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How Many Times Have you Ranked Forecasts’ Accuracy

by RMSE?
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How Many Times Have you Ranked Forecasts’ Accuracy
by RMSE?

=
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What are you really doing?
What does it really mean?
What do you really want?

Does it matter whether you rank
using RMSE or other criteria like MAE?
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Traditional Point-Forecast Accuracy Comparison:
Emphasizes the Loss Function

Error: e=y —y
Loss: L(e), where L(0) =0 and L(e) >0, Ve

The big three:

Absolute-error loss: L(e) = abs(e)
Squared-error loss: L(e) = square(e)
Check-error, or lin-lin, loss: L(e) = check,(e),
where

(L—7)lel, e<O0
check;(e) = {T\e| JR

Accuracy comparison via expected loss: E(L(e)), e.g. E(e?)

How to choose a loss function?
Does the choice matter for accuracy rankings?
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This Paper’s Point-Forecast Accuracy Comparison:
Works Directly From First Principles

Compare:

F(e) (c.d.f. of e)

VS.

F*(e) (c.d.f. of perfect forecast),

where

% 0, e<0
F(e):{l e>0.

“Unit step function at zero”
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Stochastic Error Distance (SED)

SED(F, F*) = /Oo IF(e) — F*(e)| de
0 [e%)
:/ F(e)de—i—/o [1— F(e)] de

= SED(F, F*)_ + SED(F, F*).

SED.(F,F*)
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Example: Two Forecast Error Distributions
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Under the SED criterion, we prefer F; to F».
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SED and Expected Absolute Loss

SED(F, F*) = /_Oo IF(e) — F*(e)| de

Proposition (Equivalence of SED and Expected Absolute Loss):

If e is a forecast error with cumulative distribution function F(e),
such that E(|e|) < oo, then SED equals expected absolute loss:

SED(F,F*) = E(le|).

SED accuracy evaluation is MAE accuracy evaluation!
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Weighted Stochastic Error Distance (WSED)

WSED(F, F*;7) = 2(1 — 7)SED(F, F*)_ + 2rSED(F, F*),

where 7 € [0, 1].
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WSED and Expected Lin-Lin Loss

Proposition (Equivalence of WSED and Expected Lin-Lin Loss):

If e is a forecast error with cumulative distribution function F(e),
such that E(|e|) < oo, then WSED equals expected lin-lin loss:

0

WSED(F, F*: 7) = 2(1 T)/

—00

F(e) de + 27 /000[1 — F(e)] de
—2E(L(e))

where L.(e) is the lin-lin loss function

L) {(1 —7)le], e<O

T|el, e>0.
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Generalized Weighted Stochastic Error Distance (GWSED)

GWSED(F, F*: p, ) :/|F(e) — FH(e)|P w(e) de,
where p > 0.

SED and WSED are nested special cases:
» p=1and w(e) =1V e produces SED.

» p=1and

w(e) = {2(1—7), e<0

27, e>0
produces WSED.

» Other choices of p and w(e)?
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GWSED and Expected Loss: A Complete Characterization

GWSED(F, F*; p,w / IF(e w(e) de

dL(e)
de

Proposition (Equiv. of GWSED (F, F*; 1,

) and E(L(e))):

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for
e > 0 and dL(e)/de < 0 for e < 0, and suppose also that F(e)
and L(e) satisfy F(e)L(e) -0 as e - —oo and

(1—F(e))L(e) - 0 as e — co. Then:

L RaCIES

—00

de = E(L(e))-
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Connections |I: Cramér-von Mises Divergence

GWSED(F, F*;2,f(e)) is Cramér-von Mises divergence:
CVM(F*,F /|F* e)|? f(e)de

— —F(O)(1 - F(0)) +

CVM(F*, F) is minimized at F(0) = 3.

That is, like SED(F, F*),
CVM(F*, F) is minimized by the conditional-median forecast.
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Connections Il: Kolmogorov-Smirnov Distance

KS(F,F*) = SL;p |F(e) - F*(e)‘ = max(F(0),1 — F(0))

KS(F, F*) is minimized at F(0) = %
as is CVM(F*, F).

That is, like SED(F, F*),
KS(F, F*) is minimized by the conditional-median forecast.
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Practical Implications

Switch from RMSE to MAE for forecast accuracy rankings.
— But is it really important to make the switch?
— That is, will rankings really change?

— In general, yes!
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MSE vs. MAE Rankings

In general, MSE and MAE rankings differ.
Simplest Gaussian environment:

e~N (u,az)

— () = ov2men (L) 120 (-2)

Unbiased case (= 0): E(|e]) x o
MAE and MSE rankings must be identical

Biased case (e; ~ N(0,1) and ey ~ N(pz,03)):
MAE and MSE rankings can diverge, even under normality.
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MSE and MAE Divergence Regions, Gaussian Case
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e; ~ N(0,1), e ~ N(,uz,ag)
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Conclusions

We have:

1. Approached forecast accuracy comparison from first principles.
(SED.)

2. Arrived inescapably at MAE loss.

3. Clarified what it means to “select a loss function.”
(Select a w(e) function in GWSED.)

4. Compared SED to CVM and KS.
(Each is minimized by the conditional-median forecast.)

5. Shown that MSE forecast rankings do not match those of
SED/MAE in general.
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