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Modern probabilistic modeling
An efficient framework for discovering meaningful patterns in massive data.
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How to use traditional machine learning and statistics to solve modern problems
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Probabilistic machine learning: tailored models for the problem at hand.
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Probabilistic machine learning: tailored models for the problem at hand.

» Compose and connect reusable parts

v

Driven by disciplinary knowledge and its questions

v

Large-scale data, both in terms of data points and data dimension

v

Focus on discovering and using structure in unstructured data

v

Exploratory, observational, causal analyses
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Many software packages available; typically fast and scalable



More challenging to implement; may not be fast or scalable
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Make assumptions Discover patterns Predict & Explore
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The probabilistic pipeline

» Design models that reflect our domain expertise and knowledge
> Given data, compute the approximate posterior of hidden variables

> Use the computation to predict the future or explore the patterns in your data.



Population analysis of 2 billion genetic measurements




Communities discovered in a 3.7M node network of U.S. Patents



(1] o o o o

Game Life Film Book Wine
Season Know Movie Life Street
Team School Show Books Hotel
Coach Street Life Novel House
Play Man Television Story Room
Points Family Films Man Night
Games Says Director Author Place
Giants House Man House Restaurant
Second Children Story War Park
Players Night Says Children Garden
(6] o o o [0}
Bush Building Won Yankees Government
Campaign Street Team Game War
Clinton Square Second Mets Military
Republican Housing Race Season Officials
House House Round Run Irag
Party Buildings Cup League Forces
Democratic Development Open Baseball Iragi
Political Space Game Team Army.
Democrats Percent Play Games Troops
Senator Real Win Hit Soldiers
(1] @ ® (4 ®
Children Stock Church Art Police
School Percent War Museum Yesterday
Women Companies Women Show Man
Family Fund Life Gallery Officer
Parents Market Black Works Officers
Child Bank Political Artists Case
Life Investors Catholic Street Found
says Funds Government Artist Charged
Help Financial Jewish Paintings Street
Mother Business Pope Exhibition Shot
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Neuroscience analysis of 220 million fMRI measurements
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Discover patterns

Predict & Explore

Our perspective:

» Customized data analysis is important to many fields.

» This pipeline separates assumptions, computation, application.

> |t facilitates solving data science problems.
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What we need:

> Flexible and expressive components for building models

> Scalable and generic inference algorithms

> New applications to stretch probabilistic modeling into new areas
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Criticize model
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Here | discuss two threads of research with Susan Athey’s group.

Build probabilistic models to analyze large-scale consumer behavior;
many consumers choosing among many items

(Caveat: I'm not an economist.)

also joint with Francisco Ruiz



> Vision: a utility model for baskets of items:
U (basket) = [subs/comps] + [shopper] + [prices] + [other] + €

» Goals

— design, fit, check, and revise this model
— answer counterfactual questions about purchase behavior



Economic embeddings
Identifying substitutes and co-purchases in large-scale consumer data.
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» Word embeddings are a powerful approach for analyzing language.

» Discovers a distributed representation of words
— Distances appear to capture semantic similarity.

» Many variants, but each reflects the same main ideas:
— Words are placed in a low-dimensional latent space
— A word’s probability depends on its distance to other words in its context

Bengio et al., A neural probabilistic language model. Journal of Machine Learning Research, 2003.
Mikolov et al., Efficient estimation of word representations in vector space. Neural Information Processing Systems, 2013.
Image: Paul Ginsparg
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Exponential family embeddings generalize this idea to other types of data.

Use generalized linear models and exponential families

Examples:
neuroscience; recommender systems; networks; shopping baskets

Bigger picture: A statistical perspective on ideas from neural networks.



Zebrafish brain activity

Interactions between countries
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Vacation-town deli
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Pizza

Consider a vacation-town deli; it has six items.

Customers either buy [pizza, soda] or [peanut butter, jam, bread]
Customers only buy one type of peanut butter at a time.

Items bought together (or not) are co-purchased (or not).
The peanut butters are substitutes.

(For now we ignore many issues, e.g., formal definitions, price, causality.)

We would like to capture this purchase behavior.



Vacation-town deli

Bread Pizza

> We endow each item with two (unknown) locations in a real space RK:
an embedding p and context vector «.

