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Networks and complex data: Discussion 



Analysis of network data 
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Remarks 

•  What researchers might do in practice 

•  Complications arising from a population network 

•  What we know and what we do not 
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A field experiment in Honduras 

•  Education on standards of care for newborns 
(176 villages; 30,000 people; 3,000 target households) 

•  Design: 2 target nomination schemes and 8 levels 
of treatment 

•  Short- and long-term causal effects, including on 
social interactions 2-year post intervention 

 
(N Christakis, J Fowler, D Spielman, R Negon, et al.) 
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Networks mapped pre-intervention 

•  Trellis for mapping 20+ aspects of social relations  
(Arguably no measurement error, but missing data) 
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Other illustrative applications 

•  LinkedIn 
–  Labor mobility, employment histories, recruiting 
–  Network only provides limited / partial view of 

professional interactions 
–  Connections may be interventions of interest 

•  Google display ads 
–  Selective callouts problem (who to invite in auctions) 
–  Many networks available  
–  Causal mechanisms are not well developed 
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Remarks 

•  What researchers might do in practice 

•  Complications arising from a population network 

•  What we know and what we do not 
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Potential outcomes / table of science 

 
 
 
 
 

Table of science Y is N=4 x |Z|=24, with element Yi(Z) 

Causal inferential targets are defined as a function of Y 
Typically we assume Yi(Zi) – Y becomes Nx2 
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Network interference and exposure 

•  Given network G, if no interference is untenable, we 
must assume how ZNi affects Yi(Zi, g(ZNi), rest) 

•  Example: “i is exposed if it has 1+ treated neighbors” 
leads to 4 distinct potential outcomes 
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What fails? 

•  ATE and TTE are no longer equal 
•  Allocations Zj on G with the same (nt,nc) have diffe-

rent configurations of treatment, exposure and control 

 
 

•  Need randomization schemes that leverage G 
•  Need to revisit causal interpretation of parameters 
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Causal interpretation of parameters 

Recall Yi
obs = Zi Yi(1) + (1−Zi) Yi(0); assume SUTVA 

and additivity of treatment effect Yi(1) = Yi(0) + β 
•  Slope coefficient in a regression model for Yi

obs 

equals the ATE; thus it has a clear interpretation as 
causal effect defined on table of science Y 

In the presence of network interference? The practice is 
•  State a model for Yi

obs and argue why its parameter(s) 
capture (aspects of) the causal effect(s) of interest 
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Neighborhood interference assumption  (__N__IA) 

 

Convenient to define 

 

And parameters 

 

 
Additive model:  Yi(Z) = αi + βiZi + Γi(ZNi) + ZiΔi(Zni) 

Main assumption and model 
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Structural assumptions 

(_AN__IA) 

(__N_SIA) 

(S_N__IA) 

(__NA_IA) 



Relations among twelve unique models 
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Unambiguous causal interpretation 

•  Can now write causal effects of interest in terms of 
parameters of the 12 additive models for Yi

obs, e.g.,  
ATE = 1/n Σi (Yi(ei) − Yi(0))  

 = 1/n Σi βi  (under NIA) 

TTE  ≡ 1/n Σi (Yi(1) − Yi(0))  
 = 1/n Σi (βi + Γi(di) + Δi(di))  (under NIA) 
 = 1/n Σi (βi + γ di)  (under SANASIA) 

•  We can now spell out assumptions that justify 
previously published estimators / estimates  
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Remarks 

•  What researchers might do in practice 

•  Complications arising from a population network 

•  What we know and what we do not 
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Complex landscape and set-up 

•  Inferential targets: ATE, TTE, AIE, … 

•  Assumptions about the network: fixed vs. model, observed 
pre-intervention or outcome; fully vs. partially observed, with 
and without errors, formal notion of interference 

•  Sampling mechanism; finite vs. infinite population inference; 
models for the outcomes; observational vs. experimental 

•  Treatment allocation strategy; estimator; complications … 
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What do we know? Not much … 

•  Network observed pre-intervention without error 
–  Fisher tests for interference (beyond first order neighbors) 
–  Durbin-Wu-Hausman style test SUTVA violations 
–  Estimation theory (LUE / MIVE) for ATE and failures 
–  New randomization and rerandomization strategies 
–  Homophily vs peer influence in observational studies 

