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SUMMARY
We provide an empirical framework for assessing the distributional properties of daily speculative returns
within the context of the continuous-time jump diffusion models traditionally used in asset pricing finance.
Our approach builds directly on recently developed realized variation measures and non-parametric jump
detection statistics constructed from high-frequency intra-day data. A sequence of simple-to-implement
moment-based tests involving various transformations of the daily returns speak directly to the importance of
different distributional features, and may serve as useful diagnostic tools in the specification of empirically
more realistic continuous-time asset pricing models. On applying the tests to the 30 individual stocks in the
Dow Jones Industrial Average index, we find that it is important to allow for both time-varying diffusive
volatility, jumps, and leverage effects to satisfactorily describe the daily stock price dynamics. Copyright 
2009 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.

1. INTRODUCTION

The distributional properties of speculative prices, and stock returns in particular, rank among
the most studied empirical phenomena in all of economics. We add to this burgeoning literature
by showing how high-frequency intra-day data and realized variation measures may be used in
the construction of simple-to-implement tests for the importance of jumps and so-called leverage
effects. Our empirical results for the 30 individual stocks in the Dow Jones Industrial Average
(DJIA) index support the notion that daily stock prices may be viewed as discretely sampled
observations from an arbitrage-free jump-diffusive process, but that time-varying volatility, jumps
and leverage effects are all present and must be accommodated if the fundamental arbitrage-free
semi-martingale characterization is to be sustained.

A long line of studies, dating back to the seminal work of Mandelbrot (1963) and Fama (1965),
documents that the unconditional distributions of day-to-day and longer horizon stock returns
exhibit fatter tails than the normal distribution. Correspondingly, a large literature seeks to describe
and explain this empirical regularity through alternative non-normal distributions, often inspired
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by the Mixture-of-Distributions Hypothesis (MDH) originally proposed by Clark (1973). The basic
MDH stipulates that prices only move in response to new information, or ‘news’. While the basic
MDH treats the mixing variable as latent, Clark (1973), Epps and Epps (1976), and Tauchen and
Pitts (1983) also relate it with trading volume.

Early studies focus on the unconditional distributional implications of the MDH. However, it is
now well established that key features of the conditional return distribution, and the conditional
variance in particular, are highly predictable (e.g., Engle, 2004). The pronounced predictability
in volatility motivated empirical studies exploring the relationship between return variability and
fundamental mixing variable(s) within the MDH context (e.g., Gallant et al., 1992; Andersen,
1996; Liesenfeld, 1998; Bollerslev and Jubinski, 1999; Ane and Geman, 2000).1

In spite of the presence of such structured MDH approaches, the more ad hoc (G)ARCH
class of models arguably ranks supreme for empirically characterizing conditional inter-daily
return distributions (see, e.g., Andersen et al., 2006a). Beyond providing a parsimonious and
tractable approach to the time-varying return volatility, this literature has also uncovered a striking
asymmetry between equity returns and volatility; i.e., large negative returns tend to be associated
with higher future volatility than positive returns of the same magnitude. This asymmetry,
forcefully documented by Nelson (1991), is generically labeled a leverage effect, although it
is widely agreed that the effect has little to do with financial leverage.2

In contrast to the discrete-time formulations employed in the empirical MDH and (G)ARCH
literatures, many important developments in theoretical asset pricing, and derivatives pricing in
particular, are based on continuous-time models. For instance, the Black–Scholes option pricing
formula assumes that prices evolve according to a homogeneous diffusion process. This assumption
is obviously at odds with the leptokurtic unconditional daily return distributions, the pronounced
volatility clustering, and the leverage effects discussed above, and much recent progress has been
made in terms developing more empirically realistic continuous-time formulations. In particular,
while the early contributions by Merton (1976) and Hull and White (1987) argue for the need
to incorporate jumps and time-varying diffusive volatility in the pricing of options, respectively,
recent studies document the need to simultaneously allow for both effects in order to satisfactorily
represent observed security prices (e.g., Andersen et al., 2002; Chernov et al., 2003).

In this paper we combine insights from these separate strands of the literature by providing a
framework for analyzing the distributional properties of discrete-time daily returns implied by a
broad class of jump-diffusive models. Our approach is distinctly nonparametric and relies critically
on the availability of high-frequency data for the construction of realized volatility measures. High-
frequency, or tick-by-tick, prices have recently become available for a host of different financial
instruments and markets, and the analysis of the corresponding realized variation measures have
already provided important new empirical insights concerning the distributional properties and
dynamic dependencies in financial market volatilities (see, e.g., Andersen and Bollerslev, 1998a;
Andersen et al., (2001a, 2003); Barndorff-Nielsen and Shephard, 2002). Pushing this analysis one
step further, we show how the realized volatility measures may be used in the formulation of
direct distributional tests for continuous-time models.

1 The robustness of the empirical findings in Ane and Geman (2000) have recently been called into question by Gillemot
et al. (2005) and Murphy and Izzeldin (2006).
2 In fact, as discussed in more detail below, the asymmetry hitherto documented with daily and lower frequency data
tends to be much more pronounced for aggregate equity index returns as opposed to individual stock returns, indirectly
casting doubt on the financial leverage explanation.
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Our empirical analysis provides the first comprehensive documentation that a broad set of indi-
vidual equity return series may be converted into i.i.d. Gaussian series through a sequence of
simple, theoretically motivated, nonparametric transformations. It may be seen as a logical exten-
sion of the earlier empirical investigations of Andersen et al. (2001b), who find the unconditional
distributions of raw daily equity returns to have fat tails, but when standardizing these daily returns
by the corresponding realized volatilities, constructed from the summation of high-frequency intra-
day squared returns, the distributions appear close to Gaussian. Nonetheless, it remains an approx-
imate result as the null hypothesis of i.i.d. normality is rejected decisively if subjected to powerful
statistical tests. From a theoretical perspective, this is not surprising. The (true) realized volatility
standardized returns should be indistinguishable from a Gaussian if the true price process belongs to
a certain class of pure diffusive processes and market microstructure frictions are negligible. How-
ever, various relevant market features may invalidate this result. First, there are inevitable errors in
realized volatility measures due to discretization and noise. Second, it is likely there are discontinu-
ities in the price path so the returns are not generated from a pure diffusion. Third, price and volatil-
ity innovations may be correlated, inducing asymmetry in the standardized return distribution.

To potentially obtain normality, each source of error warrants careful attention. We introduce a
new set of diagnostics for guiding the choice of sampling frequency. These generalized volatility
signature plots are designed to display the effects of microstructure noise as well as price jumps.
Second, in addition to standard realized volatility measures we rely on the bipower variation
measures of Barndorff-Nielsen and Shephard (2004) for separately measuring the continuous
sample path variability and the variation due to jumps. Moreover, we extend the test for the
occurrence of at least one jump per day in Barndorff-Nielsen and Shephard (2006) and Huang
and Tauchen (2005) to a sequential jump detection scheme, directly identifying and estimating the
within-day times and sizes of price jumps.3 This allows us to construct jump-adjusted daily return
series, while the extracted jump characteristics enable us to more directly gauge the impact and
distributional implications of jumps.4 Third, to alleviate the impact of return-volatility asymmetries,
e.g., the leverage effect, we exploit a new financial-time sampling scheme in which we measure
returns in event time, as defined by equidistant increments to the realized volatility of the jump-
adjusted returns. In the diffusive semi-martingale setting, this realized volatility time-change should
undo the impact of leverage style effects so that the financial-time return distributions become
Gaussian. Again, all involved measures are obtained nonparametrically and the distributional
implications are based strictly on probabilistic arguments, so that implied tests are applicable
across the full range of standard jump diffusive models for asset returns.

