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Assessing Studies Based on  
Multiple Regression  

 
 
Outline 

1. Internal and External Validity 
2. Threats to Internal Validity 

a. Omitted variable bias 
b. Functional form misspecification 
c. Errors-in-variables bias 
d. Missing data and sample selection bias 
e. Simultaneous causality bias 

3. Application to Test Scores 
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A Framework for Assessing Statistical Studies: 

Internal and External Validity 
 
 Internal validity:  the statistical inferences about causal 

effects are valid for the population being studied. 
 

 External validity:  the statistical inferences can be 
generalized from the population studied to other populations 

o  California in 2011? Massachusetts in 2011? Mexico in 
2011? 

o  Hard to say anything very specific... 
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Threats to Internal Validity of 
Multiple Regression Analysis 

 
 
Five threats to the internal validity of regression studies: 

1. Omitted variable bias 
2. Wrong functional form 
3. Errors-in-variables bias 
4. Sample selection bias 
5. Simultaneous causality bias 

 
All of these imply that E(ui|X1i,…,Xki) ≠ 0 (or that 
conditional mean independence fails) – in which case OLS 
is biased and inconsistent.  (Actually more to worry about 
-- what other assumptions might be violated?) 
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1.  Omitted variable bias 
 
Omitted variable bias arises if an omitted variable is both: 

(i) a determinant of Y and  
(ii) correlated with at least one included regressor. 

 
 We first discussed omitted variable bias in regression with a 

single X.  OV bias arises in multiple regression if the 
omitted variable satisfies conditions (i) and (ii) above. 

 If the multiple regression includes control variables, then 
we need to ask whether there are omitted factors that are not 
adequately controlled for, that is, whether the error term is 
correlated with the variable of interest even after we have 
included the control variables. 
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Solutions to omitted variable bias 
 
1. If you have data on one or more controls and they are 

adequate (in the sense of conditional mean independence 
plausibly holding for the causal variable of interest) then 
include the control variables; 

 
--------------------------- 
 

2. Possibly, use panel data in which each entity 
(individual) is observed more than once; 

3. If the omitted variable(s) cannot be measured, use 
instrumental variables regression; 

4. Run a randomized controlled experiment. 



SW Ch. 9 6/40

  
2.  Functional form misspecification bias 
 
Solutions to functional form misspecification bias 
 

1. Continuous dependent variable:  use the “appropriate” 
nonlinear specifications in X (interactions, etc.) 
 
-------------------------------- 
 

2. Discrete dependent variable:  need an extension of 
multiple regression methods (“probit” or “logit” analysis 
for binary dependent variables). 
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3.  Errors-in-variables bias 
 
So far we have assumed that X is measured without error. 
In reality, economic data often have measurement error 
 Data entry errors in administrative data 
 Recollection errors in surveys (when did you start your 

current job?) 
 Ambiguous questions (what was your income last year?) 
 Intentionally false response problems with surveys (What is 

the current value of your financial assets?  How often do 
you drink and drive?) 
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Solutions to errors-in-variables bias 
 

1. Obtain better data (often easier said than done). 
2. Develop a specific model of the measurement error 

process.  This is only possible if a lot is known about the 
nature of the measurement error – for example a 
subsample of the data are cross-checked using 
administrative records and the discrepancies are 
analyzed and modeled.  (Very specialized; we won’t 
pursue this here.) 

 
-------------------------------------- 
 

3. Instrumental variables regression. 
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Details of Errors-in-variables bias 
 
Leads to correlation between the measured variable and the 
regression error.  Consider the single-regressor model: 
 

Yi = 0 + 1Xi + ui 
 
and suppose E(ui|Xi) = 0). Let 

 
 Xi = unmeasured true value of X 
 

iX  = mis-measured version of X (the observed data) 
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Then 
 Yi = 0 + 1Xi + ui 

    = 0 + 1 iX  + [1(Xi – iX ) + ui] 
So the regression you run is, 

Yi = 0 + 1 iX  + iu , where iu  = 1(Xi – iX ) + ui 
 

Classical measurement error:   

iX  = Xi + vi,  
where vi is mean-zero random noise with corr(Xi, vi) = 0 and 
corr(ui, vi) = 0. 
 
Under the classical measurement error model, 1̂  is biased 
towards zero.  (Why?  Imagine the variance of v approaching 
infinity.) 
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4.  Missing data and sample selection bias 
 
Data are often missing.  Sometimes missing data introduces 
bias, sometimes it doesn’t.  It is useful to consider three cases: 
 

1. Data are missing at random. 
2. Data are missing based on the value of one or more X’s 
3. Data are missing based in part on the value of Y or u 

 
Cases 1 and 2 don’t introduce bias: the standard errors are 
larger than they would be if the data weren’t missing but 1̂  is 
unbiased.  (Actually 2 also can cause problems.  Why?  Think 
about non-linear models...) 
 
Case 3 introduces “sample selection” bias. 
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Missing data: Case 1 

 
Data are missing at random 

 
Suppose you took a simple random sample of 100 workers 
and recorded the answers on paper – but your dog ate 20 
of the response sheets (selected at random) before you 
could enter them into the computer.  This is equivalent to 
your having taken a simple random sample of 80 workers 
(think about it). 
 
