E(C() " 0)] | F n)]

=2k,

Dj>

1/4
’I’L

with E = E(l) + E(2) By Cauchy Schwartz inequality, we have,

K if (u,v)=(1,1)
E(|¢(w); " ¢(0); |9 < (F,)%, where 31, = § KA, if (u,0) = (1,2), (2,1)
KA2 if (u,v) = (2,2)

Since ¢ (u)™9"¢(v)™*" is Fr-measurable, we use the martingale property of ¢ ()™ 9" ¢ (v) P —E(¢ (u)™9" ¢ (v) | FI )
to deduce

E(|E(2)]?) < KA 32(AL457 )2:?;’” < KA, in all cases.

The latter inequality implies E(2) 2 0 for all (u,v). We are left to show that E(1) 0.
We recall some estimates under Assumption 2, see (B.83) in Ait-Sahalia and Jacod (2014)

E(C()" @) 1FLy)| < KA, (62)
B¢ "¢ Fry) = (9t + e )| < KAY?, (63)
[E(C(2)7"¢(2)7 |y — e A )I < KA3/2 (VAn+1i") (64)

Case (u,v) € {(1,2),(2,1)}. By (62) we have

E(B))) < K —

A AT AV AL S KAY? so E(1) = 0.

Case (u,v) € {(1,1),(2,2)}. Set

[(T/An]

- 1 c),i,m
El(l) = 1/4 Z 6(”?”)8) Vviyian
Ay L i=2k,
R L o
E”(l) = 1/4 Z 9(“?”)0 v (Vzﬁl - VinZkTL)‘|
A" L i=2k,,
r(T/An]
E"(1) = —7 | D O )i (B ) 1F L) ~ Vit )
An L i=2k,
where
It 4 IR (u,v) = (2,2)
Vit = 57;91’1’“%” if (u,v) = (1,1)

0 otherwise

15Tt turns out that given our restrictions on the functions H and G and the different estimates derived for multidimensional
processes, the most relevant arguments on which depend the convergence are v and v.
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Note that we have (1) = E'(1) + E”(1) + E”(1). Using (63) and (64), it can be shown that

E(E" (1)) < Kﬁ(A}lﬂlﬁg,v)A}/? if (u,v) = (1,1)
(B < d AT el et
K =7 (A7 30 AV if (u,0) = (2,2)

5/4
An/ u,v

< KAY? in all cases.

We make use of lemma B.8 in Ait-Sahalia and Jacod (2014) to prove that E'(1) £ 0. To this end, we write

[T/AR]—2k,+1

- 1 c),i— kn,n
E'(1) = NG [ S o)y V(z‘—l)An1~
n i=1

Noting that the summand in the last sum is 7, 5, _,-measurable, then applying lemma B.8 in Ait-Sahalia

and Jacod (2014) requires showing the following two results

1 [T/An]—2kn+1
c),i—142ky,n " P
AL/ l Z |E(®(“’U)(()) - Wil)An|fi_1)|] =0 and
n i=1
% —9 [T/AR]—2kn+1

Z E(l@(u,v)é(:)’i1+2k"’n‘/(i1)An)|2>] - 0.

i=1

AL/2

The first point readily follows from the inequality
KALY?3n if (u,v) = (1,1
< Tuy (u,0) ) < KAE’L/Q in all cases

E(O(u, 0){ AL FR)] <
0 (=1) L KAY?3m A, if (u,0) = (2,2)

I

—~
DO
[\)

while the second is a direct consequence of

KA ER )2 it (uy0) = (1,1)

WAL (u,v) = (2,2)

E(10(u, v)§ "~ AL l?) <
’ e KAY?Gr,

< KA%? in all cases.

Finally to prove that E" (1) £ 0, we exploit the fact that

]E(|@(U, U)gC)wi’n (‘/('L.fl)An - Wi72k7l)An) D S ]E(|®('U/7 v)g:)’iyn|2)1/2]E(“/(i*1)An - ‘/(i72kn)An 2)1/2

KAY %3 if (u,v) = (1,1)

uU,v

KNS5 ALY i (u,0) = (2,2)

which follows from an application of Cauchy-Schwartz inequality combined with existing estimates. Indeed

using successive conditioning one can prove that for (u,v) = (1,1)and(2,2) E(|Vii—1)a, — Vii—2k.)A, 7)<
A,l/ 2 under Assumption 2.
Proof of (60) for w =2
The target is to show that
1 (T/An] /2k,—1 3 2k, —m—1
B@=—m 2 ( > (55 X [OnHOWG) 1) = O HOWG) (e o, )] e()fe(0)F 1 ) %
n =2k, \ m=l no =0

C(M?ﬂ) C(0) " = o.
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In order to achieve this goal we introduce some new notation, for any 0 < m < 2k, — 1