» The conditional probability of each item depends on its embedding and the
context vectors of the other items in the basket,

. T
Xp.i | Xp—i ~ Poisson (exp {pi Dk aij,j}) .

> «; are latent product attributes
p; indicate how product i interacts with other products’ attributes
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Pizza and soda are never bought with bread, jam, and PB; and vice versa
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Bread, jam, and PB are bought together
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PB #1 is bought with similar items as PB #2



Exponential Family Embedding

» The goal of an EF-EMB is to discover a useful representation of data

» Observations X = x1.,, where x; is a D-vector

» Examples:
DOMAIN INDEX VALUE
Language position in text i word indicator
Neuroscience neuron and time (2,¢)  activity level
Network pair of nodes (s, d) edge indicator

Shopping item and basket (d,b) number purchased




Exponential Family Embedding

Xi

OBSERVED DATA | /" Q O Q Q
EMBEDDINGS \/“*p Q é Q Q Q
CONTEXT VECTORS Var Q Q Q

» Three ingredients:
context, conditional exponential family, embedding structure

v

Two latent variables per data index, an embedding and a context vector

v

Model each data point conditioned on its context and latent variables.

v

The latent variables interact in the conditional.
How depends on which indices are in context and which one is modeled



Context
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» Each data point i has a context c;, a set of indices of other data points.

» We model the conditional of the data point given its context, p(x; | X¢; ).

» Examples
DOMAIN DATA POINT CONTEXT
Language word surrounding words
Neuroscience neuron activity  activity of surrounding neurons
Network edge other edges on the two nodes

Shopping purchased item

other item counts on the same trip
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» We model the conditional of the data point given its context, p(x; | X¢; ).

» Examples
DOMAIN DATA POINT CONTEXT
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Neuroscience neuron activity  activity of surrounding neurons
Network edge other edges on the two nodes

Shopping purchased item

other item counts on the same trip
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» Each data point i has a context c;, a set of indices of other data points.

» We model the conditional of the data point given its context, p(x; | X¢; ).

» Examples
DOMAIN DATA POINT CONTEXT
Language word surrounding words
Neuroscience neuron activity  activity of surrounding neurons
Network edge other edges on the two nodes

Shopping purchased item

other item counts on the same trip




Conditional exponential family

Xi
OBSERVED DATA \/1 QO O Q Q
EMBEDDINGS \/1,0 Q é Q Q Q
CONTEXT VECTORS \/1“ Q Q Q

» The EF-EMB has latent variables for each data point’s index:
an embedding p[i] and a context vector o [i]

» These are used in the conditional of each data point,
Xi | X¢; ~ exp-fam(n(xe; ; pli], afci]), £ (x;)).

(Poisson for counts, Gaussian for reals, Bernoulli for binary, etc.)



Conditional exponential family

Xi
OBSERVED DATA \/1 QOO Q Q
EMBEDDINGS \/1,0 Q é Q Q Q
CONTEXT VECTORS \/1“ Q Q Q

» The natural parameter combines the embedding and context vectors,

ni(xe;) = f | plil" > aljlx; |,

J€ci

» E.g., anitem’s embedding (interaction) helps determine its count;
its context vector (attributes) helps determine other item’s counts



Embedding Structure
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» The embedding structure determines how parameters are shared.
» E.g., p[i] = p[j]fori = (Oreos,t) and j = (Oreos, u).

» Sharing enables learning about an object, such as a neuron, node, or item.
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» The embedding structure determines how parameters are shared.
» E.g., p[i] = p[j]fori = (Oreos,t) and j = (Oreos, u).

» Sharing enables learning about an object, such as a neuron, node, or item.



Embedding Structure
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» OO0 0 O
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» The embedding structure determines how parameters are shared.
» E.g., p[i] = p[j]fori = (Oreos,t) and j = (Oreos, u).

» Sharing enables learning about an object, such as a neuron, node, or item.



Pseudolikelihood

» We model each data point, conditional on the others.
» Combine these ingredients in a “pseudo-likelihood” (i.e., a utility)
n
L(p.a) =Y (0 1(x0) = a(m)) + log f(p) + log g(@).
i=1

» Fit with stochastic optimization; exponential families simplify the gradients.



Pseudolikelihood

» The objective resembles a collection of GLM likelihoods.
» The gradient is
I
Vo1 = > (t6e) = Elt(c)]) Vopini + Vo1 log f(oLiD)-
i=1

» (Stochastic gradients give justification to NN ideas like “negative sampling.”)