This inflates variance but doesn't cause bias. 
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Missing data: Case 2 
 

Data are missing based on a value of one of the X’s 
 

In the test score/class size application, suppose you restrict 
your analysis to the subset of school districts with STR < 
20.  This is equivalent to having missing data, where the 
data are missing if STR > 20.   
 
This inflates variance but doesn't cause bias. 

 



SW Ch. 9 14/40

 
Missing data: Case 3 

 
Data are missing based in part on the value of Y or u 

 
In general this type of missing data does introduce bias into 
the OLS estimator.  This type of bias is also called sample 
selection bias. 
 
Sample selection bias arises when a selection process: 

(i) influences the availability of data and  
(ii) is related to the dependent variable. 
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Example #1:  Height of undergraduates 
 

Your stats prof asks you to estimate the mean height of 
undergraduate males.  You collect your data (obtain your 
sample) by standing outside the basketball team’s locker 
room and recording the height of the undergraduates who 
enter.   
 Is this a good design – will it yield an unbiased estimate of 

undergraduate height? 
 Formally, you have sampled individuals in a way that is 

related to the outcome Y (height), which results in bias. 
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Example #2:  Mutual funds 
 

 Do actively managed mutual funds outperform “hold-the-
market” funds? 

 Empirical strategy: 
o Sampling scheme:  simple random sampling of mutual 

funds available to the public on a given date. 
o Data:  returns for the preceding 10 years. 
o Estimator: average ten-year return of the sample mutual 

funds, minus ten-year return on S&P500 
o Is there sample selection bias?  (Equivalently, are data 

missing based in part on the value of Y or u?) 
o How is this example like the basketball player example? 
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Example #3: returns to education 

 
 What is the return to an additional year of education? 
 Empirical strategy: 

o Sampling scheme:  simple random sample of employed 
people (employed, so we have wage data) 

o Data: earnings and years of education 
o Estimator: regress ln(earnings) on years_education 

 
What is the selection bias? 
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The Basic Point:  Sample selection bias induces correlation 
between a regressor and the error term. 
 
 
 

Yi = 0 + 1Xi + ui 
 

Cases with large X values are more likely to have received 
positive shocks (taller people, surviving funds, highly-
educated people, ...) 
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Solutions to sample selection bias 
 

 Collect the sample in a way that avoids sample selection. 
o Basketball player example: obtain a true random sample 

of undergraduates, e.g. select students at random from 
the enrollment administrative list. 

o Mutual funds example:  change the sample population 
from those available at the end of the ten-year period, to 
those available at the beginning of the period (include 
failed funds) 

o Returns to education example:  sample unemployed as 
well as employed 

 Randomized controlled experiment. 
 Construct a model of the sample selection and estimate that 

model (we won’t do this). 
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5.  Simultaneous causality bias 
 
So far we have assumed that X causes Y. 
What if Y causes X, too? 
 
Example:  Class size effect 
 Low STR results in better test scores 
 But suppose districts with low test scores are given extra 

resources: as a result of a political process they also have 
low STR 

 What does this mean for a regression of TestScore on STR? 
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Simultaneous causality bias in equations 
 
(a) Causal effect on Y of X:   Yi = 0 + 1Xi + ui 
 
(b) Causal effect on X of Y:   Xi = 0 + 1Yi + vi 
 
 Large ui means large Yi, which implies large Xi (if 1>0) 

 
 Thus corr(Xi,ui)  0 

 
 Thus 1̂  is biased and inconsistent. 



SW Ch. 9 22/40

 Solutions to simultaneous causality bias 
 

1. Run a randomized controlled experiment.  Because Xi is 
chosen at random by the experimenter, there is no 
feedback from the outcome variable to Yi (assuming 
perfect compliance). 

 
2. Develop and estimate a complete model of bi-directional 

causality.  This is difficult in practice. 
 
--------------------------------- 
 

3. Use instrumental variables regression to estimate the 
causal effect of interest (effect of X on Y, ignoring effect 
of Y on X). 
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Brief Intro to Instrumental Variables Regression 
(Single X and Z) 
 
 A valid instrument Z must satisfy two conditions: 

(1) relevance: corr(Zi,Xi)  0 
(2) exogeneity: corr(Zi,ui) = 0 

 TSLS proceeds by first regressing X on Z to get X̂ , then 
regressing Y on X̂  

 The key idea is that the first stage isolates part of the 
variation in X that is uncorrelated with u 

 If the instrument is valid, then the large-sample sampling 
distribution of the TSLS estimator is normal, so inference 
proceeds as usual 
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IV Regression:  Test scores and class size 
 
 The California test score/class size regressions still could 

have OV bias (e.g. parental involvement).  
 In principle, this bias can be eliminated by IV regression 

(TSLS). 
 IV regression requires a valid instrument, that is, an 

instrument that is: 
(1) relevant: corr(Zi,STRi)  0 
(2) exogenous: corr(Zi,ui) = 0 
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IV Regression:  Test scores and class size, ctd. 
 