2k, —m—1
c),i,n 3 K n n
O(u, v)i) " = = o0 Y [OnHOWG) (- j 1) = (OgnHOuwG) (¢, )] (W) e(0)
n =0
2k, —1

p(u,’u)(c)’zngh Z @ u ’U (c),z nC( ) 7gh

It is easy to see that ©(u, u)&?"‘" is F*,,_, measurable and satisfies by Holder inequality

O(u,v)" <7, and E(|O(u, v)Ss

ok, ) < KAL)
Using Lemma 5, we deduce that for ¢ > 2

Ko (A5 )1k ifu=1_ K, /K2 ifo=1

E(|p(u, v){bmoh|7) <
Ko (A3 )1k ifu=2" | Kkt ifo=2

Set

(T/An

c),i,n n,ab
- Z (1, 0) B (0) | ),
A =2k,

(T/An]

> plu, o) O (C(0) P —E(C(0)] " FT )

1/4
An ok

E//(Q) _

The martingale increments property implies E(|E”(2)?) < KAY? in all the cases implying E"(2) = 0.
Next using the bounds on p(u, v)(?)%™9" and similarly to step 7 on page 549 of Ait-Sahalia and Jacod (2014),
we obtain that E’(2) = 0.

Return to the proof of Theorem 1

So far, we have proved that,

1 (A1) & S
F([H(C)vG(C)]T - Z Z Al11(H, gh,u; G, ab,v)7 + A12(H, gh,u; G, ab, v)7

g,h,a,b=1u,v=1

+ A12(G, ab,v; H, gh, u)%) 0.

We next show that,

(T/AR]
7 O O HOwG) ok, )oan (V) (o) = 0, ¥ (u,0) (66)
N =2k,
NG (ATL(H. gh. vz G.ab,v) - / (91 HO @) (el dt) 250 when (u,v) = (2,2) (67)
n 0

1 T
A1/4 (A (H gh u; G ab ’U) 032 / (athaabG)(ct)(c?ac?b —|—Cgbcilu)dt) % 0 when (’U,,U) = (171)

(68)

A1/4T(H , gh,u; G, ab, v) =5 0 when (u,v) =(1,2),(2,1) (69)
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which in turn will imply,

(4) 2 [T/An]

ﬁ([H@E@)}T — [H(e). G(e))r - k?, Sy (O HOubG) (€, Jpon (1, )1 Gy (0 (70)

" g,h,a,bu,v=1 i=2k,

+ (Das HO G (€1, (v, 0) o (0)7 ] ) =5 0. (71)

(66) can be proved easily following steps similar to step 7 on page 549 of Ait-Sahalia and Jacod (2014) and
using the bounds of p(u,v)™" in (65) . To show (67),(68) and (69), we set

_ (T/Ax]

ALL(H, gh,u; G, ab,v) =T(w,0)f > (O HOuwG)(es-)S() ")
i=2k,

Then it holds that,

1 _
A1/4(A11(H gh,u; G,ab,v) — A11(H, gh, u; G, ab, v)) 20.

This result can be proved following similar steps as for (59) in case w = 1 by replacing @(u,v)((f)’i’n by

L(u, )5 ((Ogn HOapG)(ci—1) — (OgnHOapG)(ci—2k,)) which has the same bounds as the former. Next we
decompose All as

- /A,
ATT(H. gh s Guab, ) = r<u,v>3[ S O HOWG) (e Vi
i=2ky,
[T/AR]
+ Z (OghHOuG) (ci— 1)(E(C(U)?’ghg(v)?’ab|]‘—z'711)_V£1)
=2k,
ey h b h b
Y OO0 ) () — B )| o)]
1=2k,,

Following the proof of (60) for w = 1 at this time replacing O (u, v)(c)’i’n by I'(u, v)§ (Ogn HDap G)(¢;—1) which
satisfies only the condition |I'(u,v)§(0gnH0apG)(ci—1)] < 75, We can see that the last two terms in the
above decomposition of vanish to zero at a rate slower that A, /4 thus we have

- /0]
7 <All(H, gh,u; G, ab,v) — ]."(u,v)g( Z (athaabG)(cH)v;"l)> =0

n =2k,

As a consequence for (u,v) = (1,2),(2,1)

Al/4/17(H, gh,u; G,ab,v) =0

The results follows from the following observation,

d (T/AnR]

1 3 (7 o
( (Y Y GuHORG )V () - / (9o HOuwG) () (cf" e} + e h“)dt) 0,
0

1/4
An g,h,a,b=1 i=2k,

for(u,v) = (2,2)

d (T/An]
1( > orwoi( Y (8th8abG)(ci_1)V;’ll(u,v))—[H(c),G(c)}T> =0, for(u,v) = (1,1)

