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A Bit of Introduction
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“Big Data” or “Vast Data” in Econometrics
“Tall”, “Wide”, and “Dense”

Consider a (T × K ) regression “X matrix” for T “days” (or
whatever) of data each of K variables. Now imagine sampling
intra-day data as well, m times per day. Then X is (mT × K ). Big
data correspond to huge-X situations arising because one or more
of T , K , and m is huge.
– As K →∞ we speak of “wide data” (in reference to the wide X
matrix due to the large number of regressors)
– As T →∞ we speak of “tall data” (in reference to the tall X
matrix, due to the large number of time periods, i.e., the long
calendar span of data )
– As m→∞ we speak of “dense data” (in reference to the
high-frequency intra-day sampling, regardless of whether the data
are tall.)
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Examples

– Consider 2500 days of 1-minute returns (360 per six-hour trading
day) for each of 5000 stocks. K = 5000, T = 2500, m = 360, so
X is (1, 800, 000× 5000). Data are tall, wide and dense.

– Consider 10 days of 1-minute returns (360 per six-hour trading
day) for each of 20 stocks. K = 20, T = 10, m = 360, so X is
(3600× 20). Data are dense, but neither tall nor wide.

– Consider 2500 days of daily returns for each of 5000 stocks.
K = 5000, T = 2500, m = 1, so X is (2500× 5000). Data are tall
and wide, but not dense.
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What’s New With Tall, Wide, and Dense Data

I Tall: Nothing new (must wait a million years...)

I Well, actually, climatological studies...

I Wide: It’s here now!

I High-dimensional VAR’s in many contexts
I Web data like Billion Prices Project
I Novel apps like fixed effects without panels, forecast combining

weights, etc.

I Dense: It’s here now!

I Volatility estimation from ultra-high frequency financial market
data

I Long-memory estimation from ultra-high frequency financial
market data?
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Long Memory and Dense Data

Dense data may let us estimate long memory with accurately.

I Fractionally-integrated processes are self-similar. “scaling
laws”

I I (d) at any observational frequency is I (d) at any other.

I So all we need is very fine sampling (i.e., dense data)? Here
dense data deliver information on a low-frequency
phenomenon, even with a very short calendar span...
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Mixed Frequencies and Big Data

Here the action is in both wide data and dense data.

Mixed frequencies ⇔ Big Data

I ⇒ Mixed frequencies naturally lead to Big (dense) Data. The
state-space system must be written at the highest observed
frequency, so if the highest frquency is dense, so too will be
the entire system.

I ⇐ Big (wide) Data naturally lead to mixed frequencies. The
wider the dataset, the more likely it is to contain mixed
frequencies.
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Unbalanced Panels and Big Data

Big Data panels are likely unbalanced.

I This is obvious if mixed frequencies are operative

I Also there may be entry and exit from the “panel”
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Big Data Often Have a Real-Time Vintage-Data Aspect

I Due to revisions

I Due to entry / exit

I Makes recursive analysis impossible

I Finally, a real role for “out-of-sample” model comparisons
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Background
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The Wold Decomposition

Under regularity conditions,
every covariance-stationary process {yt} can be written as:

yt =
∞∑
i=0

biεt−i

where:

b0 = 1

∞∑
i=0

b2
i <∞

εt = [yt − P(yt |yt−1, yt−2, ...)] ∼ WN(0, σ2)
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The General Linear Process

yt = B(L)εt =
∞∑
i=0

biεt−i

εt ∼WN(0, σ2)

b0 = 1

∞∑
i=0

b2
i <∞
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Unconditional Moment Structure of the LRCSSP
(Assuming Strong WN Innovations)

E (yt) = E

( ∞∑
i=0

biεt−i

)
=

∞∑
i=0

biEεt−i =
∞∑
i=0

bi · 0 = 0

var(yt) = var

( ∞∑
i=0

biεt−i

)
=

∞∑
i=0

b2
i var(εt−i ) = σ2

∞∑
i=0

b2
i
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Conditional Moment Structure
(Assuming Strong WN Innovations)

E (yt |Ωt−1) = E (εt |Ωt−1)+b1E (εt−1|Ωt−1)+b2E (εt−2|Ωt−1)+...

(Ωt−1 = εt−1, εt−2, ...)

= 0 + b1εt−1 + b2εt−2 + ... =
∞∑
i=1

biεt−i

var(yt |Ωt−1) = E [(yt − E (yt |Ωt−1))2|Ωt−1]

= E (ε2
t |Ωt−1) = E (ε2

t ) = σ2
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Autocovariance Structure

γ(τ) = E

[( ∞∑
i=−∞

biεt−i

) ( ∞∑
h=−∞

bhεt−τ−h

)]

= σ2
∞∑

i=−∞
bibi−τ

(where bi ≡ 0 if i < 0)

15 / 171



Approximating the Wold Representation

MA(q) process
(Obvious truncation)

AR(p) process
(Stochastic difference equation)

ARMA(p, q) process
(“Rational distributed lag,”

later rational spectrum, links to state space)

Unconditional moment structure
Conditional moment structure

Autocovariance functions
Stationarity and invertibility conditions
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Wiener-Kolmogorov Prediction

yt = εt + b1 εt−1 + ...

yT+h = εT+h + b1 εT+h−1 + ...+ bhεT + bh+1εT−1 + ...

Project on ΩT = {εT , εT−1, ...} to get:

yT+h,T = bh εT + bh+1 εT−1 + ...

Note that the projection is on the infinite past
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Wiener-Kolmogorov Prediction Error

eT+h,T = yT+h − yT+h,T =
h−1∑
i=0

biεT+h−i

(An MA(h − 1) process!)