Here is a (hypothetical) instrument: 
 some districts, randomly hit by an earthquake, “double up” 

classrooms: 
Zi = Quakei = 1 if hit by quake, = 0 otherwise 

 Do the two conditions for a valid instrument hold? 
 The earthquake makes it as if the districts were in a random 

assignment experiment. Thus, the variation in STR arising 
from the earthquake is exogenous. 

 The first stage of TSLS regresses STR against Quake, 
thereby isolating the part of STR that is exogenous (the part 
that is “as if” randomly assigned) 
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Applying External and Internal Validity: 
Test Scores and Class Size 

 
 
Objective:  Assess the threats to the internal and external 
validity of the empirical analysis of the California test score 
data. 
 
 External validity 

o Compare results for California and Massachusetts 
o Think hard… 

 Internal validity 
o Go through the list of five potential threats to internal 

validity and think hard… 
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Check of external validity 
 
We will compare the California study to one using 
Massachusetts data 

 
The Massachusetts data set 
 220 elementary school districts 
 Test:  1998 MCAS test – fourth grade total (Math + 

English + Science) 
 Variables: STR, TestScore, PctEL, LunchPct, Income 
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The Massachusetts data: summary statistics 
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Test scores vs. Income & regression lines: Massachusetts data
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How do the Mass and California results compare? 
 Logarithmic v. cubic function for STR? 
 Evidence of nonlinearity in TestScore-STR relation? 
 Is there a significant HiELSTR interaction? 
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Predicted effects for a class size reduction of 2 
Linear specification for Mass: 
 

TestScore  = 744.0 – 0.64STR – 0.437PctEL – 0.582LunchPct 
      (21.3)  (0.27)    (0.303)   (0.097) 
 

– 3.07Income + 0.164Income2 – 0.0022Income3 
     (2.35)   (0.085)   (0.0010) 
 Estimated effect = -0.64(-2) = 1.28 
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Computing predicted effects in nonlinear models 
 

 
TestScore  = 655.5 + 12.4STR – 0.680STR2 + 0.0115STR3    

  – 0.434PctEL – 0.587LunchPct 
– 3.48Income + 0.174Income2 – 0.0023Income3 

 
Estimated reduction from 20 students to 18: 

TestScore  = [12.420 – 0.680202 + 0.0115203] 
    – [12.418 – 0.680182 + 0.0115183] = 1.98 

 compare with estimate from linear model of 1.28 
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Summary of Findings for Massachusetts 

 
 Coefficient on STR falls from –1.72 to –0.69 when control 

variables for student and district characteristics are included 
– an indication that the original estimate contained omitted 
variable bias. 

 The class size effect is statistically significant at the 1% 
significance level, after controlling for student and district 
characteristics 

 No statistical evidence of nonlinearities in the TestScore – 
STR relation 

 No statistical evidence of STR – PctEL interaction 
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Comparison of estimated class size effects: CA vs. MA 
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Summary:  Comparison of California and Massachusetts 
Regression Analyses 

 
 Class size effect falls in both CA, MA data when student 

and district control variables are added. 
 Class size effect is statistically significant in both CA, MA 

data. 
 Estimated effect of a 2-student reduction in STR is 

quantitatively similar for CA, MA. 
 Neither data set shows evidence of STR – PctEL interaction. 
 Some evidence of STR nonlinearities in CA data, but not in 

MA data. 
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Step back: what are the remaining threats to internal 
validity in the test score/class size example? 
 
1.  Omitted variable bias? 
  What causal factors might be missing? 
 Access to outside learning opportunities 
 Other district quality measures such as teacher quality  
 
The regressions attempt to control for these omitted factors 
using control variables that are not necessarily causal but 
are correlated with the omitted causal variables: 
 district demographics (income, % free lunch eligible) 
 Fraction of English learners 
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Omitted variable bias, ctd. 
 
Are the control variables effective?  That is, after including 
the control variables, is the error term uncorrelated with STR? 
 Answering this requires using judgment. 
 There is some evidence that the control variables are 

effective: 
o The STR coefficient doesn’t change much when the 

control variables specifications change 
o The results for California and Massachusetts are 

similar – so if there is OV bias remaining, that OV bias 
would need to be similar in the two data sets 
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2.  Wrong functional form? 
 We have tried quite a few different functional forms, in 

both the California and Mass. data 
 Nonlinear effects are modest 
 Plausibly, this is not a major threat at this point. 

 
3.  Errors-in-variables bias? 
 The data are administrative so it’s unlikely that there are 

substantial reporting/typo type errors. 
 STR is a district-wide measure, so students who take the 

test might not have experienced the measured STR for the 
district – a complicated type of measurement error 

 Ideally we would like data on individual students, by 
grade level. 
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4.  Sample selection bias? 
 Sample is all elementary public school districts (in 

California and in Mass.) – there are no missing data 
 No reason to think that selection is a problem if we are 

interested only in public school students. 
 
5.  Simultaneous causality bias? 
 School funding equalization based on test scores could 

cause simultaneous causality. 
 This was not in place in California or Mass. during these 

samples, so simultaneous causality bias is arguably not 
important. 

 