Our approach is related to Peters and de Vilder (2006) and Andersen et al. (2007b) as they rely
on a similar financial-time sampling and also undertake normality tests for the standardized return
distributions.5 However, they explore only a return series generated from futures contracts on the
S&P500 equity index. These futures are near ideal in terms of having minimal microstructure
distortions and high liquidity. We focus on the much broader set of 30 individual equity return
series for the companies in the Dow Jones index. As a result, our series are subject to more
noise, have more idiosyncratic return and volatility movements and have much higher volatility in

3 Alternative non-parametric high-frequency data-based tests for jumps have recently been developed by Jiang and Oomen
(2008), Mancini (2005), Christensen and Podolski (2007), and Lee and Mykland (2008).
4 In concurrent and independent work, Fleming and Paye (2006) have studied the properties of daily returns scaled by
realized bipower variation, but without any adjustments for leverage effects.
5 See also Zhou (1998) for more informal empirical evidence along these lines for exchange rates.
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general. Hence, we are able to shed light on the question of whether the findings from the benign
setting studied previously carry over to a wider range of important return series. Furthermore, we
obtain important evidence regarding the robustness of the prior studies. From a methodological
point of view there are also a number of differences. Most strikingly, Peters and de Vilder (2006)
make no adjustments for jumps and rely on tests with much less power than is the case in the
current paper. Compared to Andersen et al. (2007b) we accommodate the issue of microstructure
noise more directly through the generalized signature plots and rely on the new sequential jump
detection technique. In fact, our identification of jump days is justified through the asymptotic
distribution of the standard test statistic under a general diffusive null hypothesis as developed
in Barndorff-Nielsen and Shephard (2004, 2006) and Huang and Tauchen (2005). The jump
identification approach in Andersen et al. (2007b) appears to fare well in simulation settings but
it is formally justified only under constant volatility across the trading day and the jump test turns
more conservative under intraday variation in volatility. Moreover, given the potential importance
of microstructure frictions, we explore whether the change of tick size for the Dow Jones stocks
around January 2001 impacts the number of rejections of normality across the series. Such evidence
is only meaningful on the basis of a large number of return series and the issue was not explored
previously in this context. Finally, the empirical results related to the strength of the jump intensities
and sizes, and the significance and magnitude of the leverage effects, for the individual stocks are
of direct interest in their own right for a range of issues within financial economics.

The plan for the rest of the paper is as follows. The theoretical arguments for Gaussianity
of the transformed return distributions are outlined in the next section. The realized variation
measures and jump detection tests used in the practical implementation of the distributional tests
are presented in Section 3. In Section 4 we discuss the data sources and issues related to the
construction of the high-frequency returns and realized volatility measures, including generalized
volatility signature plots designed to assess the adverse effects of market microstructure biases at
the very highest sampling frequencies. Section 5 discusses preliminary summary statistics related
to the importance of jumps and leverage effects. The outcomes of the distributional tests are
summarized in Section 6. Section 7 concludes. More detailed evidence for each individual stock
is available in a supplementary appendix on the journal’s website.

2. THEORETICAL FRAMEWORK

Jump-diffusion models represent the asset price as a sum of a continuous sample path component
and occasional discontinuous jumps. The class encompasses the leading parametric models in the
asset pricing and, especially, the derivatives pricing literature.6

In particular, let p�t� denote the continuous-time log-price process. The generic jump-diffusion
model may then be expressed in stochastic differential equation form as

dp�t� D ��t� dw �t� C ��t� dq �t�, t ½ 0 �1�

where the instantaneous volatility process ��Ð� > 0 is càdlàg, w�Ð� denotes a standard Brownian
motion independent of the drift, the counting process q�t� is normalized so that dq�t� D 1 represents

6 Although this formulation, as given by equation (1), allows for both time-varying jump sizes and intensities, it rules out
infinite activity Lévy processes; see, e.g., Cont and Tankov (2004) for a discussion of such processes, Todorov (2009) for
an application involving jump-driven stochastic volatility models, and Barndorff-Nielsen et al. (2006) on using realized
variation measures for certain infinite activity jump processes.
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a jump at time t, and dq�t� D 0 otherwise, and ��t� denotes the jump size if a jump occurs at time
t. For notational simplicity we exclude a drift term, ��t�dt, in equation (1), but the theoretical
results can readily be extended to allow for a drift, ��Ð� 6D 0.7

While asset pricing arguments often are cast in continuous time, empirical investigations are
invariably based on discretely sampled prices. We denote the one-period continuously compounded
discrete-time returns implied by the jump diffusion in (1) as

rt � p�t� � p�t � 1�, t D 1, 2, . . . �2�

and we refer to the unit time interval as a ‘day’. The distributional characteristics of the
discrete-time returns obviously depend directly on the underlying continuous-time model. We next
consider three sets of increasingly general modeling assumptions, and discuss how appropriately
standardized and adjusted returns should be i.i.d. standard normal under each, thus providing
theoretical guidance for empirical analysis into the importance of different model features.

2.1. No Jumps, Leverage, or Volatility Feedback Effects

The simplest and most commonly used continuous-time models are based on the dual assumptions
of no jumps, or q�t� � 0, along with no leverage and volatility feedback effects, or ��t� and w���
independent for all t ½ 0 and � ½ 0. In this situation it follows by standard arguments that

rt

(∫ t

t�1
�2���d�

)�1/2

¾ N�0, 1�, t D 1, 2, . . . �3�

The integrated volatility normalizing the returns has the interpretation of the ex post return
variability conditional on the sample path realization of the ���� process over the corresponding
discrete-time return interval, (t � 1, t].8 Of course, the integrated volatility is not directly
observable. However, starting with the work of Andersen and Bollerslev (1998a), Andersen et al.
(2001a), and Barndorff-Nielsen and Shephard (2002), ways in which to accurately measure the
integrated volatility on the basis of high-frequency data have received increasing attention in the
literature. In Section 3 we provide a more in-depth discussion of these ideas in the context of our
empirical implementation of equation (3).

Meanwhile, the popular GARCH and discrete-time stochastic volatility models in essence
provide particular parametric approximations to the expectation of the integrated volatility
conditional on the time t � 1 information set:

�2
tjt�1 D Et�1

(∫ t

t�1
�2���d�

)

Hence, from equation (3), only if the integrated volatility process is perfectly predictable will the
GARCH standardized returns, rt�

�1
tjt�1, be normally distributed. In general, of course, the diffusive

volatility process varies non-trivially over the (t � 1, t] interval, resulting in a mixture-of-normals

7 The inclusion of a drift term simply requires subtraction of a mean from the daily returns. In the empirical analysis we
consider both raw and mean-adjusted returns. The results, reported below, are virtually identical.
8 The integrated volatility also plays a central role in option pricing models allowing for time-varying volatility; see, e.g.,
the aforementioned paper by Hull and White (1987).
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distribution for the corresponding GARCH standardized returns, with the mixture dictated by the
distribution of the integrated volatility forecast errors; see also the reasoning behind the use of
conditional fat-tailed GARCH error distributions in Bollerslev (1987).

2.2. Jumps

A number of recent studies have argued for the importance of explicitly allowing for jumps,
or q�t� 6D 0, when modeling speculative rates of return; see, e.g., Andersen et al. (2002), Bates
(1996, 2000), Chernov et al. (2003), Eraker et al. (2003), Eraker (2004), and Johannes (2004).
This adds an additional component to the ex post price variation process, and also invalidates
the Gaussianity of the standardized returns in (3). Suppose the jumps were known, and let the
corresponding jump-adjusted returns be denoted by

Qrt � p�t� � p�t � 1� �
q�t�∑

sDq�t�1�

��s�, t D 1, 2, . . . �4�

where the sum comprises all of the non-zero jumps over the (t � 1, t] time interval, and we
assume that the jump process is independent of the Brownian process w�t� in equation (1). All
of the variation in the jump-adjusted returns now originates from the diffusion component, so
standardizing by the integrated volatility should again result in a normal distribution:

Qrt

(∫ t

t�1
�2���d�

)�1/2

¾ N�0, 1�, t D 1, 2, . . . �5�

In practice, of course, the timing and magnitude of jumps are not known for sure, so the result in
(5) is not directly testable. To circumvent this, we rely on two new non-parametric jump-detection
procedures for disentangling the continuous and discontinuous sample path components, in turn
providing an operational approximation to (5).