E (eT+h,T ) = 0

var(eT+h,T ) = σ2
h−1∑
i=0

b2
i
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Wold’s Chain Rule for Autoregressions

Consider an AR(1) process:
yt = φyt−1 + εt

History:
{yt}Tt=1

Immediately,
yT+1,T = φyT

yT+2,T = φyT+1,T = φ2yT
...

yT+h,T = φyT+h−1,T = φhyT

Extension to AR(p) and AR(∞) is immediate.
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Multivariate

(y1t , y2t)
′ is covariance stationary if:

E (y1t) = µ1 ∀ t
E (y2t) = µ2 ∀ t

Γy1y2(t, τ) = E

(
y1t − µ1

y2t − µ2

)
(y1,t−τ − µ1, y2,t−τ − µ2)

=

(
γ11(τ) γ12(τ)
γ21(τ) γ22(τ)

)
τ = 0, 1, 2, ...
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Cross Covariances

γ12(τ) 6= γ12(−τ)

γ12(τ) = γ21(−τ)

Γy1y2(τ) = Γ′y1y2
(−τ), τ = 0, 1, 2, ...
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The Multivariate General Linear Process

(
y1t

y2t

)
=

(
B11(L) B12(L)
B21(L) B22(L)

)(
ε1t

ε2t

)
yt = B(L)εt = (I + B1L + B2L2 + ...)εt

E (εtε
′
s) =

{
Σ if t = s
0 otherwise

∞∑
i=0

‖ Bi ‖2<∞
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Autocovariance Structure

Γy1y2(τ) =
∞∑

i=−∞
Bi Σ B ′i−τ

(where Bi ≡ 0 if i < 0)
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Wiener-Kolmogorov Prediction

yt = εt + B1εt−1 + B2εt−2 + ...

yT+h = εT+h + B1εT+h−1 + B2εT+h−2 + ...

Project on Ωt = {εT , εT−1, ...} to get:

yt+h,T = BhεT + Bh+1εT−1 + ...
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Wiener-Kolmogorov Prediction Error

εT+h,T = yT+h − yT+h,T =
h−1∑
i=0

BiεT+h−i

E [εT+h,T ] = 0

E [εT+h,T ε
′
T+h,T ] =

h−1∑
i=0

BiΣB ′i
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Vector Autoregressions (VAR’s)

N-variable VAR of order p:

Φ(L)yt = εt

εt ∼ WN(0,Σ)

where:

Φ(L) = I − Φ1L− ...− ΦpLp
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A 2-Variable VAR(1) in “Long Form”

(
y1t

y2t

)
=

(
φ11 φ12

φ21 φ22

)(
y1t−1

y2t−1

)
+

(
ε1t

ε2t

)
(
ε1t

ε2t

)
∼ WN

((
0
0

)
,

(
σ2

1 σ12

σ12 σ2
2

))

– Two sources of cross-variable interaction.
What are they?
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Understanding VAR’s: Bivariate Granger-Sims Causality
(One Kind of Predictive Connectedness)

Is the history of yj useful for predicting yi ,
over and above the history of yi?

– Granger non-causality tests: Simple exclusion restrictions

– In the simple 2-Variable VAR(1) example,(
y1t

y2t

)
=

(
φ11 φ12

φ21 φ22

)(
y1t−1

y2t−1

)
+

(
ε1t

ε2t

)
,

y2 does not Granger cause y1 iff φ12 = 0

– Natural extensions for N > 2
(always testing exclusion restrictions)
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Understanding VAR’s: MA Representation

Φ(L)yt = εt

yt = Φ−1(L)εt = Θ(L)εt

where:

Θ(L) = I + Θ1L + Θ2L2 + ...
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Long-Form MA Representation of 2-Variable VAR(1)

((
1 0
0 1

)
−
(
φ11 φ12

φ21 φ22

)
L

)(
y1t

y2t

)
=

(
ε1t

ε2t

)

(
y1t

y2t

)
=

(
ε1t

ε2t

)
+

(
θ1

11 θ1
12

θ1
21 θ1

22

)(
ε1t−1

ε2t−1

)
+ ...
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Understanding VAR’s: Impulse Response Functions (IRF’s)
(Another Kind of Predictive Connectedness)

(I − Φ1L− ...− ΦpLp)yt = εt

εt ∼WN(0,Σ)

The impulse-response question:
How is yit dynamically affected by a shock to yjt (alone)?

(N × N matrix of IRF graphs (over steps ahead))

Problem:
Σ generally not diagonal, so how to shock j alone?
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Understanding VAR’s: Variance Decompositions (VD’s)
(Another Kind of Predictive Connectedness)

(I − Φ1L− ...− ΦpLp)yt = εt

εt ∼WN(0,Σ)

The variance decomposition question:
How much of the h-step ahead (optimal) prediction-error variance

of yi is due to shocks to variable j?

(N × N matrix of VD graphs (over h) could be done.
Or pick an h and examines the N × N matrix of VD numbers.)

Problem:
Σ generally not diagonal, which makes things tricky, as the variance
of a sum of innovations is therefore not the sum of the variances.
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Orthogonalizing VAR’s by Cholesky Factorization
(The Classic Identification Scheme)

Original:

(I − Φ1L− ...− ΦpLp)yt = εt , εt ∼WN(0,Σ)

Equivalently:

(I − Φ1L− ...− ΦpLp)yt = Pvt , vt ∼WN(0, I )

where Σ = PP ′, for lower-triangular P
(Cholesky factorization)

Now we can shock j alone (for IRF’s)

Now we can proceed to calculate forecast-error variances
without worrying about covariance terms (for VD’s)

But there’s no free lunch. Why?
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IRF’s and VD’s from the Orthogonalized VAR

IRF comes from the
orthogonalized moving-average representation:

yt = (I + Θ1L + Θ2L2 + ...) P vt

= (P + Θ1P L + Θ2P L2 + ...) vt

IRFij is {Pij , (Θ1P)ij , (Θ2P)ij , ...}

VDij comes similarly from the
orthogonalized moving-average representation.

Note how the the contemporaneous IRF and VD for h = 1 are
driven by the Cholesky choice of P.

Other choices are possible.
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Graphic: IRF Matrix for 4-Variable U.S. Macro VAR
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Two-Variable IRF Example (IRF12)

yt = Pvt + Θ1Pvt−1 + Θ2Pvt−2 + ...

vt ∼ WN(0, I )

yt = C0vt + C1vt−1 + C2vt−2 + ... (Q : What is C 0
12?)

(
y1t

y2t

)
=

(
c0

11 c0
12

c0
21 c0

22

)(
v1t

v2t

)
+

(
c1

11 c1
12

c1
21 c1

22

)(
v1t−1

v2t−1

)
+ ...

