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How Many Times Have you Ranked Forecasts’ Accuracy
by RMSE?

RMSE =

√√√√ 1

T

T∑
t=1

e2t/t−1

What are you really doing?

What does it really mean?

What do you really want?

Does it matter whether you rank
using RMSE or other criteria like MAE ?
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Traditional Point-Forecast Accuracy Comparison:
Emphasizes the Loss Function

Error: e = y − ŷ

Loss: L(e), where L(0) = 0 and L(e) ≥ 0, ∀e

The big three:
Absolute-error loss: L(e) = abs(e)

Squared-error loss: L(e) = square(e)
Check-error, or lin-lin, loss: L(e) = checkτ (e),

where

checkτ (e) =

{
(1− τ)|e|, e < 0

τ |e|, e ≥ 0.

Accuracy comparison via expected loss: E (L(e)), e.g. E (e2)

How to choose a loss function?
Does the choice matter for accuracy rankings?
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This Paper’s Point-Forecast Accuracy Comparison:
Works Directly From First Principles

Compare:

F (e) (c.d.f. of e)

vs.

F ∗(e) (c.d.f. of perfect forecast),

where

F ∗(e) =

{
0, e < 0
1, e ≥ 0.

“Unit step function at zero”
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Stochastic Error Distance (SED)

SED(F ,F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de

=

∫ 0

−∞
F (e) de +

∫ ∞
0

[1− F (e)] de

= SED(F ,F ∗)− + SED(F ,F ∗)+

5 / 17



Example: Two Forecast Error Distributions

Under the SED criterion, we prefer F1 to F2.
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SED and Expected Absolute Loss

SED(F ,F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de

Proposition (Equivalence of SED and Expected Absolute Loss):

If e is a forecast error with cumulative distribution function F (e),
such that E (|e|) <∞, then SED equals expected absolute loss:

SED(F ,F ∗) = E (|e|).

SED accuracy evaluation is MAE accuracy evaluation!
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Weighted Stochastic Error Distance (WSED)

WSED(F ,F ∗; τ) = 2(1− τ)SED(F ,F ∗)− + 2τSED(F ,F ∗)+,

where τ ∈ [0, 1].
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WSED and Expected Lin-Lin Loss

Proposition (Equivalence of WSED and Expected Lin-Lin Loss):

If e is a forecast error with cumulative distribution function F (e),
such that E (|e|) <∞, then WSED equals expected lin-lin loss:

WSED(F ,F ∗; τ) = 2(1− τ)

∫ 0

−∞
F (e) de + 2τ

∫ ∞
0

[1− F (e)] de

= 2E (Lτ (e)),

where Lτ (e) is the lin-lin loss function

Lτ (e) =

{
(1− τ)|e|, e < 0

τ |e|, e ≥ 0.
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Generalized Weighted Stochastic Error Distance (GWSED)

GWSED(F ,F ∗; p,w) =

∫
|F (e)− F ∗(e)|p w(e) de,

where p > 0.

SED and WSED are nested special cases:

I p = 1 and w(e) = 1 ∀ e produces SED.

I p = 1 and

w(e) =

{
2(1− τ), e < 0

2τ, e ≥ 0

produces WSED.

I Other choices of p and w(e)?
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GWSED and Expected Loss: A Complete Characterization

GWSED(F ,F ∗; p,w) =

∫
|F (e)− F ∗(e)|p w(e) de

Proposition (Equiv. of GWSED
(

F ,F ∗; 1,
∣∣∣dL(e)de

∣∣∣) and E (L(e))):

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for
e > 0 and dL(e)/de < 0 for e < 0, and suppose also that F (e)
and L(e) satisfy F (e)L(e)→ 0 as e → −∞ and
(1− F (e))L(e)→ 0 as e →∞. Then:∫ ∞

−∞
|F (e)− F ∗(e)|

∣∣∣∣dL(e)

de

∣∣∣∣ de = E (L(e)).
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Connections I: Cramér-von Mises Divergence

GWSED(F ,F ∗; 2, f (e)) is Cramér-von Mises divergence:

CVM(F ∗,F ) =

∫
|F ∗(e)− F (e)|2 f (e)de

= −F (0)(1− F (0)) +
1

3

CVM(F ∗,F ) is minimized at F (0) = 1
2 .

That is, like SED(F ,F ∗),
CVM(F ∗,F ) is minimized by the conditional-median forecast.
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Connections II: Kolmogorov-Smirnov Distance

KS(F ,F ∗) = sup
e

∣∣F (e)− F ∗(e)
∣∣ = max

(
F (0), 1− F (0)

)

KS(F ,F ∗) is minimized at F (0) = 1
2 ,

as is CVM(F ∗,F ).

That is, like SED(F ,F ∗),
KS(F ,F ∗) is minimized by the conditional-median forecast.
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Practical Implications

Switch from RMSE to MAE for forecast accuracy rankings.

– But is it really important to make the switch?

– That is, will rankings really change?

– In general, yes!
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MSE vs. MAE Rankings

In general, MSE and MAE rankings differ.

Simplest Gaussian environment:

e ∼ N
(
µ, σ2

)
=⇒ E (|e|) = σ

√
2/π exp

(
− µ2

2σ2

)
+ µ

[
1− 2Φ

(
−µ
σ

)]
Unbiased case (µ = 0): E (|e|) ∝ σ

MAE and MSE rankings must be identical

Biased case (e1 ∼ N(0, 1) and e2 ∼ N(µ2, σ
2
2)):

MAE and MSE rankings can diverge, even under normality.
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MSE and MAE Divergence Regions, Gaussian Case

e1 ∼ N(0, 1), e2 ∼ N(µ2, σ
2
2)
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Conclusions

We have:

1. Approached forecast accuracy comparison from first principles.
(SED.)

2. Arrived inescapably at MAE loss.

3. Clarified what it means to “select a loss function.”
(Select a w(e) function in GWSED.)

4. Compared SED to CVM and KS .
(Each is minimized by the conditional-median forecast.)

5. Shown that MSE forecast rankings do not match those of
SED/MAE in general.
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