2.3. Leverage and Volatility Feedback Effects

The distributional results of the preceding sections rule out so-called leverage and volatility
feedback effects by assuming the Brownian motion driving the diffusive price innovations, w���,
and the volatility process, ��t�, are independent for all �, t ½ 0. A number of studies argue in
contrast that the return–volatility relation is conditionally asymmetric as large negative returns
are associated with larger volatilities than are positive returns of the same magnitude; e.g., Black
(1976), Christie (1982), and Bollerslev et al. (2006). Here, leverage effect is defined as correlation
between volatility and past returns and volatility feedback as correlation between volatility and
future returns.9 The leverage effect may be induced by contemporaneous negative correlation
between the diffusive price innovations and the volatility innovations in the underlying continuous
time model. Likewise, the feedback effect will arise from a positive correlation between volatility

9 A similar leverage or volatility feedback effect could in principle work through the jump component. However, the
related empirical evidence in Bollerslev et al. (2008) suggests that the asymmetry works almost exclusively through the
diffusive component.
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innovations and the drift in the price process. This feature involves compensation via the mean
return for an increase in return volatility. Often, this effect is seen initiated through a negative
price reaction to a volatility shock, thus also involving negative correlation between volatility
and price movements. From discretely observed data, this latter effect is hard to separate from
the leverage effect. In either case, these interactions imply that the ex post integrated volatility
in the denominator on the left-hand-side of (3) and (5) are informative about both the sign and
magnitude of the corresponding returns, so the standardized distributions are no longer Gaussian,
let alone mean zero. However, by measuring returns over equal increments of integrated volatility
instead of calendar time, the resulting time-changed returns remain Gaussian, even in the presence
of leverage and volatility feedback effects.

Formally, let the event-time, or financial-time, sampling scheme be defined by t0 � 0 and

tk � inf
t>tk�1

(∫ t

tk�1

�2���d� > �Ł
)

, k D 1, 2, . . . �6�

where �Ł denotes the fixed financial-time unit spanned by each return.10 For ease of comparison
with the daily return distributions discussed above, we focus on the case in which �Ł equals the
unconditionally expected one-period integrated variance:

�Ł � E

(∫ t

t�1
�2���d�

)
�7�

Denote the corresponding jump-adjusted financial-time sampled returns by

QrŁ
k � p�tk� � p�tk�1� �

q�tk �∑
sDq�tk�1�

��s�, k D 1, 2, . . . �8�

It follows then by the Time-Change for Martingales Theorem (Dambis, 1965; Dubins and
Schwartz, 1965) that

QrŁ
k �Ł�1/2 ¾ N�0, 1�, k D 1, 2, . . . �9�

Importantly, this result establishes normality of the appropriately adjusted and standardized
returns for any jump-diffusion model.11

We next discuss the nonparametric high-frequency data-based procedures used in implementing
and testing each of the distributional results presented above. Our approach does not depend upon
the validity of any particular parametric model. Nonetheless, the approach provides guidance for
the specification of more realistic parametric models within the general class of jump diffusions
defined by (1).

10 A corresponding ‘business-time’ sampling scheme for pure jump processes has previously been used by Oomen (2006),
while Zhou (1998) refers to similarly sampled returns as de-volatized. It is also reminiscent of the ϑ-time sampling scheme
advocated by Dacorogna et al. (2001), although they employ a different realized power variation scale.
11 This is also related to the earlier work of Lai and Siegmund (1983), and the idea of sampling autoregressive processes
in equal increments of Fisher information.
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3. EMPIRICAL RETURN AND VARIATION MEASURES

Our empirical analysis of transformed daily return distributions relies on the availability of intra-
day data. If such data are available for T trading days, the return series is given by the increment
of the observed log-price over each trading day, i.e.

Rt D pt,M � pt,0, t D 1, . . . , T �10�

where pt,0 denotes the opening, or first, log-price on day t, and pt,M refers to the closing, or
last, price on day t. This definition excludes the part of the daily variation associated with the
overnight return, as the closing price on day t � 1, pt�1,M, typically differs from the opening
price on the following day t, pt,0.12 However, the overnight returns may naturally be labeled
deterministically occurring jumps. We treat them accordingly, so our trading day returns simply
equal the daily returns adjusted for the (observed) overnight jump. Of course, this implies that
applications of the current results for predicting the distribution of future returns must incorporate
explicit corrections, not only for jumps within the trading periods but also for the price variability
associated with market closures. These additional issues fall outside the scope of the present study,
but the concurrent work by Andersen et al. (2009) exemplifies how this may be implemented in
practice.

To avoid the problem of irregularly spaced high-frequency return observations, an imputation
scheme (see, e.g., Dacorogna et al., 2001) is usually applied to construct evenly spaced prices,
say M C 1 per day, where preferably many more observations are available each day. Denote
the jth intra-daily log-price for day t by pt,j, where j D 0, 1, . . . , M and t D 1, . . . , T. The M
continuously compounded intra-daily returns for day t are similarly denoted:

rt,j D pt,j � pt,j�1, j D 1, . . . , M, t D 1, . . . , T �11�

The precision of the resulting nonparametric realized volatility and jump measures depends on
the value of M. In theory, the larger the number of intra-day returns, the higher the precision of the
estimators. At the same time, from an empirical perspective, the larger the value of M, the more
sensitive the estimates are to the influences of market microstructure ‘noise’ not contemplated
within the theoretical model in equation (1), including price discreteness, bid–ask spreads, and
non-synchronous trading effects. How to best account for these frictions and the practical choice
of M in the construction of realized volatility measures have recently been the subject of intensive
research efforts; e.g., Nielsen and Frederiksen (2008), Ait-Sahalia et al. (2005), Bandi and Russell
(2008), Barndorff-Nielsen et al. (2008), and Hansen and Lunde (2006), among many others. In
the empirical results reported below, we instead follow much of the early literature in the use of a
relatively sparse fixed 5-minute, or M D 78, sampling frequency. However, we explicitly justify
this particular choice of M for each of the stocks through the use of volatility signature type plots,
as detailed in Section 4.

12 The estimates reported in Hansen and Lunde (2005) suggest that about twenty percent of the total daily return variation
is attributable to the overnight period.

Copyright  2009 John Wiley & Sons, Ltd. J. Appl. Econ. 25: 233–261 (2010)
DOI: 10.1002/jae



CONTINUOUS-TIME MODELS 241

3.1. Realized Volatility and Jumps

Following Andersen and Bollerslev (1998a), Andersen et al. (2001a) and Barndorff-Nielsen and
Shephard (2002), we define the realized volatility for day t by13

RVt �
M∑

jD1

r2
t,j, t D 1, . . . , T �12�

From the theory of quadratic variation, RVt generally provides a consistent (in probability and
uniformly in t) estimator of the daily increment to the quadratic variation for the underlying
log-price process p�Ð� defined in (1). Specifically, for M ! 1:

RVt ���!p

∫ t

t�1
�2�s� ds C

q�t�∑
sDq�t�1�C1

�2�s�, t D 1, . . . , T �13�

Absent jumps, the second term vanishes and the realized volatility consistently estimates the
integrated volatility which provides the contemporaneous standardization factor for the daily
returns in the previous section. In general, however, the realized volatility measure includes the
contribution to the total variation stemming from the squared jumps, and as such will not afford
a consistent estimator of the requisite continuous sample path variation.

Meanwhile, Barndorff-Nielsen and Shephard (2004, 2006) show that separate nonparametric
identification of the terms on the right-hand-side of equation (13) is possible through the use of
so-called bipower variation measures. Specifically, the realized bipower variation is defined by

BVt � ��2
1

M∑
jD2

jrt,jjjrt,j�1j, t D 1, . . . , T �14�

where �1 D p
2/�. It can be shown that, even in the presence of jumps, for M ! 1:

BVt ���!p

∫ t

t�1
�2�s�ds, t D 1, . . . , T �15�

Intuitively, for very large values of M, there is at most one jump in any two adjacent intervals of
length 1/M. Since the contribution of each absolute return associated with the diffusion component
in the limit is negligible, any product involving a jump return will also be vanishingly small
asymptotically. Moreover, the scaling factor for bipower variation ensures that it is consistent
for the diffusive return variation. Hence, combining equations (13) and (15), the contribution to
the total return variation stemming from the jump component is consistently estimated by the
difference between the two. That is, for M ! 1:

RVt � BVt ���!p

q�t�∑
sDq�t�1�

�2�s�, t D 1, . . . , T �16�

13 We will refer interchangeably to this estimator as the realized volatility, the realized variation, or simply the variance.
The exact meaning will be clear from the context.
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Although formally consistent for the squared jumps, nothing prevents RVt � BVt from becoming
negative for finite values of M, especially when no jumps occur on day t. Similarly, part of the
continuous price movements will invariably be attributed to the jump component due to sampling
variation, resulting in small positive values of RVt � BVt for finite M, even if there are no jumps,
or q�t� D q�t � 1�. Hence, following the empirical analysis in Andersen et al. (2007a), we refine
our empirical analysis by considering the notion of significant jumps, only associating the most
extreme price moves with the discontinuous jump component.

