Suppose that seasonally-adjusted U.S. quarterly real GDP growth, y_t , follows a covariance stationary AR(2) process with weak white noise innovations.

- 1. Provide a detailed characterization of y_t via its Wold decomposition. Is it a complete characterization? Are the innovations associated with its Wold representation uncorrelated? Independent? Gaussian?
- 2. What is the unconditional innovation variance of y_t ? Must it be finite? What is the conditional innovation variance of y_t ? Is it necessarily smaller than the unconditional variance?

Now suppose that y_t follows a covariance stationary AR(2) process with conditionally-Gaussian GARCH(1,1) innovations.

- 3. Write down the full conditionally-Gaussian AR(2)-GARCH(1,1) process for y_t . What must be true of the AR and GARCH parameters to ensure covariance stationarity? How would you modify the process to allow the response of volatility to depend on the signs of innovations? Write down the modified process. Why/when might such a modification be useful?
- 4. How would you estimate the model by Gaussian MLE, and what are the properties of the resulting estimates?

Now suppose instead that you don't *know* that y_t follows a covariance stationary AR(2) process with conditionally-Gaussian GARCH(1,1) innovations, but you *think* that it does, so you fit the AR(2)-GARCH(1,1) model.

- 5. How would you diagnose the specification adequacy (as regards conditional mean dynamics, conditional variance dynamics, and conditional density) of your fitted AR(2) GARCH(1,1) model?
- 6. Get the data, do the fitting, and do the diagnosis. Discuss.