1/4
An g,h,a,b=1 =2k,
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Set

1
§(H, gh,u; G,ab,v)i = F(athaabG)( i—2kn, )Pgn(u,v)} Cab( )i

[t/An]
Z(H,gh,u; G, ab,v); = AV >~ &(H, gh,u; G, ab, v)}.
i=2kn
(70) implies
1 — ) P SN
m([H(c),c:(c)]T “[H(c), G ) £ Zb 2 7 (Z(H gh,u; G, ab, v)2+ Z(H, ab, v; G, gh, u) )
(72)
. e e (4) — (A)y .
Next, observe that to derive the asymptotic distribution of ([ ( ), G1(c )] seeo [Hi(e), Gu(0)) ), it suf-

fices to study the joint asymptotic behavior of the family of processes F Z(H, gh,u;G,ab,v)%.

It is easy to see that the {(H, gh,u; G, ab,v)? are martingale increments, relative to the discrete filtration
(F). Therefore, by Theorem 2.2.15 of Jacod and Protter (2012), to obtain the joint asymptotic distri-
bution of A1/4Z(H7 gh,u; G,ab,v)%, it is enough to prove the following three properties, for all ¢ > 0, all
(H, gh, u; G,ab,v), (H',¢'h;u'; G, 'V, v") and all martingales N which are either bounded and orthogonal
to W, or equal to one component W7,

LA
A((H7gh,u;G,ab,v)7(H’,g’h’7u’;G'7a'b’,v’)) = Z E(¢(H, gh,u; G,ab,v)ME(H g'h  u'; G a'b  v')?
t
=2k,

£ A((H7 gh,u; G ab,v),(H g’/ u'; G’ ad'V, 1/))
¢

[t/An]

> E((H, gh,u; G, ab,v)} 1| F4) = 0

i=2kn,
[t/A]

B(N; H, gh,u; G, ab,v)y :== Y E(6(H, gh,u; G, ab,v)! A N|FP,) = 0.
=2k,

Using the polynomial growth assumption on H, and G,, the second and the third results can be proved by
a natural extension to the multivariate case of (B.105) and (B.106) in Ait-Sahalia and Jacod (2014).
Define

(e ) i (o) = (1)
VaY (v,0'), = § e it (0,0) = (2,2)
0 otherwise,
and
(cf e +cf™ ) i (uu) = (1,1)
thhl(uvul)t: afhvgh’ it (u,) =(2,2)
0 otherwise.

Once again using the polynomial growth assumption on H, and G, and following steps similar to the proof
of (B.104) in Ait-Sahalia and Jacod (2014), one can show that

A((H,gh,u;G,ab,v),(H',g’h',u’;G’,a'b',v’)) =
t

¢
M(u,v;u’,u’)/ (athaabGag/h/H(“)a/b/G)(cS)Va“b/b/(v,v')SVihl (u,u)gds,
0
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with

3/0% it (w,v;u/,0") =(1,1;1,1)

3/460 if  (w,v;u/,v) =(1,2;1,2),(2,1;2,1

M(u,v;ul7vl): / ( ) ( ) ( )
15160/280 if  (u,v;u’,v") =(2,2;2,2)
0 otherwise.

Therefore, we have

A((H, ghyus G, ab,v), (!, g/ ' G a'd o)) =

% fOT (OghH0ap GOgr iy H' 00y G') (c4) (¢ 99’ e 4 th ?q ) DY 4 e baydt if (u, vy, 0) = (1,151,1
4/@ fO thaabGa 'h/H/ ’b’G/)( )( 99’ hh T cgh hg ) ab,a/b/dt " (u7v;u’7v’) _ (172; 1.2
2 ) (OanHOupGOgrry H' Oariy G) (1) (e e +cgb’ ba g a W gy i (u, v, 0') = (2,132,1
568y OanH O GOyn H' Dy G (cr)es> Ve i (uviu, ) = (2,232,2
0 otherwise.

— (A — )
Using (72), we deduce that the asymptotic covariance between [H,(c), G,(c)]; and [Hs(c), Gs(c)]  is given
by

d d 2
>y ¥ (A((Hr,gh,u;Gr,abm,(Hs,g’h’,u’;Gs,a’b',v’))T

g,h,a,b=1 g’ ,h',a’,b'=1u,v,u’ v'=1
+ A((Hy. gh.wi Gy, ab,v), (He, @'V, 0 Gy g W) )+ A((Hyy b3 Gy ghw), (H, W' Goya o) )

+ A((Hra ab,v; Hy., gh, U), (HS7 a'b’, Ul; G, g/hlv ul))T> .

