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Motivation

@ Use machine learning ideas in discrete choice models
@ Workhorse model of demand in economics and marketing.

@ For applications in economics and marketing: hi-dim data
» E-markets/platforms: Amazon, eBay, Google, Uber, Facebook, etc.

» Large databases from traditional retailers (supermarket data)

@ Many recent applications of these models face problem that
consumers’ choice sets are huge:

» Where do Manhattan taxicab drivers wait for fares? (Buchholz 2016)
» Legislators’ choice of language (Gentzkow, Shapiro, Taddy 2016)

» Restaurant choices in NYC (Davis, Dingel, Monras, Morales 2016)

» Choice among bundles of products (eg. Fox and Bajari 2013)



Specifically:

o This paper: address dimension-reduction of large choice set
» (not large number of characteristics)®

@ New application of random projection — tool from machine learning
literature — to reduce dimensionality of choice set.

» One of first uses in econometric modeling?

» Use machine learning techniques in nonlinear econometric setting

@ Semiparametric: Use convex-analytic properties of discrete-choice
model (cyclic monotonicity) to derive inequalities for estimation3

1Chernozhukov, Hansen, Spindler 2015; Gillen, Montero, Moon, Shum 2015

2Ng (2016)

3Shi, Shum, Song 2015; Chiong, Galichon, Shum 2016; Melo, Pogorelskiy, Shum
2015



Multinomial choice with large choice set

e Consider discrete choice model. The choice set is j € {0,1,2,...,d}
with

e Random utility (McFadden) model: choosing product j yields utility

. /
u + € with U; = X; 8
~~ ~~
utility index  utility shock

X; (dim p x 1) denotes product characteristics (such as prices) and ¢;
is utility shock (random across consumers).

@ Highest utility option is chosen:
choose j & Uj+¢€; > Uy +¢€jr, j/ #

@ [ (dim p x 1) are parameters of interest.



Discrete-choice model: assumptions and notation

@ Notation:
> e=(e1,. . eq), U= (Ur,...,Uq), X=X, -, Xq)

» Market share (choice probability): for a given utility vector 1]

s(U) = Pr(U; +¢; > Uy +¢jr,j #J)

M

m—1 across markets m

e Aggregate data: we observe data {5, X"}

@ Assumptions:
» Utility shocks are independent of regressors: € 1. X. No endogeneity.

» Distribution of € is unspecified: semiparametric. Don't restrict
correlation patterns among ¢;, € (may not be IIA).

» Normalize utility from j = 0 to zero.



Convex analysis and discrete choice

Since we don't specify distribution of €, parametric DC models (MN
logit, nested logit, etc.) aren’t appropriate here.

@ Instead, estimate using inequalities derived from convexity properties
of discrete choice model.

e Namely, the expected maximal utility for decisionmaker (McFadden's
“social surplus function”)

—

g((j) = E[max(U; +¢;)] is convexin U.
J

o Market shares at U correspond to (sub-)gradient of G at U:*
s(U) € aG(U).

We derive estimating inequalities from property of mkt shares:

*McFadden (1981). This is the (generalized) Daly-Zachary Theorem



Estimating inequalities: Cyclic monotonicity

e Recall: (sub)-gradient of G(U) consists of mkt shares 5(U).

@ The (sub-)gradient of a (multivariate) convex function is cyclic
monotone: for any cycle of markets m=1,2,...,L,L+1=1

L

D (O™ —0m) 5" <0 or Y (X —XTYB- 5" < 0.
m=1 m

Inequalities do not involve €'s: estimate /3 semiparametrically.®

@ These inequalities valid even when some market shares=0
» Empirically relevant (store-level scanner data)®

» Consideration sets, rational inattention’

®Shi, Shum, and Song (2015); Melo, Pogorelskiy, Shum (2015)
6Gandhi, Lu, Shi (2013). We allow € to have finite support.
7Matejka, McKay 2015



Introducing random projection

e Problem: U™ and 5™ are d (very large) dimensional.
e Use random projection from RY — R, with k << d.

» Consider: d x 1l-vector y; Random matrix R (k x d).