IRF12 = C0
12,C

1
12,C

2
12, ...
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Two-Variable VD Example (VD12(2))

εt+2,t = C0vt+2 + C1vt+1

vt ∼WN(0, I )

(
ε1
t+2,t

ε2
t+2,t

)
=

(
c0

11 c0
12

c0
21 c0

22

)(
v1t+2

v2t+2

)
+

(
c1

11 c1
12

c1
21 c1

22

)(
v1t+1

v2t+1

)

ε1
t+2,t = c0

11v1t+2 + c0
12v2t+2 + c1

11v1t+1 + c1
12v2t+1

var(ε1
t+2,t) = (c0

11)2 + (c0
12)2 + (c1

11)2 + (c1
12)2

Part coming from v2: (c0
12)2 + (c1

12)2

VD12(2) =
(c0

12)2 + (c1
12)2

(c0
11)2 + (c0

12)2 + (c1
11)2 + (c1

12)2

37 / 171



Orthogonalizing/Identifying VAR’s More Generally
“Structural VAR’s”

Structure:
A0yt = A1yt−1 + ... + Apyt−p + vt , vt ∼ (0, D)

where D is diagonal.

Reduced form:
yt = A−1

0 A1yt−1 + ... + A−1
0 Apyt−p + A−1

0 vt
= Φ1yt−1 + ...+ Φpyt−p + et ,

where et = A−1
0 vt .

The structure can be identified from the reduced form if N2−N
2

restrictions are imposed on A0. One possibility if to impose that A0 be
lower triangular (“recursive structure”).

IRF:
yt = (I + Θ1L + Θ2L2 + ...) et
= (I + Θ1L + Θ2L2 + ...) A−1

0 vt
= (A−1

0 + Θ1A−1
0 L + Θ2A−1

0 L2 + ...) vt

Hence recursive SEM’s are linked to Cholesky-identified VAR’s.
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Problem: What to do When N is Huge?
(Econometrics Traditionally has N << T )

– Estimation?

– Identification?

– Understanding?
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Markovian Structure, State Space,
and the Kalman Filter
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Part I: Markov Processes
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Discrete-State, Discrete-Time Stochastic Process

{Xt}, t = 0, 1, 2, . . .

Possible values (”states”) of Xt : 1, 2, 3, . . .

First-order homogeneous Markov process:

Prob(Xt+1 = j |Xt = i ,Xt−1 = it−1, . . . ,X0 = i0)

= Prob(Xt+1 = j |Xt = i) = pij

42 / 171



Transition Probability Matrix P

1-step transition probabilities:

[time (t + 1)]

[time t]

P ≡


p11 p12 · · ·
p21 p22 · · ·
· · · · ·
· · · · ·

·



pij ≥ 0,
∑∞

j=1 pij = 1
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Chapman-Kolmogorov

m-step transition probabilities:

p
(m)
ij = Prob(Xt+m = j | Xt = i)

Let P(m) ≡
(

p
(m)
ij

)
.

Chapman-Kolmogorov theorem:

P(m+n) = P(m)P(n)

Corollary: P(m) = Pm
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Illustrations/Variations/Extensions:
Network Connectedness

– 1-step network adjacency matrix A similar to Markov
transition-probability matrix

– k-step network adjacency matrix Ak in precise parallel to
Chapman-Kolmogorov
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Illustrations/Variations/Extensions:
Regime-Switching Models

P =

(
p11 1− p11

1− p22 p22

)

st ∼ P

yt = cst + φst yt−1 + εt

εt ∼ iid N(0, σ2
st )

“Markov switching,” or “hidden Markov,” model
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Illustrations/Variations/Extensions:
Constructing Markov Processes with
Useful Stationary Distributions

I Markov Chain Monte Carlo (e.g., Gibbs sampling)
– Construct a Markov process from whose
steady-state distribution we want to sample.

I Global Optimization (e.g., simulated annealing)
– Construct a Markov process the support of whose
steady-state distribution is the set of global optima
of a function we want to maximize.
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Illustrations/Variations/Extensions:
Continuous-State Markov Processes

Linear Gaussian state space system:

αt = Tαt−1 + Rηt

yt = Zαt + εt

ηt ∼ N, εt ∼ N
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Part II: State Space
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State Space

αt

mx1

= T

mxm

αt−1

mx1

+ R

mxg

ηt
gx1

yt
Nx1

= Z

Nxm

αt

mx1

+ εt

Nx1

(
ηt
εt

)
∼WN

(
0, diag( Q︸︷︷︸

g×g

, H︸︷︷︸
N×N

)

)

E (α0 ηt ′) = 0mxg E (α0 εt ′) = 0mxN
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State-Space in Density Form (Assuming Normality)

αt |αt−1 ∼ N(Tαt−1, RQR ′)

yt |αt ∼ N(Zαt , H)
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Tradeoff Between Generality and Tedium

– Could allow time-varying system matrices

– Could allow exogenous variables in measurement equation

– Could allow correlated measurement and transition disturbances

– Could allow for arbitrary non-linear non-Gaussian structure
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AR(1) in State Space Form

yt = φ yt−1 + ηt

ηt ∼ WN(0, σ2
η)

Already in state space form!

αt = φ αt−1 + ηt

yt = αt

(T = φ, R = 1, Z = 1, Q = σ2
η, h = 0)
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AR(p) in State Space Form

yt = φ1 yt−1 + ... + φp yt−p + ηt

ηt ∼ WN(0, σ2
η)

αt =


α1t

α2t

...
αpt

 =


φ1

φ2 Ip−1

...
φp 0′




α1,t−1

α2,t−1

...
αp,t−1

 +


1
0
...
0

 ηt

yt = (1, 0, ..., 0) αt = α1t
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N-Variable VAR(p) in State Space Form


α1t

α2t

...
αpt


Npx1

=


Φ1

Φ2 IN(p−1)

...
Φp 0′


NpxNp


α1,t−1

α2,t−1

...
αp,t−1


Npx1

+


IN

0NxN

...
0NxN


NPxN

ηt

yt
Nx1

= (IN , 0N
NxNp

, ..., 0N) αt

Npx1
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Single-Factor Exact Dynamic Factor Model

(White noise idiosyncratic factors uncorrelated with each other
and uncorrelated with AR(1) factor at all leads and lags...)

 y1t
...

yNt

 =

 λ1
...
λN

 ft +

 ε1t
...
εNt



ft = φft−1 + ηt

Already in state-space form!
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Exact Dynamic Factor Model More Generally

yt = Λft + εt

εt ∼WN(0,Σ)