In particular, based on the asymptotic distribution theory in Barndorff-Nielsen and Shephard
(2004, 2006) and the extensive simulation evidence in Huang and Tauchen (2005), we assess the
significance of the daily jump component via the feasible logarithmic test statistic:

Zt �
p

M
ln RVt � ln BVt

����4
1 C 2��2

1 � 5�TQtBV�2
t �1/2 ���!d N�0, 1� �17�

where the realized tripower quarticity measure in the denominator is defined by

TQt � 1

M
��3

4/3

M∑
jD3

jrt,jj4/3jrt,j�1j4/3jrt,j�2j4/3, t D 1, . . . , T �18�

and �4/3 D 22/3�7/6�/�1/2�, with �Ð� denoting the gamma function. Thus, only (statistically)
extreme positive values of RVt � BVt are attributed to the jump component, i.e.

JVt � IfZt>1�˛g�RVt � BVt�, t D 1, . . . , T �19�

where IfÐg denotes the indicator function, 1�˛ refers to the (1 � ˛) fractile of the standard normal
distribution, and ˛ denotes the chosen significance level.

Given our estimator for the squared jumps, an estimator for the continuous sample path
variability, or integrated volatility, component is naturally obtained by the residual variation:

CVt � RVt � JVt D IfZt�1�˛gRVt C IfZt>1�˛gBVt, t D 1, . . . , T �20�

That is, we estimate the continuous volatility component by realized volatility on days with
no significant jumps and by realized bipower variation on days with significant jump(s). The
empirical results reported below rely on a significance level of ˛ D 1%, but we also experimented
with ˛ D 5% and 0.1%, resulting in qualitatively similar conclusions.14

The procedure discussed above provides a practical approach for identifying the jump contribu-
tion to the daily return variation. It does not, however, identify the individual jumps themselves.
We next discuss two different methods for doing so.

14 The use of standard significance levels automatically ensures that both JVt and CVt are non-negative, as 1�˛ > 0 for
˛ < 1/2, while consistent estimation of the continuous and jump components would formally require that the significance
level approaches zero with the sample size (see Barndorff-Nielsen and Shephard, 2006). Our choice of a low ˛ D 1% for
each stage of the sequential testing scheme reflects our desire for a conservative approach to jump detection, so that only
highly significant returns are removed from the continuous part of the return variation, which is the critical component
for the subsequent distributional tests.
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3.2. Jump-Adjusted Returns

In the absence of jumps and leverage effects, the daily returns should be approximately normally
distributed when standardized by the corresponding integrated volatility, or an empirical estimate
thereof. In general, however, the daily returns defined by the model in (1) may be comprised of both
continuous price movements and discontinuous jumps. Building on the realized volatility measures
defined above, we consider two different nonparametric procedures for directly identifying and
estimating the intra-day jumps and the corresponding jump-adjusted returns.

Simple Jump Adjustments
Our first estimation scheme is based on the premise that jumps are relatively rare events. In
particular, assume that there is at most one jump each day. It then follows from the arguments
above that JVt !p �2

t . Of course, this still leaves the sign of the jump undetermined. Appealing
to the intuitive idea of signing the single day t jump on the basis of the largest (absolute) intra-day
return, this estimation scheme defines the daily time series of jumps by15

Q�t � sgn�frt,k : jrt,kj D max
j2f1,...,Mg

jrt,jjg�
√

JVt, t D 1, . . . , T �21�

where sgn�Ð� is equal to 1 or �1 depending upon the sign of the argument. Accordingly, we denote
the corresponding jump-adjusted daily returns by

QRt � Rt � Q�t, t D 1, . . . , T �22�

where Rt D pt,M � pt,0 denotes the daily return. As we move from sampling returns in calendar
time to financial time, as defined by equal increments of integrated variance, knowing the exact
jump times becomes essential in defining the new timescale. Of course, it is also possible that
multiple jumps occur on certain days, violating the assumption underlying the simple procedure
in (21). Hence, we next introduce a sequential jump identification scheme designed to facilitate
inference regarding all significant jumps along with their timing within the trading day.

Sequential Jump Adjustments
A significant Zt statistic, as defined in (17), only indicates the presence of one or more jumps. Our
more detailed jump detection scheme applies this same statistic sequentially to identify potentially
multiple significant jumps over the same day.

Intuitively, in the absence of any jumps, so that RVt � BVt !p 0, the average contribution of
each squared intra-day return to the continuous sample path component is simply M�1 ∑M

kD1 r2
t,k .

Now assuming only a single jump on day t, this suggests the following alternative estimator for
the day t contribution to the volatility coming from that jump:

IfZt>1�˛g


 max

j2f1,...,Mg
r2
t,j � 1

M � 1

M∑
k 6Dj

r2
t,k


 , t D 1, . . . , T

15 We also experimented with signing the jumps on the basis of the total daily returns, resulting in very similar findings
to those reported below.
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This, of course, also directly identifies the time of the jump by the value of j that achieves
the maximum. Now, eliminating this particular intra-day return in the calculation of a new jump-
corrected realized volatility measure allows for the construction of a modified jump statistic to
test for the presence of additional (smaller) jumps.

More precisely, in identifying the first jump, RVt is based on the summation of all the squared
intra-day returns. If the corresponding test in (17) rejects, we conclude that there is at least one
jump during day t, and in turn identify its contribution to the total daily variation as the difference
between the largest squared intra-day return and the average of the remaining M � 1 squared
returns. Then, in identifying a possible second jump we define the day t realized volatility corrected
for one jump as the summation of the squared returns, where the squared return containing the
first jump is replaced by the average of the remaining M � 1 squared returns. If the new test
statistic obtained by replacing RVt in (17) with this jump-corrected realized volatility measure
does not reject, we conclude that there is exactly one jump on day t, and we stop the sequential
procedure. If, on the other hand, the test still rejects, we conclude that there are at least two
jumps, and associate the contribution to the total variation coming from the second jump with the
second largest squared intra-day return less the average of the remaining squared returns. More
generally, after having identified i jumps, we calculate the jump-corrected realized volatility using
the remaining M � i returns scaled by M/�M � i�, continuing this sequential procedure until the
corresponding test in (17) no longer rejects.16

Thus, having identified the total number of jumps, say J, during day t, as well as the magnitude
of each of the jumps by the corresponding high-frequency returns:

O�t,i � rt,ji , i D 1, . . . , J, t D 1, . . . , T �23�

where ji denotes the exact time interval of the intra-day return associated with the ith jump, we
calculate the jump-adjusted daily return as17

ORt � Rt �
J∑

iD1

O�t,i, t D 1, . . . , T �24�

Similarly, we define the total variation on day t due to jumps as

JVSt �
J∑

iD1

JVSt,i, t D 1, . . . , T �25�

where JVSt,i gives the contribution from the ith jump, defined as the difference between the
ith largest intra-day squared return and the average of the M � J squared returns that are not

16 We do not remove any returns in the computation of the bipower variation statistics. First, this has obvious asymptotic
justification as the bipower variation statistic is consistent for the integrated variance in the presence of jumps. Second,
removing one intraday return from the realized volatility computation does not alter the contribution from the remaining
terms. In contrast, the realized bipower variation is not immune to this operation as it alters the two adjacent terms,
often significantly. In view of this feature, the conservative nature of our jump detection scheme is best preserved by not
sequentially adjusting the bipower variation statistic.
17 This definition effectively assigns zero diffusive returns to the jump intervals. A natural alternative is to define the jump
returns as the mean of the non-jump returns over the trading day. Our results are not materially affected by this choice.
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associated with jump(s). That is:

JVSt,i � IfZt,i>1�˛g


 max

ji2f1,...,Mgnfj1,...,ji�1g
r2
t,ji

� 1

M � J

∑
k2f1,...,Mgnfj1,...,jJg

r2
t,k


 �26�

where Zt,i denotes the ith sequential jump statistic, as discussed above. Lastly, the corresponding
continuous volatility component is simply defined by

CVSt � RVt � JVSt, t D 1, . . . , T �27�

which, in line with the earlier definition in (20), guarantees that each of the two daily time series
are non-negative, and add up to the total daily realized variation.

The definition of Q�t in (21) provides a rough estimate of
∑J

iD1 O�t,i. This suggests that the two
procedures should produce similar jump adjustments for days in which there is only one jump.
However, the ability of the sequential procedure to identify multiple (significant) jumps as well as
their timing is important for the construction of jump-adjusted intra-day return series and these,
in turn, constitute a critical input to the empirical analysis below.