» Projection is given by y = ﬁRf resulting in a k x 1 vector.

» Many candidates for R; we consider sparse random projection®:

, 1 11
rij € ﬂ {+1,0,—1} with probs. {21/}’ 1- ¥’ 21/}}

» ) = “sparseness”.

* Eg. if Y =+/d, and d = 5000, use < 2% of data.

8 Archiloptas 2003; Li, Hastie, Church 2006



Properties of Random projection

@ RP replaces high-dim vector y with random low-dim vector y with
same length (on average): given y, we have:

E[ly1I%] = ENIRYII*]) = |17

e Variance V(y) = O(1/k)

@ Use of random projection justified by the Johnson-Lindenstrauss
theorem:



Johnson-Lindenstrauss Theorem

e Consider projecting d-dim vectors {w} down to k-dim vectors {w};

There exists an RY — R mapping which preserves Euclidean distance

among points; ie. for all my, my € {1,2,..., M} we have, for 0 < § < 1/2
and k = O(log(M)/5?)

(1= w™ — w™ | < [|w™ — w™||* < (1+8)[|w™ — w™||*.

The distance between the lower-dim vectors (w™, w™) lies within
d-neighborhood of distance btw high-dim vectors ( mowm2).

@ Proof is probabilistic: shows random projection achieves these bounds
w/ positive prob.



The RP Estimator

@ Observed dataset: D = {s_"",X’"}ﬁ\n/’:1

— ~ ~ = M
@ Projected dataset: D) = {5’" =Rs™, X™ = (RX]",..., RX,;")}

(Project X™ column-by-column.)

m:l.

@ Projected CM inequalities: for all cycles in m € {1,2,..., M}

Z(Um+1 _ Um) .Sm Z(Xm—&-l o im)/ﬁ .sM <0

m m

The RP Estimator E minimizes the criterion function:

2
0BD) = Y [i (%t xmyg-5m) ]

all cycles;L>2 L m=1 +

Convex in 3 (convenient for optimization); may have multiple optima



Properties of RP estimator

@ Why does random projection work for our model?

@ Exploit alternative representation of CM inequalities in terms of
Euclidean distance between vectors:®

> (Ium—smE = jom - s2) <o

m

@ By JL Theorem, RP preserves Euclidean distances between
corresponding vectors in D and D.

e If CM inequalities satisfied in original dataset D should also be
(approximately) satisfied in D.

Villani 2003



Properties of RP estimator (cont'd)

@ RP estimator E is random due to
© randomness in R

© randomness in market shares s/ = Nim Y lyij=1)

@ For now, focus just on #1: highlight effect of RP
» (Assume market shares deterministic; not faroff)

@ Inference: open questions
» We show uniform convergence of Q(3,D) to Q(8,D) as k grows.
Building block for showing consistency of g

» For inference: little guidance from machine learning literature

» In practice, assess performance of RP estimator across independent
RP’'s

o @EEXED: Two applications



Monte Carlo Simulations

Designs: d € {100,500, 1000,5000}; k € {10,100,500}; M = 30

In each design: fix data across replications, but redraw R. Report
results across 100 independent RP’s.

Utility specification: U; = leﬁ1 + Xfﬂz + €
» Two regressors: X! ~ N(1,1) and X? ~ N(—1,1)

» Normalize ||§]| = 1: set B = cosf, B = sin @ with true
0o = 0.757 = 2.3562.

» Random error structure: MA(2) serial correlation in errors across
products (non MNL, non-exchangeable)

Only using cycles of length 2 and 3 (similar results with longer cycles)



Monte Carlo results

@ Results are robust to different DGP's for RP
» 1) = 1 = Dense random projection matrix.

» ) = /d = Sparse random projection matrix.
@ In most cases, optimizing Q(B,ﬁ) yields a unique minimum.

@ On average, estimates close to the true value, but there is dispersion
across RP’s.