Φ(L)ft = vt

vt ⊥ εt−τ , ∀τ

=⇒ Σy = ΛΣf Λ′ + Σε

– Covariance matrix in static case
– Spectral density matrix in dynamic case

– Many variations and extensions

57 / 171



Part III: The Kalman Filter
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State Space Representation

αt

mx1

= T

mxm

αt−1

mx1

+ R

mxg

ηt
gx1

yt
Nx1

= Z

Nxm

αt

mx1

+ εt

Nx1(
ηt
εt

)
∼WN

(
0, diag( Q︸︷︷︸

g×g

, H︸︷︷︸
N×N

)

)

E (α0 η
′
t) = 0mxg

E (α0 ε
′
t) = 0mxN
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Statement of the Kalman Filter (After Initializing)

II. Prediction Recursions

at/t−1 = T at−1

Pt/t−1 = T Pt−1 T ′ + R Q R ′

III. Updating Recursions

at = at/t−1 + Pt/t−1 Z ′ F−1
t (yt − Zat/t−1)

(where Ft = Z Pt/t−1 Z ′ + H)

Pt = Pt/t−1 − Pt/t−1 Z ′ F−1
t Z Pt/t−1

t = 1, ..., T
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Kalman Filter in Density Form (Assuming Normality)

Initialize at a0, P0

State prediction:
αt |ỹt−1 ∼ N(at/t−1, Pt/t−1)

at/t−1 = Tat−1

Pt/t−1 = TPt−1T ′ + RQR ′

Update:
αt |ỹt ∼ N(at , Pt)

at = at/t−1 + Kt(yt − Zat/t−1)
Pt = Pt/t−1 − KtZPt/t−1

where ỹt = {y1, ..., yt}
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Kalman Smoother

1. (Kalman) filter forward through the sample, t = 1, ..., T

2. Smooth backward, t = T , (T − 1), (T − 2), ..., 1

Initialize: aT ,T = aT , PT ,T = PT

Then:

at,T = at + Jt(at+1,T − at+1,t)

Pt,T = Pt + Jt(Pt+1,T − Pt+1,t)J ′t

where

Jt = PtT
′P−1

t+1,t
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Point Prediction of yt

Prediction:

yt/t−1 = Zat/t−1

Prediction error:

vt = yt − Zat/t−1
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Density Prediction of yt

yt |Ωt−1 ∼ N(Zat/t−1, Ft)

or equivalently

vt |Ωt−1 ∼ N (0, Ft)

Normality follows from linearity of all transformations.

Conditional mean already derived.

Proof that the conditional covariance matrix is Ft :

Et−1vtvt′ = Et−1[Z (αt − at/t−1) + εt ] [Z (αt − at/t−1) + εt ]
′

= ZPt/t−1Z ′ + H

= Ft
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Likelihood Evaluation, Optimization, and
Inference

65 / 171



Likelihood I:
Brute Force

y ∼ N(µ, Σ(θ))

Example: AR(1)

(yt − µ) = φ(yt−1 − µ) + εt

Σij (φ, σ2) =
σ2

1 − φ2
φ|i−j |
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Likelihood I:
Brute Force, Cont’d

L(y ; θ) = (2π)T/2|Σ(θ)|−1/2exp

(
−1

2
(y − µ)′Σ−1(θ)(y − µ)

)

lnL(y ; θ) = const − 1

2
ln|Σ(θ)| − 1

2
(y − µ)′Σ−1(θ) (y − µ)

TxT matrix Σ(θ) can be very hard to calculate and invert
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Likelihood II:
The Schweppe Decomposition and Kalman Filter

Schweppe’s likelihood decomposition is:

L(y1, . . . , yT ; θ) =
T∏
t=1

Lt(yt |yt−1, . . . , y1; θ)

or:

ln L(y1, . . . , yT ; θ) =
T∑
t=1

ln Lt(yt |yt−1, . . . , y1; θ)

“Prediction-error decomposition”
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Likelihood II:
The Schweppe Decomposition and Kalman Filter, Cont’d

In the univariate Gaussian case, the Schweppe decomposition is

ln L = −T

2
ln 2π − 1

2

T∑
t=1

lnσ2
t −

1

2

T∑
t=1

(yt − µt)2

σ2
t

= −T

2
ln 2π − 1

2

T∑
t=1

ln Ft −
1

2

T∑
t=1

v 2
t

Ft

Kalman filter delivers vt and Ft !

No matrix inversion!

No need for tedious analytic likelihood derivations!
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Likelihood II:
The Schewppe Decomposition and Kalman Filter, Cont’d

In the N-variate Gaussian case, the Schweppe decomposition is

ln L = −NT

2
ln 2π − 1

2

T∑
t=1

ln |Σt | −
1

2

T∑
t=1

(yt − µt)′Σ−1
t (yt − µt)

= −NT

2
ln 2π − 1

2

T∑
t=1

ln |Ft | −
1

2

T∑
t=1

v ′tF
−1
t vt

Kalman filter again delivers vt and Ft .

Only the small matrix Ft (N × N) need be inverted.
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Big Data and Filtering I

Kalman filter requires F−1. F is (N × N). How to proceed in high
dimensions?

– F at least has some significant structure (symmetric, psd) that
might be exploited.

– Replace F with a sparse matrix that has (approximately) the
same inverse.

– View F as an object to be estimated (after all, F is the
covariance matrix of the 1-step-ahead data prediction errors from
the prediction step) and use an estimator that imposes sparsity
(e.g., Fan et al.).

– Impose diagonality? Block diagonality? Equicorrelation?

– See Jungbacker and Koopman.
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Big Data and Filtering II

The recursive KF structure is lost with vintage data.

– But Big Data and real time often go together

– And real time leads to vintage data (revisions, entry and exit, ...)

– But apart from benchmark revisions, economic vintage data
generally involves revisions going back only four quarters (say). So
not all recursivity is lost. How to modify the standard filter?
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Numerical Maximization of the Gaussian Likelihood

I The key is to be able to evaluate lnL for a given parameter
configuration

I Then we can climb uphill to maximize lnL to get the MLE

I EM especially useful in high dimensions. Approaches optimum
quickly.

I e.g., high-dimensional DFM’s can still be estimated with
SS/EM – Perhaps no need for two-step procedures using
first-step PC’s, even in high dimensions.