4. DATA DESCRIPTION

4.1. Data Sources and Construction

Our data are extracted from the Trade And Quotation (TAQ) database, and consist of all recorded
trades and quotes for the Dow Jones Industrial Average (DJIA) stocks for the 5-year period
spanning 2 January 1998 to 31 December 2002. The ticker symbols and names of the stocks
are listed in Table A1 of the supplementary appendix.18 We only use the prices from the New
York Stock Exchange (NYSE), with the exception of Intel and Microsoft, both of which are more
actively traded on the National Association of Security Dealers Automated Quotation (NASDAQ)
system. Mirroring the data-cleaning procedures of Hansen and Lunde (2006), we filter the series
to remove price observations equal to zero, prices occurring outside the 9 : 30 a.m. to 4 : 00 p.m.
official trading day, as well as extreme outliers or misrecorded price observations. This leaves us
with 2–4 million prices for each stock, except for Intel and Microsoft, which both have around
26 million prices recorded over the sample. Finally, we delete days of early closing or late opening
of the exchange and days in which trading in a particular stock was suspended for an extended
period, resulting in approximately 1255 ‘intact’ days for each stock.

To minimize market microstructure effects, we rely exclusively on mid-quotes and an imputation
scheme involving the last quote preceding each 5-minute mark, in the construction of equally
spaced 5-minute returns; i.e., M D 78 observations per day.19 The choice of a 5-minute return
interval is in line with the existing empirical literature and, as argued in Bandi and Russell (2008),
it is also generally close to (mean-squared-error) ‘optimal’ for the standard realized variation
measure and the TAQ data analyzed here. Importantly, however, our use of a 5-minute sampling

18 All of the tables in the supplementary appendix are available on the journal’s website.
19 As argued in Hansen and Lunde (2006), using mid-quotes reduces the spurious serial correlation in the high-frequency
returns due to bid–ask bounce and non-synchronous trading effects.
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scheme in the present context, explicitly allowing for jumps, is further corroborated by the volatility
signature plots discussed next.

4.2. Volatility Signature Plots

The conventional realized volatility signature plot popularized by Andersen et al. (2000b) provides
a simple informal framework for gauging the impact of market microstructure frictions by plotting
the average sample mean of RVt over a long time-span as a function of the sampling frequency of
the underlying intra-day returns, or M. In the absence of any frictions and dynamic dependencies
in the returns, the realized volatilities are all consistent for the same total variation and hence,
in practice, the signature plot should flatten out at the frequencies for which the microstructure
frictions cease to have a distorting influence.

The signature plots in Figure A1 of the supplementary appendix for each of the individual
stocks extend this idea by plotting the average realized bipower variation measures together with
the standard realized variation for different sampling frequencies. Cursory inspection reveals a
close similarity in the general shape across the individual stocks. We summarize the results in
Figure 1 by plotting the median values (over the 30 stocks) of the average realized variation
measures for each sampling frequency (measured in seconds).20

By reproducing the average (across days) RVt and BVt measures as a function of 1/M in
the same graph, the volatility signature plot affords an informal way to gauge the importance of
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Figure 1. Median generalized volatility signature plots. This figure is available in color online at
www.interscience.wiley.com/journal/jae

20 Both of the variation measures have been converted to percent by multiplication by 10,000.
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jumps. In particular, it follows from equation (16) that, under ideal conditions and for 1/M ! 0,
the distance between the two lines provides a consistent estimate of the total variation due to
jumps.21 In practice, of course, this theoretical prediction will be obscured by market microstructure
‘noise’, as directly evidenced by the systematic decline in both lines in Figure 1 in the range of
2–5 minutes, or 120–300 seconds. At the same time, the difference between the lines tends to
stabilize at a sampling frequency of only 2 minutes, or 120 seconds. These effects are also in
line with the extensive simulation results for the two measures based on empirically relevant
continuous-time processes subject to ‘noise’ reported in Nielsen and Frederiksen (2008).22 This
suggests that both realized volatility and bipower variation measures are adversely affected by
microstructure frictions at lower frequencies but the impact is correlated and tends to cancel so
the gap between them, and hence the estimate of the jump component, remains remarkably stable
for 1/M in excess of 120 seconds. Overall, this supports our use of a 5-minute return interval as
a reasonable, albeit for some stocks somewhat conservative, uniform sampling scheme.

5. PRELIMINARY DATA ANALYSIS

As highlighted in the theoretical discussion, the presence of jumps and volatility feedback or
leverage effects will cause the distribution of returns standardized by realized volatility to be non-
Gaussian. Hence, we first present a set of summary statistics speaking to the importance of each
of these features.

5.1. Jumps

We begin by considering jumps. We first report results based on the simple jump-detection
procedure, followed by the more involved sequential jump-detection scheme.

Simple Jump Detection
Relying on the simple jump-detection method and a significance level of ˛ D 1%, Table I displays
the mean duration between significant jumps, the relative contribution of jumps to the realized
variation, i.e., JVt/RVt, the mean size of the jump component for significant jump days, and lastly
the corresponding mean (absolute) jump size, i.e., jQ�tj as defined in equation (21). For ease of
interpretation, we summarize the results in terms of the mean, standard deviation, minimum, and
maximum of the statistics over all 30 DJIA stocks, with detailed results for each individual stock
deferred to Table A2 in the supplementary appendix.

The mean duration between jumps ranges from a low of 4.1 days (HON) to a high of 10.1 days
(GE), with an average across all stocks of 6.3 days. This intensity, of almost one jump per week, is
much higher than typically estimated from parametric models based on daily or coarser frequency
return observations.23 These initial summary statistics suggest that important additional insights
may be obtained from the use of higher-frequency data in terms of disentangling the price process
into continuous and jump components. This is also consistent with the accumulating evidence that
price jumps associated with the release of macroeconomic announcements are much more readily

21 Related volatility signature plots, including plots for various integrated quarticity measures, have recently been explored
by Andersen et al. (2006b).
22 The theoretical framework in Rosenbaum (2007) may also help provide an explanation for these patterns.
23 See, e.g., the GARCH-jump model estimates for individual stocks in Maheu and McCurdy (2004).
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Table I. Jumps: simple method

Mean duration Rel. jump contribution
JVt/RVt

Mean size of jump
component (ð10, 000)

Mean size of
actual jumps (ð100)

Mean across stocks 6.3201 0.0476 1.2119 0.9812
SD across stocks 1.6068 0.0133 0.3283 0.1233
Min. across stocks 4.1325 0.0256 0.6247 0.7352
Max. across stocks 10.0976 0.0746 2.0825 1.3121

Note: This table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for the mean
duration between jumps, the relative jump contribution to the realized volatility, the mean size of the jump component
(ð10, 000), as well as the mean size (in percent) of the square-root jump component (i.e., the absolute value of the actual
jumps). For further details, see Table A2 in the supplementary appendix.

analyzed on the basis of intra-day data rather than the traditional daily return series (see, e.g.,
Andersen et al., 2003b).

The potential importance of jumps is also evident from the last three columns of the table. In
particular, estimates of the relative contribution of the jump component range from 2.6% (GE)
to 7.5% (MO), with an average value of 4.8%.24 The more detailed results in Table A2 of the
supplementary appendix also point towards a negative association between jump durations and
relative jump contributions. Further, the mean size of the jump component (multiplied by 10,000)
on days with significant jumps is estimated between 0.62 (JNJ) and 2.08 (HPQ), which compares
to a typical daily realized variation (multiplied by 10,000) of around 3–4. In other words, on days
identified to have a jump, about a third of the return variation is attributed to jumps. Finally, the
mean absolute size of the ‘simple’ jumps, i.e., jQ�tj, ranges from 0.74% to 1.31%, with a mean
across all stocks of 0.98%.

Sequential Jump Detection
The sequential jump-detection procedure accommodates the presence of multiple jumps on a
given trading day. It follows from the detailed results for the individual stocks in Figure A2 in
the supplementary appendix that the median (across stocks) estimated (unconditional) probability
of a single jump for the ‘typical’ stock is roughly 14%, while there is a 2% probability of two
jumps. Meanwhile, the probability of three or more jumps in one day is very small, but not zero.
This illustrates the potential importance of the sequential jump detection procedure, as most stocks
have many days with multiple jumps.