After some simple calculations, the above expression can be rewritten as

d d T
6
Z Z <93 /) (8ghHraabGrajk’HsalmGs(ct)) {(C?C?k + Cgkcil])(cglcgm + C?mcft)l)

g,h,a,b=1 j,k,l,m=1
aj bk k bivs gl h m
+ (Ctjct + et ) el ef™ + ] )} dt

1510

t
T / (Dgh Hy-0a G55 Ho O G (c)) [zghd’kzabxlm+5@bﬂkegh7lm] dt
0

3 [ bl 4
b g | O 000y H O Galea)) [ (e el 4 el ™ 4 el o gl
0
o (ef! e e (T el et dt>,
which completes the proof.

B.2 Proof of Theorem 2

Using the polynomial growth assumption on H,., G,, Hs and G5 and Theorem 2.2 in Jacod and Rosenbaum
(2012), one can show that

6 AT,S,(1 P r,s,(1
@ s wpe ),

o7



Next, making use of equation (3.27) in Jacod and Rosenbaum (2012), it can be shown that

3 A7s,(3 6’\1",5, 1 P r,s,(3
@[QT ()_§QT ()]_>ET ().

Finally, to show that

1510 9 oy 4 graa 4

S’-\Zr,s,(i’)) P Z7‘,5,(2)
10 12T [ AL R A

we first observe that as in Step 1, the approximation error induced by replacing ¢ by E;” is negligible.
For 1 < g,h,a,b,j,k,l,m <dand 1<r, s <d, we define

(T/An]—4kn+1
W= 3 (O Hy0usGrdgn HoDin G (G 9 aah it
=1

D)} = (Ogn Hy 0 Gr 01 H O G ) (2 E (79T bl b | 7y

i JE

)

T(2)" = (9 Ha G@ Ha n ngh njk n,ab n,lm E ngh n,jk _n,ab n,lm _/—"n
w(2); ( gh ab Jk im G )(Cz)( Vitok, Vitok, — ( Vi Vit ok, Yidok, 7))

w(3); = ((athTaabGTaijsglmGS)(8?) = (OgnH 00y G101, Hs 01 G's) (¢ ))'an ghvf’]kvﬁz}i 'anJrng
[T/ An]—4kn+1
W(u)y = Z wi(u), u=1,2,3.

=1

Note that we have Wt” = W(l)}1 + W\(Q)? + /V[7(3)? By Taylor expansion and using repeatedly the bound-

edness of ¢; we have

@(3)7 < L+ 1871187 1

)

which implies E(|w(3)?]) < K AY* and /V[7( 3)p 0. Using Cauchy-Schwartz inequality and the bound
E(||y 121 Fr) < KAY* we have E(|@(2)?|?) < KAZ. Observing furthermore that @(2)" is F; 4%, —measurable,
we use Lemma B.8 in Ait-Sahalia and Jacod (2014) to show that W(?)? 24 0. Also, define

4 ) .
wln _ (8thraabGraijsalmGs)( n) sz (Cn gaczz hb + C?,gbc?,ha)(c?,]lcy,km + C;l,]mc?,kl)

2
il nk ; kly—n.gh,ab , 4 hb b nhay=n,jk.l A(kZAR) _nghoabn,jk.L
(cmlgmkm | gmim nikiypn.ghab 2 nga nhb | ngbonhaysn.jkim | (kn )Cn,g abgn.jkim]

+ ¢ ¢ i glam ¢ i G i 9 i

% % i

Wl

[T/AR]—4kn+1
Wi=A, > wl

i=1

The cadlag property of ¢ and ¢ and k,v/A,, — 6 and the Riemann integral argument imply W3 N W
defined as

T
4 X 4 . )
Wr = [ O H, 00 i G e) [ g (el + el el 4 el + 3 el 4 ef el
0
4 462 ;
+ g(cfac?b be?a)C]k lm 5 th,abdk:,lm} dt.

In addition, by Lemma 4 we have

[T/An,]_4kn,+1
E(W(1)7 = Wr]) < AnE< Yo (A 77i,4kn)>‘

i=1
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Hence, by the third point of Lemma 6 we have W%‘ N Wy from which it can be deduced that

A [T/AR]—4k,+1
S D (O G0 Heun G (@) [CF Gk, Im)C (gh, ab)]
n i=1
[T/An]—4k:n+1 .
S (O He0u G0 HoOim o) (@)CF (gh, ab)y] 7™
=1

9

= [T+

K2

Tl

[T/An]_4kn+1
(athraabGraijsalmGs) (E:L)O? (]k, lm)’yy’gh'}/?’ab}

_ 2
kn

=1

T .
L / (39hHTa“bGraijsalmGs)(ct)th’“b@g’“’lmdt.
0

The result follows from the above convergence, a symmetry argument and straightforward calculations.

99