I Plus high dimensions may be unnecessary and tricky (Doz. et
al.)
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VAR’s in High Dimensions
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DGP: N-Variable VAR(p), t = 1, ...,T

Φ(L)xt = εt

εt ∼ iid(0,Σ)

If you understand the VAR, you understand everything.

Traditionally, e.g., 4-Variable VAR(3)

(1) Estimate the VAR

(2) Identify the estimated VAR

(3) Understand the identified estimated VAR

– Examine variance decompositions, etc.
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DGP: N-Variable VAR(p), t = 1, ...,T

Φ(L)xt = εt

εt ∼ iid(0,Σ)

If you understand the VAR, you understand everything.
Traditionally, e.g., 4-Variable VAR(3)

Now, perhaps a 5000-Variable VAR(50)
(e.g., a high-dim set of asset return volatilities with long memory)

“High dimensionality”
“Big Data”

(1) Estimate the VAR

(2) Identify the estimated VAR

(3) Understand the identified estimated VAR
– Examine variance decompositions, etc.
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Variance Decomposition Matrix

DH

x1 x2 ... xN

x1 dH
11 dH

12 · · · dH
1N

x2 dH
21 dH

22 · · · dH
2N

...
...

...
. . .

...
xN dH

N1 dH
N2 · · · dH

NN

Connectedness involves the non-diagonal elements of DH
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(1) Estimate the VAR

Key theme:
One way or another, we need to recover d.f.
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Selection and Shrinkage
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The Parsimony and KISS Principles

– Other things equal, smaller is better

– But be sophisticated

Constraints can be good.

Hard constraints: Selection

Soft constraints: Shrinkage
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Selection (“Hard Constraints”)
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All-Subsets Selection I: Information Criteria

What not to do...

MSE =

∑T
t=1 e2

t

T

R2 = 1 −
∑T

t=1 e2
t∑T

t=1(yt − ȳ)2

= 1 − MSE
1
T

∑T
t=1(yt − ȳ)2
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Still bad:

s2 =

∑T
t=1 e2

t

T − k

s2 =

(
T

T − k

) (∑T
t=1 e2

t

T

)

R̄2 = 1 −
∑T

t=1 e2
t / T − k∑T

t=1(yt − ȳt)2 / T − 1

= 1 − s2∑T
t=1(yt − ȳt)2 / T − 1
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Good:

SIC = T ( k
T )

(∑T
t=1 e2

t

T

)

More generally,

SIC =
−2lnL

T
+

KlnT

T

“Consistency” (“oracle property”)

Also AIC (“efficiency”)
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All-Subsets Selection II: Cross Validation

– “Leave one out” (“T − fold” CV)
(Split the data into T pieces and predict each)
– “M − fold” CV
(Split the data into M pieces (M < T ) and predict each)
– As M falls, M-fold CV eventually becomes consistent
– M = 10 often works well in practice.
– SIC achieves consistency by penalizing in-sample residual MSE to
obtain an approximately-unbiased estimate of out-of-sample MSE
– CV achieves consistency by directly obtaining an unbiased
estimate of out-of-sample MSE
– CV is more general than information criteria insofar as it can be
used even when the model degrees of freedom is unclear
– Non-quadratic loss can be introduced easily
– Generalizations to time-series contexts are available
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Partial-Subsets Selection

All-subsets selection, of whatever type, quickly gets hard as there
are 2K subsets of K regressors. Other procedures, like the stepwise
selection procedures that we now introduce, don’t explore every
possible subset. They are more ad hoc but very useful.
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Partial-Subsets Selection I: Forward Stepwise Regression

– Begin regressing only on an intercept
– Move to a one-regressor model by including that variable with
the smallest t-stat p-value
– Move to a two-regressor model by including that variable with
the smallest p-value. Etc.

“Greedy algorithm,” producing an increasing sequence of candidate
models.
– Often people use information criteria or CV to select from the
stepwise sequence of models.
– No guaranteed optimality properties of the selected model. But
it often “works”
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Partial-Subsets Selection II: Backward Stepwise Regression

– Start with a regression that includes all K variables
– Move to a K − 1 variable model by dropping the variable with
the largest t-stat p-value
– Move to a K − 2 variable model by dropping the variable with
the largest p-value

“Greedy algorithm,” producing a decreasing sequence of candidate
models.
– Often people use information criteria or CV to select from the
stepwise sequence of models.
– No guaranteed optimality properties of the selected model. But
it often “works”
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Partial-Subsets Selection III:
AR(p) Selection Only Over p

– Standard practice for many decades.

– Not clear why.
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Shrinkage (“Soft Constraints”)
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Bayes

Shrinkage is a generic feature of Bayesian estimation. The Bayes
rule under quadratic loss is the posterior mean, which is a weighted
average of the MLE and the prior mean,

β̂bayes = ω1β̂MLE + ω2β0.

Hence the Bayes rule pulls, or “shrinks,” the MLE toward the prior
mean.

– The weights depend on MLE precision relative to prior precision.
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Leading Example: Ridge

β̂ridge = (X ′X + λI )−1X ′y .

– λ→ 0 produces OLS

– λ→∞ shrinks completely to 0

– λ can be chosen by CV

– Notice that λ can not be chosen by information criteria, as K
regressors are included regardless of λ.

– The ridge estimator can be shown to be the posterior mean for a
certain prior and likelihood.

– Also “regularizes” and so can handle situations with K > T
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Shrinkage for High-Dimensional VAR’s

M. Banbura, D. Giannone, and L. Reichlin, Large Bayesian Vector
Auto-Regressions, Journal of Applied Econometrics, 2010.

G. Koop, Forecasting with Medium and Large Bayesian VARs,
Journal of Applied Econometrics, 2013.

A. Carriero, T.E. Clark and M. Marcellino, Large Vector
Autoregressions with Asymmetric Priors, w.p., 2015.
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Compression

Pettenuzzo, Koop, Korobolis: “Bayesian Compressed VAR’s”

– Bayesian shrinkage. NCP (normal-Wishart), so no MCMC

– Selection via imposition of sparsity

– Sparsity enforced on both Φ(L) and on Σ

– potential rank reduction, with the decision made by Bayesian
model averaging.