At the same time, comparing the summary statistics in Table II for the sequential jump detection
method to the corresponding statistics for the simple method in the last three columns of Table I,
the numbers are generally fairly close. The relative contribution of the jump component for the
sequential procedure ranges from 2.1% (GE) to 5.8% (MO), just slightly lower than the numbers
for the simple method. Similarly, the mean size of the sequential jump component averaged across
the stocks equals 1.83, compared to 2.08 in Table I, and the mean absolute jump size ranges from

24 Our jump contribution measure is downward biased due to the conservative jump test. An asymptotically unbiased
estimate of the overall jump contribution is given by the average across all stocks of the ratio �RV � BV�/RV, where the
bar denotes average across all days. This value is 7.7%, indicating that there may be a fair amount of return variation
within the (so classified) continuous component which actually stems from relatively smaller jumps. Of course, such
misclassification would tend to render it harder to obtain Gaussian distributions for the standardized returns in the
empirical analysis below.
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Table II. Jumps: sequential method

Rel. jump contribution
JVSt/RVt

Mean size of jump
component (ð10, 000)

Mean size of
actual jumps (ð100)

Mean across stocks 0.0373 1.0394 0.9282
SD across stocks 0.0101 0.3050 0.1177
Min. across stocks 0.0212 0.5065 0.6828
Max. across stocks 0.0575 1.8309 1.2464

Note: This table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for the relative
jump contribution to the realized volatility, the mean size of the jump component (ð10, 000), as well as the mean size
(in percent) of the absolute value of the actual jumps. For further details, see Table A3 in the supplementary appendix.

Table III. Simple and sequential jump correlations

Correlation RMSE Theil’s U

Mean across stocks 0.9450 0.0062 0.2999
SD across stocks 0.0332 0.0033 0.1036
Min. across stocks 0.8722 0.0030 0.1086
Max. across stocks 0.9945 0.0200 0.5508

Note: This table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for the correlation,
root mean squared error (RMSE), and Theil’s U statistic for the two daily jump series based on the simple and sequential
methods, respectively. Observations where both series are zero have been removed. For further details, see Table A4 in
the supplementary appendix.

a low of 0.68% (JNJ) to a high of 1.25% (HPQ), with the overall absolute mean jump size of
0.93% again being slightly below that in Table I.

The close coherence between the two daily jump component series, JVt and JVSt in
equations (19) and (25) is further underscored by Table III, which presents various correlation
measures between the two. To focus on the relation between the jump series, all common no-jump
(zero) observations were excluded from the computations. The first column reports the standard
sample correlation coefficient, the second the root mean squared error (RMSE) calculated as the
square root of the sum of the squared differences between the series, and the third Theil’s scale
invariant U-statistic. As above, the results are summarized through the mean, standard devia-
tion, minimum, and maximum across the 30 stocks, with detailed results for each stock deferred
to Table A4 of the supplementary appendix. It is evident that the two differently estimated jump
components are close. For instance, the lowest sample correlation equals 0.87 (WMT) and the aver-
age value is 0.95. Also, the RMSEs and Theil’s U-statistic are generally low across the stocks.
Hence the sequential procedure retains the information regarding jump occurrence and relative
size on a day-to-day basis but, importantly, also identifies the intra-day timing of all significant
jumps, which is critical for the subsequent analysis.

5.2. Leverage and Volatility Feedback Effects

The second key assumption underlying the normality of the integrated volatility standardized
returns concerns the lack of correlation between the diffusive volatility process and the Brownian
motion innovations to the price process.
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In order to assess the validity of this assumption, Figure A3 of the supplementary appendix
graphs the 5-minute cross-correlations for each of the stocks, i.e., corr�jrjj, rjCi�, where for
notational simplicity rj for j D 1, . . . , J refers to time series of approximately J D 1, 255 ð 78 D
97, 890 demeaned 5-minute returns available for each stock. An initial cursory look suggests a
broadly similar shape across stocks, although the idiosyncratic noise inherent in the individual
estimates makes it hard to draw sharp conclusions. Hence, we summarize the evidence in Figure 2
by plotting the median value, across the stocks, of each of the high-frequency cross-correlations.
Figure 2 reveals a clear tendency for the correlations between jrjj and rjCi to be negative for
negative i, while the correlations typically are positive or near zero for positive values of i. Of
course, there is a striking spike around i D 0, which is also present for most individual stocks. As
such, this points to the existence of a potentially distorting high-frequency leverage effect for at
least some of the stocks, but not much of a volatility feedback effect.25

Table IV provides summary statistics related to the leverage and volatility feedback type effects.
Specifically, the table reports estimates of each individual effect as well as the difference between
the two; the more detailed findings for each individual stock are again reported in the supplementary
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Figure 2. Median high-frequency leverage and volatility feedback effects

25 This is consistent with the corresponding plots for high-frequency S&P500 futures returns in Bollerslev et al. (2006),
which show even more pronounced negative cross-correlations for negative lags along with cross-correlations close to
zero for positive lags.
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Table IV. Leverage and volatility feedback effect estimates

Leverage Feedback Difference

Mean across stocks �0.0166 0.0076 �0.0243
SD across stocks 0.0151 0.0087 0.0145
Min. across stocks �0.0560 �0.0155 �0.0658
Max. across stocks 0.0053 0.0226 �0.0035
Significance at 5% level 9 10 20
Significance at 1% level 6 5 14

Note: This table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for the leverage
and volatility feedback effect estimates along with their numerical difference, as described in the main text. The last two
rows report the number of stocks (out of 30) for which the corresponding t-statistics, based on a heteroskedasticity and
autocorrelation consistent Newey–West type covariance matrix estimator, are significantly different from zero at the 5%
and 1% levels. For further details, see Table A5 in the supplementary appendix.

appendix, Table A5. The average leverage effect for an individual stock is estimated by

1

K � 2

K�1∑
iD2

1

J � K C 1

J∑
jDK

jrjjrj�i

while the volatility feedback effect is calculated as

1

K � 2

K�1∑
iD2

1

J � K C 1

J�KC1∑
jD1

jrjjrjCi

That is, the leverage effect is measured as the (unweighted) mean of the sample cross-covariances
between the absolute returns and the lagged 2, . . . , �K � 1� period returns, corresponding to the
K � 2 cross-correlations immediately to the left of negative one in the figures. Similarly, the
volatility feedback effect is measured as the mean of the sample cross-covariances between the
absolute returns and the returns 2, . . . , �K � 1� periods into the future, corresponding to the sum
of the first K � 2 cross-correlations immediately to the right of one in the figures. For conciseness,
we focus on K D 30, but identical qualitative findings are obtained for other values of K. Also,
to guard against spurious non-synchronous trading effects, we explicitly exclude the first (positive
and negative) cross-covariance but including these does not materially affect the results.26

More formal tests generally confirm the visual impression. The auto-covariances corresponding
to the leverage effect are negative, while the volatility feedback auto-covariances are close to
zero and, if anything, positive, on average. Interestingly, although the effects are statistically
insignificant for most stocks, there is considerable cross-sectional variation in the magnitude of
the leverage effect, and for some stocks the cross-covariances are quite significant.27 We also note
that the difference between the two effects is negative for all stocks, and significantly so at the
5% level for 20 of the 30.

26 We also calculated the same statistics for the jump-adjusted returns, resulting in very similar numbers to those reported
in the tables. These results are available upon request.
27 These high-frequency based findings are corroborated by conventional EGARCH models for the daily returns which
produce most significant volatility asymmetries for the stocks for which the leverage effects in Table A5 in the
supplementary appendix are the largest.
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The results suggest that financial-time sampling is necessary to restore normality of the
standardized return distributions, at least for some stocks. Of course, whether the high-frequency
leverage and volatility feedback effects are large enough to cause noticeable distortions in the
standardized return distributions remains an empirical question, to which we now turn.

6. DAILY RETURN DISTRIBUTIONS

6.1. Unconditional Return Distributions

It is well established that the unconditional distributions of daily stock returns are fat-tailed. At the
same time, our theory predicts that suitably jump-adjusted and standardized returns should be i.i.d.
Gaussian. Hence, as a natural benchmark, we first provide a summary of the raw unconditional
return distributions for the DJIA stocks. The first row of Table V confirms the above-mentioned
stylized facts. Using the normality test of Andersen et al. (2007b) involving the joint distribution
of the first four sample moments, the null hypothesis that the unconditional return distribution,
or Rt/

p
var�Rt�, is standard normal is rejected at the 1% level for all stocks.28 Table A6 in the

supplementary appendix indicates that the overwhelming rejections are due primarily to excess
kurtosis.