Market basket analysis

v

Data | Purchase counts of items in shopping trips at a large grocery store

— Category-level | 478 categories; 635,000 trips; 6.8M purchases
— Item-level | 5,675 items; 620,000 trips; 5.6M purchases

Context | Other items purchased at the same trip

v

v

Structure | Embeddings for each item are shared across trips

v

Family | Poisson (and we downweight the zeros)



Market basket analysis

> Recall the conditional probability

X; | x—; ~ Poisson (exp {plT D i ajxj}) .

» «; reflects attributes of item i

» p; reflects the interaction of item i with attributes of other items.



A 2D representation of category attributes «;
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cream
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. . frozen pastry dough
specialty/miscellaneous deli items




infant formula

disposable diapers

disposable pants Paby accessories

baby/youth wipes

infant toiletries

childrens/infants analgesics




A 2D representation of item attributes «;
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Category level

MODEL K=20 K=50 K =100
Poisson embedding —-7.497 —7.284 —-7.199
Poisson embedding (downweighting zeros) —7.110 —6.994  —6.950
Additive Poisson embedding —7.868 —8.191 —8.414
Hierarchical Poisson factorization —7.740 —7.626 —7.626
Poisson PCA —-8.314  —-9.51 —11.01
Item level
MODEL K=50 K=100
Poisson embedding —7.72 —7.64

Hierarchical Poisson factorization —7.86 —7.87

Gopalan et al., Scalable recommendation with hierarchical Poisson factorization. Uncertainty in Artificial Intelligence, 2015.
Collins et al., A generalization of principal component analysis to the exponential family. Neural Information Processing Systems, 2002.
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We want to use this fit to understand purchase patterns.

» Exchangeables have a similar effect on the purchase of other items.

» Same-category items tend to be exchangeable and rarely purchased together
(e.g., two types of peanut butter).

» Complements are purchased (or not purchased) together
(e.g., hot dogs and buns).
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» PB #1 and PB #2 induce similar distributions of other items
» But they are rarely purchased together.

» Define the sigmoid function between two items,

a 1

(1 + exp{—pj @i}

YN
Oki y Ok =1 —o0p
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» The “substitute predictor” is

— Z ok log (Uk ) + 0% log (Uk )
- J J

k/{i.j}
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» The “complement predictor” is the negative of the last term
Oii
oji log (L) .
1 —oj;

— We use the symmetrized version of both quantities
— These quantities generalize to other exponential families

> Notes:



ITEM 1 ITEM 2 SCORE (RANK)
organic vegetables  organic fruits 6.18 (01)
vegetables (<10 0z) beets (>=10 0z2) 5.64 (02)
baby food disposable diapers 3.43 (32)
stuffing cranberries 3.30 (36)
gravy stuffing 3.23 (37)
pie filling evaporated milk 3.09 (42)
deli cheese deli crackers 2.87 (55)
dry pasta/noodles tomato paste/sauce/puree 2.73 (63)
mayonnaise mustard 2.61 (69)
cake mixes frosting 2.49 (78)

Example co-purchases at the category level



ITEM 1 ITEM 2 SCORE (RANK)
bouquets roses 0.20 (01)
frozen pizza 1 frozen pizza 2 0.18 (02)
bottled water 1 bottled water 2 -0.07 (03)
carbonated soft drinks 1 carbonated soft drinks 2 -0.12 (04)
orange juice 1 orange juice 2 -0.37 (05)
bathroom tissue 1 bathroom tissue 2 -0.58 (06)
bananas 1 bananas 2 -0.61 (07)
salads-convenience 1 salads-convenience 2 -0.63 (08)
potatoes 1 potatoes 2 -0.66 (09)
bouquets blooming -1.18 (10)

Top ten potential substitutes at the category level



ITEM 1 ITEM 2

SCORE (RANK)

ygrt peach ff ygrt mxd berry ff

s&w beans garbanzo s&w beans red kidney
whiskas cat fd beef whiskas cat food tuna/chicken
parsnips loose rutabagas

celery hearts organic apples fuji organic

85p In gr beef patties 15p fat sesame buns

kiwi imported mangos small

colby jack shredded taco bell taco seasoning mix
star magazine in touch magazine

seasoning mix fajita mission tortilla corn super sz

19.83
14.42

0001)
0002)
0149)
0157)
0995)
1005)
1959)
2472)
2497)
2500)