Monte Carlo results: Sparse random projection matrix

Table: Random projection estimator with sparse random projections, 1) = v/d

’ Design | mean LB (s.d.) mean UB (s.d.) |

d = 100, k = 10 2.3073 (0.2785)

d =500, k = 100 || 2.2545 (0.2457) 2.3473 (0.2415)
d = 1000, k = 100 || 2.3332 (0.2530)  2.3398 (0.2574)
d = 5000, k = 100 2.3671 (0.3144)
d = 5000, k = 500 || 2.3228 (0.3353) 2.5335 (0.3119)

Replicated 100 times using independently realized sparse random projection matrices.
The true value of 6 is 2.3562.



Application I: Store and brand choice in scanner data

e Soft drink sales of Dominick's supermarkets (Rip) in Chicago
@ Consumers choose both the type of soft drink and store of purchase.

@ Leverage virtue of semiparametric approach.

» Typically store/brand choice modelled as tiered discrete-choice model
(i.e. nested logit).

» Our approach: no need to specify tiering structure. Do consumers
choose stores first and then brands, or vice versa??

@ M =15 “markets” (two-week periods Oct96 - Apr97).

Choose among 11 supermarkets (premium-tier and medium-tier).

A choice is store/UPC combination: d = 3060 available choices.

Reduce to kK = 300 using random projection. Results from 100
independent RP's

Hausman and McFadden (1984)



Summary Statistics

Definition

Summary statistics

s !:ractlon of unlt.s of store-upc j sold dur- Mean: 60.82, s.d: 188.37
ing market (period) t
Bricen Ave'rage price of the store-upc j during Mean: $2.00. s.d: $1.77
period t
Fraction of weeks in period t for which
bonus;; store-upc j was on promotion (eg. “buy- Mean: 0.27, s.d: 0.58
one-get-one-half-off")
. Dummy variable for 11/14/96 to
holiday: 12/25/96 (Thanksgiving, Christmas)
medium_tier; | Medium, non-premium stores.” 2 out of 11 stores
d Number of store-upc 3059
k Dimension of RP 300

Number of observations is 45885 = 3059 upcs x 15 markets (2-week periods).




e Criterion function always uniquely minimized (but estimate does vary
across different random projections)

@ Purchase incidence decreasing in price, increasing for bonus, holiday

@ Price coefficient negative

» and lower on discounted items (bonus): more price sensitive towards
discounted items

» and lower during holiday season: more price sensitive during holidays

@ No effect of store variables (mediumtier)

(Additional application: EITIEEETD)

19/28



Store/brand choice model estimates

Random projection estimates, dimensionality reduction from d = 3059 to k = 300.

Specification () (D)
price
[—0.9429, —0.4966] | [—0.6821, —0.2445]
bonus 0.0461 0.0336
[0.0054,0.1372] [0.0008, 0.0733]

price X bonus
[—0.3164, 0.0521] [-0.1816,0.0375]
holiday 0.0661 0.0238
[—0.0288,0.1378] [-0.0111,0.0765]
price X holiday
[-0.7048,—0.0139] | [-0.2368, —0.0164]
price X medium_tier 0.4815
[—0.6978,0.8067]
d =300
Cycles of length 2 & 3
First row in each entry present the median coefficient, across 100 random projections.
Second row presents the 25-th and 75-th percentile among the 100 random
projections. We use cycles of length 2 and 3 in computing the criterion function.




Remarks

@ For RP estimation, all that is needed is projected dataset D. Never
need original dataset. Beneficial if privacy is a concern.

@ Other approaches to large choice sets
@ Multinomial logit with “sampled” choice sets.!!

@ Maximum score semiparametric approach.? Use only subset of
inequalities implied by DC model.

* Estimation based on rank-order property (pairwise comparisons among
options)

* In binary choice case: CM and ROP coincide.

* For multinomial choice: CM and ROP assumptions non-nested and
non-comparable.

© Moment inequalities.'®> Omnibus method

' McFadden (1978); Ben-Akiva, McFadden, Train (1987)
12Fox (2007); Fox and Bajari (2013)
3pakes, Porter, Ho, Ishii (2015)



Conclusions

@ Multinomial choice problem with huge choice sets

e New application of machine learning tool (random projection) for
dimension reduction in these models.
@ Derive semiparametric estimator from cyclic monotonicity inequalities.