– Can handle time-varying parameters
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Selection and Shrinkage
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Penalized Estimation for Shrinkage and/or Selection

β̂q = argminβ

T∑
t=1

(
yt −

K∑
i=1

βixit

)2

s.t.
K∑
i=1

|βi |q ≤ c

β̂q = argminβ

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

|βi |q


Concave penalty functions non-differentiable at the origin
produce selection to zero (e.g., q = 1/2)

Smooth convex penalties produce shrinkage toward 0 (e.g., q = 2)

q = 1 is both concave and convex,
so it selects to 0 and shrinks to 0

(“Lasso”)
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Ridge

β̂2 = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

|βi |2


(q = 2, shrinks βi toward 0 ∀i)

– Doesn’t select

– Shrinks toward zero
No shrinkage: (λ→ 0): OLS

Full shrinkage (λ→∞): Zero weights

– Also “regularizes” and so can handle situations with K > T
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Lasso

β̂1 = arg min
β

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

|βi |



(q = 1, shrinks βi toward 0 ∀i)

– Selects to zero

– Shrinks toward zero

No shrinkage (λ→ 0): OLS

Full shrinkage (λ→∞): Zero weights

– Also “regularizes” and so can handle situations with K > T
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Properties of Lasso

– Selection and Shrinkage

– Like ridge and other Bayesian procedures, lasso requires only one
(convex) estimation.

– Convenient d.f. result. The effective number of parameters is
precisely the number of variables selected (number of non-zero
β’s). This means that we can use info criteria to select among
“lasso models” for various λ.

99 / 171



Varieties of Lasso

β̂Lasso = argminβ

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

|βi |



β̂ALasso = argminβ

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

wi |βi |


β̂Enet = argminβ

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

(
α|βi |+ (1− α)β2

i

)
β̂AEnet = argminβ

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

wi

(
α|βi |+ (1− α)β2

i

)
where wi = 1/|β̂i |ν , β̂i is OLS or ridge, ν > 0, and α ∈ [0, 1].
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Adaptive Elastic Net has Emerged as Standard

β̂AEnet = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ

K∑
i=1

wi

(
α|βi |+ (1− α)β2

i

)
where wi = 1/|β̂i |ν , β̂i is OLS or ridge, and ν > 0

– Has the oracle property

Lasso is α = 1, wi = 1∀i
Adaptive lasso is α = 1
Elastic net is wi = 1∀i
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LASSO Opportunities in VAR’s

– Group LASSO

– System LASSO vs. equation-by-equation
( single system λ)

– Shrink and select on Σ, not just β.
This may help ensure p.s.d.

– Shrinking/selecting functions of coefficients.
e.g., LASSO directly on variance decompositions?
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Pruning

– Thus far we have used lasso for selecting VAR coefficients to 0.

– We can also do a second round pruning on the resulting D

– Can prune “small” elements

– Can prune ”insignificant” estimates
(Assess significance using methods of Kilian and Lutkepohl (2016).

They emphasize IRF’s but parallel results exist for VD’s.)
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Alternative Shrinkage/Selection Directions:
Generalized Penalized Estimation

– Standard methods shrink/select toward zero.
Not always appropriate.

– e.g., “equal weights prior” for forecast combination.

– e.g., “equicorrelation prior” for conditional covariance.

– e.g., “Minnesota Prior” for conditional mean parameters

β̂ = argminβ

 T∑
t=1

(
yt −

K∑
i=1

βixit

)2

+ λ

K∑
i=1

|βi − β0
i |q


Selects/shrinks to β0

Generalized ridge, generalized LASSO, etc.
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Ridge and Lasso for DF Structure

– We’ve already seen that DF structure can be imposed (selected)
using standard SS/ML/Bayes methods.

– What about ridge (pure shrinkage) for DF structure? Need to
change the centering to reflect reduced rank. Tricky.

(Build on Ledoit.)

– What about LASSO (selection and shrinkage) for DF structure?
Need to change the centering to reflect reduced rank. Tricky.

(Build on Ledoit.)
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Switching From LS to ML

– Instead of min SSR + penalty, could max Gaussian lnL - penalty

– More generally, for any model with a lnL, max lnL - penalty

– This opens up LASSO and variants to any model with a lnL
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Allowing for Parameter Variation

– Rolling

– Weighted rolling (e.g., EWMA)

– Random-Walk (West, Koop et al.)

– Factor structure in parameter variation (Stevanovic)
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Shrinkage for High-Dimensional VAR’s with TVP’s
G. Koop and D. Korobilis. Large Time-Varying Parameter VARs.
Journal of Econometrics, 177:185-198, 2013.

T. Park and G. Casella. The Bayesian Lasso. Journal of American
Statistical Association, 103:681-685, 2008.
– Show that lasso is posterior mode for certain prior/likelihood
choice. Paves the way for Bayesian MCMC estimation in ultra-high
dimensions. Also paves the way for allowance for TVP’s in
Belmonte et al (2014).

H. Wang. Bayesian Graphical Lasso Models and Efficient Posterior
Computation. Bayesian Analysis, 7:867-886, 2012.
– High-dim cov matrices can be estimated using Bayesian MCMC

M. Belmonte, G. Koop, and D. Korobilis. Hierarchical Shrinkage in
Time-Varying Parameter Models. Journal of Forecasting, 33:80-94,
2014.
– Bayesian graphical lasso approach using hierarchical priors.
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Allowing for Mixed Frequencies (MIDAS)

1. High-dimensional and mixed-frequency data go together in
time series.

2. So high-dimensional MIDAS vector autoregression (VAR) may
be important.

3. MIDAS VAR is appearing (Ghysels), but it’s still
low-dimensional.

Next steps:

3.1 Move to high dimensions by using regularization methods (e.g.
LASSO variants)

3.2 Allow for many observational frequencies (five or six, say)
3.3 Allow for the ”rough edges” that will invariably arise at the

sample beginning and end
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(2) Identify the Estimated VAR

Key themes:
Mechanical identifications are needed
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If You Understand the VAR , You Understand Everything

But it’s hard to understand the VAR.