8.45
8.32
4.36
4.35
3.22
2.89
2.87
2.87

. e o o o~ o~ o~

Example co-purchases at the UPC level



ITEM 1 ITEM 2 SCORE (RANK)

coffee drip grande coffee drip venti -0 .33 (001)
sandwich signature reg sandwich signature Irg -1.17 (020)
market bouquet alstromeria/rose bouquet -2.89 (186)
sushi shoreline combo sushi full moon combo -3.76 (282)
semifreddis bread baguette  crusty sweet baguette -7.65 (566)
orbit gum peppermint orbit gum spearmint -7.96 (595)
snickers candy bar 3 musketeers candy bar -7.97 (598)
cheer Indry det color guard  all Indry det liquid fresh rain -7.99 (602)
coors light beer bl coors light beer can -8.12 (621)
greek salad signature neptune salad signature -8.15 (630)

Example potential substitutes at the UPC level



Summary and Questions

Xi
OBSERVED DATA \/‘4 QO O Q Q
EMBEDDINGS \/110 Q é Q Q Q
CONTEXT VECTORS \/1“ Q Q Q

» Word embeddings have become a staple in natural language processing
We distilled its essential elements, generalized to consumer data

» Compared to classical factorization, good performance in many data
— movie ratings, neural activity, scientific reading, shopping baskets

Rudolph et al. Exponential Family Embeddings. Neural Information Processing Systems, 2016.
Liang et al. Modeling User Exposure in Recommendation. Recommendation Systems, 2016.
Ranganath et al. Deep Exponential Families. Artificial Intelligence and Statistics, 2015.



Summary and Questions

OBSERVED DATA \/‘4 QO O Q Q
EMBEDDINGS \/‘p Q é Q Q Q
CONTEXT VECTORS \/101 Q Q Q

» How can we capture higher-order structure in the embeddings?
» Why downweight the zeros?

» How can we include price and other complexities?

Rudolph et al. Exponential Family Embeddings. Neural Information Processing Systems, 2016.
Liang et al. Modeling User Exposure in Recommendation. Recommendation Systems, 2016.
Ranganath et al. Deep Exponential Families. Artificial Intelligence and Statistics, 2015.



Poisson factorization
A computationally efficient method for discovering correlated preferences




» Economics

— Look at items within one category (e.g. yoghurt)

— Try to estimate the effects of interventions (e.g., coupons, price, layout)
> Machine learning

— Look at all items
— Estimate user preferences and make predictions (recommendations)
— Ignore causal effects of interventions



Users

Items

» Implicit data is about users interacting with items

— clicks
— “likes”
— purchases

» Less information than explicit data (e.g. ratings), but more prevalent



ITEM ATTRIBUTES USER PREFERENCES

<
) ) Bk ~ Gam(-, )
e () fik ~ Gom.)
Bi Vui 0, yui ~ Poisson (6, Bi)

Poisson factorization

» Assumptions

— Users (consumers) have latent preferences 0,,.
— Items have latent attributes B; .
— How many items a shopper purchased comes from a Poisson.

» The posterior p(6, B | y) reveals purchase patterns.

Gopalan et al., Scalable recommendation with hierarchical Poisson factorization. Uncertainty in Artificial Intelligence, 2015.



ITEM ATTRIBUTES USER PREFERENCES

<
£ Ouk ~ Gam(:, ")
e () Bix ~ Gam(-, ")

B Vui 0, Yui ~ Poisson (9;—,3,)

%

Advantages

» captures heterogeneity of users
» implies a distribution of total consumption

» efficient approximation, only requires non-zero data

Gopalan et al., Scalable recommendation with hierarchical Poisson factorization. Uncertainty in Artificial Intelligence, 2015.



News articles from the New York Times

“Business Self-Help”

Stay Focused And Your Career Will Manage Itself

To Tear Down Walls You Have to Move Out of Your Office
Self-Reliance Learned Early

Maybe Management Isn't Your Style

My Copyright Career

Scientific articles from Mendeley

“Astronomy”

“Personal Finance”

Theory of Star Formation

Error estimation in astronomy: A guide

Astronomy & Astrophysics

Measurements of Omega from 42 High-Redshift Supernovae
Stellar population synthesis at the resolution of 2003

In Hard Economy for All Ages Older Isn't Better It's Brutal
Younger Generations Lag Parents in Wealth-Building
Fast-Growing Brokerage Firm Often Tangles With Regulators
The Five Stages of Retirement Planning Angst

Signs That It's Time for a New Broker

“Biodiesel”

“All Things Airplane”

Biodiesel from microalgae.