These results are as expected if the underlying return volatility is time-varying since this
induces a mixture type distribution. We next look at the unconditional distributions obtained
by standardizing the daily returns with the one-day-ahead conditional volatility forecasts from a
conventional GARCH(1,1) model.

Table V. Daily return distributions

Series Raw returns Significance Demeaned returns Significance

5% level 1% level 5% level 1% level

Rt/
p

var�Rt� 30 30 30 30
Rt/

p
GARCH�1, 1� 30 30 30 30

Rt/
p

RVt 21 12 18 9
QRt/

p
CVt 18 10 15 9

ORt/
p

CVSt 20 12 18 11
ORŁ

k /
p

E�CVSt� 13 6 11 5
ORŁ

5k,5/
p

5E�CVSt� 6 3 2 2

Note: This table reports the number of stocks (out of 30) for which the hypothesis of normality is rejected based on
the joint test for the first four moments. The results in the last two columns are based on subtracting the sample mean
from the return series in the numerator. Rt refers to the daily return, while QRt and ORt denote the daily jump-adjusted
returns calculated according to the simple and sequential procedures, respectively. RVt gives the total realized variation.
The continuous variation based on the simple and sequential jump-adjustment procedures are denoted by CVt and CVSt,
respectively. ORŁ

k refers to the financial-time return series constructing from the sequential jump-adjusted intra-day returns
spanning E�CVSt� time-units. Lastly, ORŁ

5k,5 � ORŁ
5k C ORŁ

5k�1 C ORŁ
5k�2 C ORŁ

5k�3 C ORŁ
5k�4 defines the financial-time return

series spanning 5E�CVSt� time-units. For further details regarding each of the individual stocks, see Table A6 in the
supplementary appendix.

28 Ignoring potential complications arising from correcting for jumps, this procedure is equivalent to testing that the first
four orthogonal Hermite polynomials are equal to zero. As such, the test is a special case of the general class of normality
tests developed by Bontemps and Meddahi (2005a,b) based on the so-called Stein equation.

Copyright  2009 John Wiley & Sons, Ltd. J. Appl. Econ. 25: 233–261 (2010)
DOI: 10.1002/jae



CONTINUOUS-TIME MODELS 253

6.2. GARCH Standardized Returns

The results for GARCH standardized returns, Rt/
p

GARCH�1, 1�, in the second row of Table V,
are again fully consistent with the existing literature. Although the mass in the tails of the GARCH
standardized return distributions shrinks relative to that of the unconditional distributions, they
remain significantly leptokurtic for all stocks; see Bollerslev (1987), Baillie and Bollerslev (1989),
and Hsieh (1989) for early related evidence.29

Of course, if the underlying price and volatility processes evolve stochastically within the trading
day, the GARCH volatilities, at best, represent the one-day-ahead conditional expectations of the
corresponding (latent) integrated volatilities. As argued in Section 2, the GARCH standardized
returns should therefore follow a fat-tailed mixture-of-normals distribution, with the mixture
determined by the distribution of the GARCH volatility forecast errors vis-à-vis the true integrated
volatilities. We next explore the distributions obtained by standardizing returns by realized
volatilities. Since the latter provide more accurate ex post estimates of the integrated volatility
realizations than ex ante GARCH forecasts, we expect these distributions to be closer to normal.

6.3. Realized Volatility Standardized Returns

We now focus on the distribution of realized volatility standardized returns, Rt/
p

RVt. From
the density and QQ-plots for the individual stocks in Figures A8 and A9 of the supplementary
appendix, it is evident that the RV standardized distributions are much closer to the reference
Gaussian distributions than the raw and GARCH standardized returns. In particular, the tails of
the QQ-plots have improved considerably and mostly feature only slight deviations from the
straight 45-degree line. These findings are also in accord with earlier studies by Andersen et al.
(2000a, 2001b), arguing through similar informal graphical tools and summary statistics that the
sample distributions of the RVt standardized returns are close to Gaussian.

Complementing this informal evidence, the third row in Table V reports results from applying
our formal moment-based test to the realized volatility standardized return distributions. Impor-
tantly, as shown in Andersen et al. (2007b), under the null hypothesis of a time-invariant, or
homogeneous, diffusion, the fourth population moment of the RVt standardized returns equals
m4 D 3 M

M C 2 , rather than the standard normal value of three, and we use this value in imple-
menting the test. Given the M D 78 5-minute returns per day, this translates into a value of 2.925.
The results confirm that the first four sample moments of Rt/

p
RVt generally adhere fairly closely

to those of the slightly modified Gaussian distribution. Specifically, the implicit null of an under-
lying continuous-time diffusion is not rejected for nine of the 30 stocks at the 5% significance
level, while the tests are insignificant for 18 stocks at the 1% level.

Nonetheless, looking at the more detailed statistics in Table A6 in the supplementary appendix,
we find that the sample kurtosis for Rt/

p
RVt remains significantly different from the theoretical

value of m4 D 2.925 that should obtain for a homogeneous diffusion in many cases. Of course,
many studies argue for the importance of allowing for jumps of stock returns, and the empirical
results in Section 5.1 support this notion. The presence of a few large jumps tends to imply
that the RVt standardized distribution has thinner tails than the (modified) normal because the
jumps inflate the denominator realized volatility disproportionately. More generally, however, the

29 We also experimented with alternative EGARCH-M models, allowing for volatility asymmetry resulting in very similar
findings; see Kim and Kon (1994) for related evidence.
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presence of jumps simply obfuscates the asymptotic normality of the Rt/
p

RVt distribution. Indeed,
even though the majority of the rejections in Table V arise from exceedingly low sample values
of m4, for a few stocks the empirical values are significantly larger than 2.925. In an attempt to
clarify these issues, we next consider the distribution of jump-adjusted returns standardized by an
estimate of the corresponding continuous sample path variation.

6.4. Jump-Adjusted Realized Volatility Standardized Returns

Following Sections 2.2 and 3.2, we consider jump-adjusted return distributions using both the
simple and sequential jump-detection schemes. Summary results of the normality tests for these
distributions, labeled QRt/

p
CVt and ORt/

p
CVSt, respectively, are given in rows four and five of

Table V. Perhaps surprisingly, the results indicate that neither of the jump-adjusted standardized
series are systematically closer to Gaussian than the Rt/

p
RVt non-adjusted realized volatility

standardized returns. The hypothesis of normality is rejected for 18 stocks at the 5% level using
the simple method and 20 stocks using the sequential procedure, compared to 21 stocks for the
non-adjusted returns. Similarly, at the 1% level, 10 and 12 stocks reject for the jump-adjusted
returns, while 12 stocks reject for the unadjusted returns.

Although jumps appear important and, according to Section 5.1, account for about a third
of the return variation on jump days, adjusting for jumps fails to restore normality to the
standardized returns. One reason is that jumps largely self-standardize: a large jump tends to inflate
the (absolute) value of both the return (numerator) and the realized volatility (denominator) of
standardized returns, so the impact is muted. Thus, even if jumps impact the raw return distribution
significantly they exert much less influence on the realized volatility standardized distribution.
In sum, the remaining, still appreciable, deviations from normality likely stem from a different
source. One potential factor is systematic dependencies between the numerator and denominator
of the standardized returns, as indicated in Section 2.3. Moreover, the empirical correlation-based
measures discussed in Section 5.2 also suggest that a leverage type effect may be at work. To
explore this possibility, we now consider the properties of jump-adjusted standardized returns
sampled in financial time, i.e., equal increments of integrated volatility.

6.5. Jump-Adjusted Financial-Time Standardized Returns

If realized daily integrated volatility conveys information about the corresponding daily returns,
or vice versa, as implied by the leverage and volatility feedback effects, discretely sampled
returns from a diffusive process, standardized by integrated volatility, are generally not Gaussian.
However, as discussed in Section 2.3, the dependence between the numerator and denominator of
the standardized returns may be broken by sampling in so-called event, or financial, time. The new
sequential jump-adjustment procedure, which identifies the timing of the jumps within the day,
permits the construction of such financial-time returns by accumulating the jump-adjusted intra-day
returns until they span identical increments of the CVSt process, but time-varying calendar-
time intervals. To compute ORŁ

k in practice, we include intra-day returns until the cumulative
squared returns exceeds �Ł; i.e., the average daily (when �Ł D E�CVSt�) respectively weekly
(�Ł D 5E�CVSt�) realized volatility in calendar time. Importantly, only non-jump returns as
identified by the sequential jump detection scheme were included, since the simple jump-adjustment
method does not identify the timing of all jumps and so is less appropriate for this purpose.
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The second to last row of Table V, labeled ORŁ
k/

p
E�CVSt�, reports results from applying the

moment-based tests to jump-adjusted financial time returns where, for ease of comparison, the
financial time unit is calibrated to an average trading day; i.e., �Ł D E�CVSt�. Interestingly, the
move to financial-time sampling results in a marked reduction in the number of stocks for which
normality is rejected, with only six (five for demeaned returns) stocks now being significantly non-
Gaussian at the 1% level. The quality of the approximation afforded by the normal distribution is
also evident from the density and QQ-plots in Figures A14 and A15 in the supplementary appendix
which, except for a few stocks, display a remarkably close coherence between the empirical and
theoretical distributions.