– Staring at coefficient matrices is inadequate

– Staring at coefficient matrices
and innovation covariance matrices

is adequate but unproductive

– Staring at variance decompositions (VD’s)
is adequate and maybe productive
But how will you identify them?
And how will you stare at them?
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VD’s Require Identification

Intricate theory identification (DSGE)
– Generally unavailable in high dimensions and arguably undesirable

Less intricate theory identification (SVAR)
– Generally unavailable in high dimensions and arguably undesirable

Cholesky factor identification
– Desirably mechanical but requires recursive ordering

Koop-Pesaran-Shin generalized identification
– Desirably mechanical and doesn’t require recursive ordering

(but of course makes other assumptions)

– Other matrix square roots?
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Perhaps DAG Modeling can Help

Cholesky Orthogonalization:

(I − Φ1L− ...− ΦpLp)yt = Pvt

vt ∼WN(0, I ),

where Σ = PP ′ (Cholesky factorization)

Moving-average representation:

yt = (I + Θ1L + Θ2L2 + ...)Pvt

= Pvt + Θ1Pvt−1 + ...
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Cholesky Corresponds to a Recursive Structural System

Structural Simultaneous-Equations Model:

Ayt = Φ1yt−1 + ...+ Φpyt−p + εt

εt ∼ (0,Σ)

Recursive SEM: A triangular and Σ diagonal

Tyt = Φ1yt−1 + ...+ Φpyt−p + εt

εt ∼ (0,D)

The MA representation of the reduced form is:

yt = T−1εt + ...
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Directed Acyclical Graphs (DAG’s)

Start with:

Heckman, J. and Pinto, R. (2015), ”Causal Analysis After
Haavelmo,” Econometric Theory,
http://www.nber.org/papers/w19453

Then back up and read or re-read:

Lauritzen, S. (1996). Graphical Models, Clarendon Press.

Pearl, J. (2009), Causality: Models, Reasoning, and Inference,
Cambridge University Press (second edition).

End with:

Hjsgaard, S. ”Graphical Models and Bayesian Networks with R”
www.people.math.aau.dk/~sorenh/misc/2014-useR-GMBN/

115 / 171

http://www.nber.org/papers/w19453
www.people.math.aau.dk/~sorenh/misc/2014-useR-GMBN/


Directed Acyclical Graphs (DAG’s) are Also Recursive

– Causal relationships are represented by a graph G ,
where nodes correspond to variables.

– Nodes are connected by arrows that
represent causal influences between variables.

– The set of descendants of a variable V consists of all variables
connected to V by arrows of the same direction arising from V .

– Graph G is called a DAG if no variable is a descendant of itself.

– Not fully simultaneous. Instead, recursive!
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Key DAG Insights

– DAG environment is recursive system environment

– Local Markov condition: In a DAG, a variable is independent of
its non-descendants conditional on its ancestors.

(Recall conditional independence:
y is independent of x conditional on z if and only if

Pr(y ∩ x | z) = Pr(y | z) Pr(x | z). Coincides with zero partial
correlation in the Gaussian case (Baba et al. 2004).)

– So tests for conditional independence might help to determine
recursive ordering.
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(3) Understand the Identified Estimated VAR

Key theme: Staring at a massive variance decomposition matrix
(D) is just as hopeless

as staring at massive coefficient matrices
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Why?

Can’t stare productively at coefficient and covariance matrices.

When N = 5 all is well.
We can stare productively at D.

When N = 5000 we’re in trouble.
We can no longer stare productively at D!

The key tool for “digesting” VAR info
(i.e., examination of D)
is itself now indigestible!
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But Graph-Theoretic (Network) Tools Come to the Rescue

Network Theory:
The key to connectedness-based summaries of variance

decompositions

Network Visualization:
The key to deep understanding of variance decompositions
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Part I: Graph-Theoretic D Summarization
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Interpret D as a Network Adjacency Matrix
Summarize Using the Degree Distribution

What does that mean?
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A Natural Financial/Economic Connectedness Question:

What fraction of the H-step-ahead prediction-error variance of xi is
due to shocks in xj , j 6= i?

Non-own elements of the variance decomposition: dH
ij , j 6= i
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Variance Decomposition Matrix

DH

x1 x2 ... xN

x1 dH
11 dH

12 · · · dH
1N

x2 dH
21 dH

22 · · · dH
2N

...
...

...
. . .

...
xN dH

N1 dH
N2 · · · dH

NN

Connectedness involves the non-diagonal elements of DH
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Connectedness Table

Connectedness Table

x1 x2 ... xN From Others to i

x1 dH
11 dH

12 · · · dH
1N ΣN

j=1dH
1j , j 6= 1

x2 dH
21 dH

22 · · · dH
2N ΣN

j=1dH
2j , j 6= 2

...
...

...
. . .

...
...

xN dH
N1 dH

N2 · · · dH
NN ΣN

j=1dH
Nj , j 6= N

To Others ΣN
i=1dH

i1 ΣN
i=1dH

i2 · · · ΣN
i=1dH

iN ΣN
i ,j=1dH

ij

From j i 6= 1 i 6= 2 i 6= N i 6= j

Just the variance decomposition matrix, DH
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Connectedness Graph Table (All H)

– Connectedness table is now a table of graphs.

– Just as macroeconomists routinely do with IRF’s
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Connectedness Measures, C (x ,H ,Φ(L),Σ)

I Pairwise Directional: CH
i←j = dH

ij (“i ’s imports from j”)

I Net: CH
ij = CH

j←i − CH
i←j (“ij bilateral trade balance”)

——————————————————————-
I Total Directional:

I From others to i : CH
i←• =

N∑
j=1

j 6=i

dH
ij (“i ’s total imports”)

I To others from j : CH
•←j =

N∑
i=1
i 6=j

dH
ij (“j ’s total exports”)

I Net: CH
i = CH

•←i − CH
i←• (“i ’s multilateral trade balance”)

——————————————————————-

I System-wide: CH =
1

N

N∑
i,j=1

i 6=j

dH
ij (“total world exports”)
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Reading and Web Materials

Recent papers:

Diebold, F.X. and Yilmaz, K. (2014), “On the Network Topology of
Variance Decompositions: Measuring the Connectedness of Financial
Firms,” Journal of Econometrics, 182, 119-134.

Demirer, M., Diebold, F.X., Liu, L. and Yilmaz, K. (2015), “Estimating
Global Bank Network Connectedness,” Manuscript, MIT, Penn and Koc.