@ Procedure shows promise in simulations and in real-data application.

Random projection may be fruitfully applied in other econometric
settings



Convex analysis: subgradient/subdifferential /subderivative

\

e Generalization of derivative/gradient for nondifferentiable functions

@ The subgradient of G at p are vectors u s.t.

G(p)+u-(p' —p) <G(p'), forallp’cdomg.
@ Dual relationship between v and p:
» 0G(p) = argmax,cgivi{p - u—G*(u)},
where G*(u) = max,cavi{u-p—G(p)}. (Lemma)



Remark: Other approaches to large choice sets

@ Maximum score semiparametric approach.'* Use only subset of
inequalities implied by DC model.

» Estimation based on rank-order property: for all choices j # j/, pairwise
comparisons characterize optimal choice:

Sj > Sj &> leﬁ > XJI/B
» In binary choice case: CM and ROP coincide.

» For multinomial choice: ROP implied by exchangebility of Fx
(restrictions on correlation among €, €;, etc.)

» In contrast, we assume independence ¢ | X but leave correlation
structure among € free. Non-nested and non-comparable.

1Fox (2007); Fox and Bajari (2013)



Application Il: Choosing advertisers in mobile app markets

@ Model matching in online app market (joint with Richard Chen)
@ Sellers: publishers sell “impressions” (users of online apps)

@ Buyers: advertisers who vie to show mobile ad to user. Advertisers
bid “cost-per-install” (CPl); only pay when user installs app.

@ Data from major mobile advertising intermediary: chooses the
optimal ads from one side to show to users on the other side.

@ Intermediary wants to constantly evaluate whether optimality is
achieved. Optimality means choosing advertisers bringing high
expected revenue. Are these advertisers being chosen?

@ However, difficult to do under CPl mechanism.

» CPI payment may benefit advertisers (offering them “free exposure”)
but hurts publishers!®

BHu, Shin, Tang 2016



Application Il: Data

@ Data from a major mobile app advertising intermediary

Estimate model of probability that an advertiser gets chosen in
US-iOS market.

>7700 advertisers. Reduce to 1000.

@ Advertiser covariates:
» Lagged revenue (measure of expected revenue)

» Lagged conversion probability (whether ad viewers install app)
» Genre: gambling

Self-produced ad

v

v

Whether app is available in Chinese language



Application Il: Results

| Specification || (A) \ (B) \ © \ (D) |
Revenues 0.823 (0.147) [ 0.521 (0.072) | 0.663 (0.263) | 0.657 (0.152)
[0.722, 0.937] | [0.494, 0.563] | [0.711, 0.720] | [0.625, 0.748]
ConvProb 0.069 (0.547) | 0.037 (0.183) | 0.006 (0.035) | 0.025 (0.188)

[-0.445,0.577]

[-0.076,0.161]

[-0.013,0.033]

[-0.112,0.168]

Rev x Gamble

-0.809 (0.187)
[-0.856,-0.813]

-0.200 (0.098)
[-0.232,-0.185]

-0.192 (0.429)
[-0.500,0.029]

Rev x Client

-0.604 (0.278)
[-0.673,-0.652]

Rev x Chinese

-0.489 (0.228)
[-0.649,-0.409]

Dimension reduction: k = 1000
Sparsity: s =3
Cycles of length 2 and 3

Table: Random projection estimates, d = 7660, k = 1000.

First row in each entry present the mean (std dev) coefficient, across 100 random

projections. Second row presents the 25-th and 75-th percentile among the 100 random

projections. We use cycles of length 2 and 3 in computing the criterion function.



Application Il results and discussion

@ Robust results: expected revenues has strong positive effect, but
conversion probability has basically zero effect. Once we control for
revenues, it appears that conversion probability has no impact.

@ Gamble, client and Chinese all mitigate the effect of revenues.
Revenues appear less important for an advertiser when it is a gambling
app, the creative is self-produced, or if app is available in Chinese.

@ Are “right” advertisers being chosen?
» Yes, to some extent: advertisers offering higher expected revenue are
chosen with higher probability.

» Partially reversed for gambling apps, self-produced ads— sub-optimal?
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