Biodiesel from microalgae beats bioethanol

Commercial applications of microalgae

Second Generation Biofuels

Hydrolysis of lignocellulosic materials for ethanol production

Flying Solo

Crew-Only 787 Flight Is Approved By FAA

All Aboard Rescued After Plane Skids Into Water at Bali Airport
Investigators Begin to Test Other Parts On the 787

American and US Airways May Announce a Merger This Week

“Political Science”

Social Capital: Origins and Applications in Modern Sociology
Increasing Returns, Path Dependence, and Politics
Institutions, Institutional Change and Economic Performance
Diplomacy and Domestic Politics

Comparative Politics and the Comparative Method




c New York Times Echo Nest 25% Netflix (implicit) Netflix (explicit)
2 i ) 30%
2 P b e e g
o
s b o .= == == B —— HPF
S2%- 794 20% [ S —
3 - - BPF
@ 8% - e ————
N | 20% —_
5 6% - : LDA
Ji gt PV EEEEESEERE .
g ° 5% 4 - NMF
§ [ N —— 10%4
AP PO e I N S e
2O/o 4%
New York Times Echo Nest Netflix (implicit) Netflix (explicit)
25% 8% 18% -
I N A N e L i Sttt
[E e —— - O
2.0% 4
§=‘; ° 7% T% o o m m m 15% A e e e o e e L
@ 1.5% 7 T780 E
c 6% 6% - 12% - 1% — . LDA
c o
5 1.0% R
(5] from o ——— | - MF
= L e e = 5% 5% - " 10%
0.5% ~ 9% - - NMF
4% L=
0.0% =+ s rsa e e e R IR R IR s m = —i— = =




“FRUIT” “CAT CARE” “BABY ESSENTIALS” “HEALTHY”
stone fruit cat food wet baby food health and milk substitutes
pears cat food dry starbucks coffee organic vegetables
tropical fruit cat litter & deodorant disposable diapers organic fruits
apples canned fish infant formula cold cereal
grapes paper towels baby/youth wipes vegetarian / organic frozen
Consumer #1 : “Cats and Babies” Consumer #2 : “Healthy and Cats”
10 x10%

Latent preferences

5 10
Components

15

20

5 10

15 20

Components




Poisson factorization and economics

» Consider a utility model of a single purchase with Gumbel error,
Ulyui) = log(8y i) + €.
» Suppose a shopper u buys N items. Then

Yu | N ~ Multi(N, )
Tui o expif, Bi}.
» Thus, the unconditional distribution of counts is Poisson factorization,

Yuj ~ Poisson(@,jﬂj).



Poisson factorization and economics

» With this connection, we can devise new utility models, e.g.,
Uyui) = log(GJ,Bi + oy, exp{—c - price;) + €.

» ...and other factors
— time of day
in stock
— date
— observed item characteristics & category
demographic information about the shopper

> Inference is still efficient.
With assumptions, we can answer counterfactual questions.



ITEM ATTRIBUTES

USER

PREFERENCES

<

4

s

Bi

)

‘

Yui

u

O=
6

9uk ~ Gam('v )
Bik ~ Gam(,-)
yui ~ Poisson (6, B;)

» Poisson factorization efficiently analyzes large-scale purchase behavior.

> Next steps

— include notions of co-purchases and substitutes
— include time of day at a level that is unconfounded
— include price and stock out; answer counterfactual questions

» Research in recommendation systems can help economic analyses.



KNOWLEDGE &
QUESTION

)

Make assumptions

\

Discover patterns

Predict & Explore

"

Probabilistic machine learning: design expressive models to analyze data.

» Tailor your method to your question and knowledge

» Use generic and scalable inference to analyze large data sets

» Form predictions, hypotheses, inferences, and revise the model
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Opportunities for economics and machine learning

» Push economics to high-dimensional data and scalable computation

» Push ML to explainable models, applied causal inference, new problems

» Develop new modeling methods together