Recent book:

Diebold, F.X. and Yilmaz, K. (2015), Financial and Macroeconomic

Connectedness: A Network Approach to Measurement and Monitoring,

Oxford University Press. With K. Yilmaz.
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Network Representation: Graph and Matrix

A =



0 1 1 1 1 0
1 0 0 1 1 0
1 0 0 1 0 1
1 1 1 0 0 0
1 1 0 0 0 1
0 0 1 0 1 0



Symmetric adjacency matrix A
Aij = 1 if nodes i , j linked
Aij = 0 otherwise
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Network Connectedness: The Degree Distribution

Degree of node i, di :

di =
N∑
j=1

Aij

Discrete degree distribution on 0, ..., N − 1

Mean degree, E (d), is the key connectedness measure
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Network Representation II (Weighted, Directed)

A =



0 .5 .7 0 0 0
0 0 0 0 .3 0
0 0 0 .7 0 .3
.3 .5 0 0 0 0
.5 0 0 0 0 .3
0 0 0 0 0 0


“to i , from j”
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Network Connectedness II: The Degree Distribution(s)

Aij ∈ [0, 1] depending on connection strength

Two degrees:

d from
i =

N∑
j=1

Aij

d to
j =

N∑
i=1

Aij

“from-degree” and “to-degree” distributions on [0,N − 1]

Mean degree remains the key connectedness measure
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Variance Decompositions as Weighted, Directed Networks

Variance Decomposition / Connectedness Table

x1 x2 ... xN From Others

x1 dH
11 dH

12 · · · dH
1N

∑
j 6=1 dH

1j

x2 dH
21 dH

22 · · · dH
2N

∑
j 6=2 dH

2j
...

...
...

. . .
...

...
xN dH

N1 dH
N2 · · · dH

NN

∑
j 6=N dH

Nj

To
Others

∑
i 6=1 dH

i1

∑
i 6=2 dH

i2 · · ·
∑

i 6=N dH
iN

∑
i 6=j dH

ij

Total directional connect. “from,” CH
i←• =

∑N
j=1

j 6=i
dH
ij : “from-degrees”

Total directional connect. “to,” CH
•←j =

∑N
i=1
i 6=j

dH
ij : “to-degrees”

Systemwide connect., CH = 1
N

∑N
i,j=1

i 6=j
dH
ij : mean degree
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Opportunities with Graph-Theoretic D Summarization

– Examine aspects of the degree distribution across H

– Other Connectedness Measures

(a) Multi-step connectedness
The degrees of A track 1-step connectedness.

The degrees of Ak track k-step connectedness,

(b) ∞-step connectedness (“eigenvalue centrality”)
Examine second smallest eigenvalue λ2 of L = M − A

(M is a diagonal matrix containing the node degrees)
(A is the adjacency matrix.)

(c) But is any of this necessary/desirable for us?
Could we not simply vary H?
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Other Connectedness Measures:
Connectedness via Pairwise Granger Causality

– Simple OLS estimation
– Just pairwise so it’s like a simple correlation

– Ignores connectedness arising from innovation correlations
– Requires statistical inference (hypothesis testing)
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Other Connectedness Measures:
Connectedness via Multivariate Granger Causality

– Likely requires regularized estimation
– Not just pairwise so it’s like a partial as opposed to simple

correlation
– Ignores connectedness arising from innovation correlations

– Requires statistical inference (hypothesis testing)
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Other Connectedness Measures:
Bonaldi-Hortacsu-Kastl Connectedness

– Treat VAR(1) coefficient matrix as network adjacency matrix

– Presumably generalize to state-space T matrix

– Ignores connectedness arising from innovation correlations
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Other Connectedness Measures:
MES (S-Risk) Connectedness

MES j |mkt = E (rj |C(rmkt))

I Sensitivity of firm j ’s return to extreme market event C

I Market-based “stress test” of firm j ’s fragility

“Total directional connectedness from” (from-degrees)

“From others to j”
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Other Connectedness Measures:
CoVaR Connectedness

VaRp : p = P (r < −VaRp)

CoVaRp,j |i : p = P
(

rj < −CoVaRp,j |i | C (ri )
)

CoVaRp,mkt|i : p = P
(

rmkt < −CoVaRp,mkt|i | C (ri )
)

I Measures tail-event linkages

I Leading choice of C (ri ) is a VaR breach

“Total directional connectedness to” (to-degrees)

“From i to others”
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Part II: Graph-Theoretic D Visualization
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Spring Graph
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Spring Graph Detail

I Node size: Asset size (firms), GDP (countries), etc.

I Node color: Total directional connectedness “to others”

I Node location: Average pairwise directional connectedness
(Equilibrium of repelling and attracting forces, where (1) nodes repel
each other, but (2) edges attract the nodes they connect according
to average pairwise directional connectedness “to” and “from.”)

I Edge thickness: Average pairwise directional connectedness

I Edge arrow sizes: Pairwise directional connectedness “to” and
“from”
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Opportunities With D Graphs

– Do we really need different node sizes?

– There does not exist a natural gradation
across colors from “cool” to “hot”
(So use layering rather than colors)

– Animate over H
(But spring graphs have a flip-flop issue that needs solving.)

– Time-varying coefficients and dynamic network graphs
(Rolling estimation, explicitly time-varying coefficients, etc.)

– Animate over time for fixed H,
animate over H for fixed time.

(Again, spring graphs have a flip-flop issue that needs solving.)
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Curley at Columbia

http:

//curleylab.psych.columbia.edu/netviz/netviz1.html

http:

//curleylab.psych.columbia.edu/netviz/netviz2.html

http:

//curleylab.psych.columbia.edu/netviz/netviz3.html

http:

//curleylab.psych.columbia.edu/netviz/netviz4.html

http:

//curleylab.psych.columbia.edu/netviz/netviz5.html
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Novel Econometric Network Visualizations

– Multivariate forecast error covariance matrix

– Multivariate state-space model “A matrix”

– Separate visualizations of “A matrix” and transition shock
covariance matrix.
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Concluding Perspective

Old view: VAR’s unworkable in high dimensions
(Actually no one even thought about high dimensions)

New view: VAR’s are workable in high dimensions

(1) Regularized estimation

(3) Network theory for numerical summarization,
and network graphs for visual understanding

Still VAR’s, but:

Important new tools for estimation and analysis in high dimensions
are opening important new research areas

146 / 171