Comparing the test results for leverage and volatility feedback effects for each stock in Table A5
with the normality tests in Table A6, there is generally also a close association between the
significance of the former and the strength of the ‘normality gains’ obtained by moving to
financial-time sampling. For instance, for IBM the leverage and volatility feedback effects are
both significant, and consequently normality of the standardized return series in calendar time
is rejected at the 5% level, while the p-value for the normality test for the one-day financial-
time returns is 0.316. Conversely, for JPM, one of only two stocks for which normality of
one-day returns is rejected at the 5% level in financial but not calendar time, the leverage
effect appears insignificant and the volatility feedback effect is only marginally significant at
the 10% level.

The CVSt series used to construct the financial-time scale often varies considerably over the
sample. Consequently, some ‘one-day’ observations span intra-day returns over several calendar
days, while others are based on the sum of only a few squared 5-minute returns. In the latter case,
the asymptotic theory, for the number of intra-day returns approaching infinity, provides a poor
approximation. Hence, the last row of Table V, labeled ORŁ

5k,5/
p

5E�CVSt�, reports on normality
test applied to returns spanning one financial ‘week’, or five average ‘days’; i.e., �Ł D 5E�CVSt�.
Remarkably, normality for this longer return horizon, but shorter time series, is now rejected at
the 1% level for only three (two for demeaned returns) stocks.30

To highlight the improved accuracy of the normal approximation afforded by the sequential
distributional adjustments, Figure 3 plots the p-values for the tests for each stock and return
transformation underlying Table V. If these distributions are Gaussian and the individual tests
independent, the p-values should be distributed uniformly on the unit interval. The raw and
GARCH standardized daily return series invariably have p-values of zero, as indicated by the
single point on the plot. Standardizing the returns by the realized volatilities improves the picture,
but all p-values remain below 0.25, and the results for the standardized jump-adjusted returns do
not fare any better. In contrast, the p-values for the ‘daily’ and ‘weekly’ financial-time returns
appear close to uniformly distributed. Thus, the p-value plots further support the hypothesis that
by moving to financial time normality of the (jump-adjusted) returns is restored. It is consistent
with the notion that stock prices may be thought of as discretely sampled observations from
a continuous-time jump-diffusion model, while also underscoring the impact of leverage and/or
volatility feedback effects.

30 Of course, the power of the tests based on fewer longer horizon returns is likely lower. However, we also studied the
distribution of the standardized returns over longer calendar time periods, and did not observe a similar dramatic reduction
in the number of rejections.
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Figure 3. p-values for the 30 DJIA stocks, January 1998 to December 2002, 5-minute sampling

6.6. Alternative Sampling Frequencies

Our empirical results hinge on the use of high-frequency data for construction of reliable
realized variation measures and associated jump detection and financial-time sampling schemes. In
particular, the volatility signature plots introduced in Section 4.2 guided our selection of a 5-minute
sampling frequency. To confirm that a sampling frequency in this range provides a reasonable
trade-off between the preference for finely sampled returns and avoiding market microstructure
contamination, we applied the same distributional tests to series based on both more and less
frequently sampled intra-day returns.

Figure 4 reports p-values for the different return transformations based on a coarser 30-minute
sampling frequency, corresponding to the right-most points in the median volatility signature plot
in Figure 1. Under ideal conditions, the realized volatility measures and jump detection tests based
on ‘only’ M D 13 half-hourly intra-day observations are subject to much larger measurement errors
than the 5-minute based measures and tests. This effect manifests itself in a noticeable deterioration
in the dispersion of the p-values for the realized volatility standardized returns, which are now
visibly less consistent with a uniform distribution. Meanwhile, the distribution of the p-values
for the financial-time returns, and the ‘5-day’ returns in particular, still appear fairly close to
uniform.

At the other end of the spectrum, Figure 5 displays p-values obtained using finely sampled
30-second returns; i.e., M D 780. This corresponds to the point in Figure 1 where the slope of
the signature plots for the average realized volatility and bipower variation measures begin to
diverge. A marked deterioration in the dispersion of the p-values for the financial-time returns is
now apparent. The contaminating influences from the market microstructure ‘noise’ overwhelm
the signal in the realized variation measures. Not surprisingly, direct investigation of this very
high-frequency series (not reported here) reveals dramatic violations of the basic arbitrage-free
semi-martingale assumption for the price process.
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Figure 4. p-values for the 30 DJIA stocks, January 1998 to December 2002, 30-minute sampling
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Figure 5. p-values for the 30 DJIA stocks, January 1998 to December 2002, 30-second sampling

In sum, the 5-minute sampling frequency appears to be a reasonable choice for eliciting
distributional information from the high-frequency data within this context.31

7. CONCLUDING REMARKS

We show how high-frequency intra-day data can be used to construct simple non-parametric
realized variation measures and test statistics which shed light on the nature of daily or lower

31 The minimum tick size on the NYSE was reduced to 1 cent on 29 January 2001. In the supplementary appendix we
provide summary conclusions for the more recent time period February 2001 through December 2004, which mirror our
more detailed empirical findings for the longer sample.
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frequency return distributions. Each step in our sequential test procedure speaks directly to
important qualitative features of the underlying return generating process. As such, the tests may
serve as diagnostic tools in the specification of empirically realistic continuous-time models. In
this regard, our empirical results for the set of DJIA stocks suggest that their price series may be
satisfactorily described as discretely sampled observations from a jump-diffusion model, but only
after allowing for leverage and/or volatility feedback effects.

Each step in the sequential procedure could be extended in a number of directions. As
discussed, several recent studies argue for the use of new multi-scale or kernel-based realized
volatility measures for more accurately measuring the true latent return variation (e.g., Bandi and
Russell, 2008; Hansen and Lunde, 2006; Barndorff-Nielsen et al., 2008; Ait-Sahalia et al., 2005).
Also, while the use of daily realized volatility measures conveniently circumvents complications
associated with the strong intra-day volatility patterns (e.g., Andersen and Bollerslev, 1998b), the
financial-time scale will invariably span different periods of the day, and it may prove beneficial
to explicitly control for this feature. Moreover, a number of alternative jump detection procedures
have recently been proposed (e.g., Jiang and Oomen, 2008; Mancini, 2005), and it would be
interesting to compare and contrast the results obtained here to such alternative schemes.

It may also be informative to relate price jumps to news arrivals, either in the form of company
specific news (e.g., Johannes, 2004), or macroeconomic announcements (e.g., Andersen et al.,
2003b). Similarly, it might prove instructive to associate the financial-time scale defined by realized
volatility to observable economic activity variables within the context of the MDH (e.g., Ane and
Geman, 2000; Luu and Martens, 2003). From the reverse perspective, given that our realized
volatility and jump transformations have a sound foundation in theory and appear to outperform
prior MDH style models for the return distribution on the empirical dimension, it may be useful
for MDH style models to relate their candidate economic mixing variables to the diffusive and
jump return variation components estimated here.

Another interesting question relates to the possible extension of the distributional results and
test statistics derived here to a multivariate setting. Although the notion of realized covariation
may be defined straightforwardly, practical issues related to the non-synchronicity of multiple
high-frequency price series looms large, (e.g., de Pooter et al., 2008). The multivariate extension
also presents challenges from a theoretical perspective in terms of the time deformation required
to simultaneously guard against leverage and/or volatility feedback effects across multiple assets
(e.g., Ploberger, 2005).

Last but not least, it is of interest to directly explore the usefulness of the return transformations
and decompositions developed here for value-at-risk type calculations, volatility timing, and other
related financial decisions (e.g., Fleming et al., 2003).
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