•  Network observed with error 
–  Inference from non-ignorable network sampling designs 
–  Partially revealed interference (network as outcome) 
–  Condition on a model for the network 
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Analysis of text data 
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Analysis of word counts 

•  Statistics and machine learning++ 

•  Common elements 
Matrix of word counts W (n documents x v terms) 
Mixture models (k components, interpreted as ??) 
Parameters µ are rates of occurrence (v terms x k components) 

•  Problem specific 
Document covariates L (n documents x …; e.g., author(s), 
publication year, topic annotations by professional editors) 
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Remarks 

•  Statistics and machine learning: Classic papers 

•  Evaluation and interpretation issues 

•  Bringing causality back 
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An authorship attribution problem 
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Parameterization and priors 

24 

•  Counts for term v are Poisson with rates (µv
H, µv

M) 
•  Re-parameterize with total and differential rates 

 σv = µv
H + µv

M 
 τv = µv

H / (µv
H + µv

M) 

•  Priors 
 σv ∝ constant 
 τv = symmetric beta (α1 + α2 σv)  

Also see Negative-Binomial (MW) and COM Poisson 
distributions (Kadane, Shmueli, and co-authors) 
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Remarks 

•  Authorship vector L is largely observed 
•  Clear interpretation of  the 2 mixture components 
•  Evaluation  

–  In-sample using agreement between posterior odds of 
authorship for undisputed papers and Lobs 

–  Out-of-sample predictions for Lmis 
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Characterizing topics 
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Basic model 

Data: count matrix W, document lengths N 
Re-parameterize rate matrix β where βvk = µvk / Σv µvk 

For document d 
•  θd ~ Dirichlet (α)   where θd is a k x 1 vector 
•  zd ~ Multinomial (θd,Nd)   where zd is a k x 1 vector 

•  w'dk ~ Multinomial (β·k, zdk) 
•  Wdv = Σk w'dkv 

•  Place symmetric Dirichlet prior on columns β·k 
28 



(Source: Blei, 2012) 29 



Remarks 

•  Topic vector L is entirely unobserved 
•  Often unclear interpretation of many of the k mixture 

components 
•  Evaluation  

–  Lists of most frequent words 
–  Predictions for Lmis using cross-validation, held-out log-lik 
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Remarks 

•  Statistics and machine learning: Classic papers 

•  Evaluation and interpretation issues 

•  Bringing causality back 
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Issues with evaluation standards 
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•  Original papers 
Interpret most frequent words for most frequent topics 
Supplemental websites to explore the entire model output 

•  Follow-up papers 
Almost exclusively focus on frequency 
Qualitative and anecdotal evaluations 

•  We need exhaustive and quantitative evaluations 
How to quantify topic diversity and coherence?  
How to maximize interpretability of components/topics? 



Hypotheses and MTurk experiments 

1.  Topic summaries based on frequency and exclu-
sivity are more interpretable than frequency alone 

2.  Regularizing rates by word yields better estimates 
of FREX scores than regularizing rates by topic 

•  However, interpretability is hard to quantify  

•  We carry out two experiments on Amazon MTurk 
that enlist human evaluators to execute a comparative 
analysis of the interpretability of topic summaries 
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Design of experiments 

•  Three strategies to generate topic summaries 
PCM FREX: Poisson, regularize by word, max FREX 

LDA FREQ: Binomial, regularize by topic, most frequent 

LDA FREX: Binomial, regularize by topic, max FREX 
(exclusivity estimated by renormalizing rates post inference) 

•  Two tasks:  (i) word intrusion,  (ii) topic coherence 

•  Top-5 words from models with 10, 25, 50, 100 topics 

•  400 turkers for each model size; 2 replicates 
34 
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Remarks 

•  Statistics and machine learning: Classic papers 

•  Evaluation and interpretation issues 

•  Bringing causality back 
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A simple idea 

•  Make the topic proportions and the rates a 
function of document level covariates 

•  JASA paper with Molly Roberts, Brandon Stewart 

•  R package stm, by Molly, Brandon and Dustin 
Tingley 

•  What causal questions can we answer leveraging 
text data? Text as outcome or covariates. 
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