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Abstract

We build an Affine Term Structure Model that provides non-negative yields at any maturity
and that is able to accommodate a short-term rate that stays at the zero lower bound (ZLB)
for extended periods of time while longer-term rates feature high volatilities. We introduce
these features through a new univariate non-negative affine process called ARG-Zero, and
its multivariate affine counterpart (VARG), entailing conditional distributions with a zero-
point masses. The affine property of this new class of processes implies both explicit bond
pricing and quasi-explicit lift-off probability formulas. We provide an empirical application to
Japanese Government Bond (JGB) yields, observed weekly from June 1995 to May 2014 with
maturities from six months to ten years. Our four-factor specification is able to closely match
yield levels and to capture conditional yield volatilities.
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Introduction

1 Introduction

Assuming that storing cash is costless, nominal interest rates cannot turn negative since cash pro-

vides a zero interest rate and is always an alternative investment to bonds (see e.g. Black (1995)).

In other words, the sole existence of currency implies a zero lower bound (ZLB) on bond yields.1

Before the outbreak of the 2008 financial crisis, the Bank of Japan was the only large central bank

that had brought its policy rates – which drive the short-end of the yield curve – to zero. From

2010 on however, bringing policy rates close to the ZLB has become a common situation for the

Fed, the ECB, and the BoE. In all of these currency areas, sharp decreases of short-term interest

rates have led the medium- to long-term yields to drop deeply, pushing the entire yield curves to

unprecedented low levels.

In this context, reproducing low but non-negative interest rates has become a great concern for

the specification of term structure models, and still represents a challenging task.2 Specifically, to

the best of our knowledge, no existing term-structure model is able to simultaneously match the

three following characteristics:3

(i) consistency with non-negative yields;

(ii) availability of closed-form bond pricing formulas; and

(iii) the ability to accommodate extended periods of zero short-term rates and to evaluate asso-

ciated of leaving the zero lower bound (lift-off probabilities).

In this paper, we first introduce a new affine process that opens the way to term-structure mod-

els consistent with (i), (ii), and (iii) simultaneously. This process, which we call Autoregressive

Gamma-zero (ARG0), builds on the original ARG process (see Gourieroux and Jasiak (2006), Dai,

Le, and Singleton (2010) or Creal and Wu (2015)) by extending it to a zero degree-of-freedom

parameter. This process has a crucial distinctive feature: its conditional distribution given the

past values encompasses a point-mass at zero.4 This attractive property allows its dynamics to

satisfy (i) and (iii).5 We explore the properties of this univariate process, explicitly disclosing its

exponential-affine conditional Laplace transform and its first two conditional and unconditional

moments. This univariate affine process is then extended to a multivariate affine process which

we call Vectorial Autoregressive Gamma (VARG). We adequately exploit these processes to build
1In reality, holding cash is not costless since it is subject to theft or physical destruction and is complicated to use

for large transactions. These features, along with flight-to-safety phenomena or non-conventional monetary-policy
measures, may result in negative interest rates. The framework we develop in the present paper is consistent with
the existence of a lower bound, which can be negative.

2Typically, in the widely-used Gaussian no-arbitrage models, the yields of all maturities can take negative values
with a strictly positive probability (see e.g. Dai and Singleton (2003), Piazzesi (2010), Diebold and Rudebusch
(2013), Duffee (2012) or Gurkaynak and Wright (2012)).

3While the model proposed by Renne (2012) is consistent with these three points, it can only generate a discrete
number of positive yield curves. That is, in Renne’s framework, the support of the positive short-term (policy) rate
is discrete. Here, we consider short rates whose support is the set of non-negative real numbers (denoted by R+).

4This appealing feature is obtained by building on Siegel (1979), who introduces a non-central Chi-squared
distribution with zero degree of freedom. This distribution has also a Dirac mass at zero.

5As noted by Kim (2008), coping with those two features for a short-term interest rate is of utmost importance
when building a term-structure model with observed option prices.
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Introduction

a multi-factor term-structure model in which the yields at all maturities are non-negative, the

short-term interest rate can stay at zero for extended periods of time, and the lift-off probabilities

are easily computed under both measures.

We directly address the issue of point (ii), making closed-form bond-pricing formulas available.

Indeed, our short-term interest rate is specified as a linear combination of components that fol-

low VARG processes under both historical and risk-neutral measures. Hence our framework boils

down to an Affine Term-Structure Model (ATSM) and the zero-coupon yields for all maturities

are explicit affine functions of the factors where the loadings are computable recursively (see e.g.

Duffie and Kan (1996) or Darolles, Gourieroux, and Jasiak (2006)).

The historical and risk-neutral affine property of our term-structure model allows for a great flexibil-

ity at the estimation stage. First, assuming the presence of latent factors, the estimation technique

is computationally simple using Kalman filtering techniques. Indeed, transition equations of the

underlying state-space model are simply given by the VAR representation of our factors’ dynamics.

Second, it implies that (a) forecasts and (b) conditional variances of yields are affine functions of

the factors. Accordingly, this allows us to easily augment the set of measurement equations by

relating linear combinations of our latent factors with observable proxies of (a) surveys of profes-

sional forecasters and (b) conditional (Garch-based) yield variances. Including these equations

respectively improves (a) the estimation of the factors’ physical dynamics (see Kim and Orphanides

(2012)) and (b) the consistency of the estimated model with sample moments of order two.6

As Japan has been confronted with extremely low interest rates since the mid-90s, the sovereign

bond yields of this country constitute a relevant source of data to examine the ability of term-

structure models to handle the ZLB.7 Our estimated model both shows a very good fit of yields

and of conditional yield volatilities across maturities. We also find differences between historical

and risk-neutral lift-off probabilities. Our model’s estimates imply that at the 5-year horizon, the

difference between the risk-neutral and historical probabilities of exiting the ZLB can be as large

as 35 percentage points.

The present article relates to the small but fast-growing literature that develops and investigates

ZLB-consistent models. Three main approaches stand out: shadow-rate models, quadratic term-

structure models (QTSM) and models involving square-root (CIR) processes. The shadow-rate

model was introduced by Black (1995) and has been adopted by several recent contributions (see

e.g. Ueno, Baba, and Sakurai (2006), Ichiue and Ueno (2007), Ichiue and Ueno (2013), Kim and
6Among others, Collin-Dufresne, Goldstein, and Jones (2002), Adrian and Wu (2009), Andersen and Benzoni

(2006), Trolle and Schwartz (2009), Jacobs and Karoui (2009), Almeida, Graveline, and Joslin (2011), Bikbov
and Chernov (2011), Creal and Wu (2014) and Christensen, Lopez, and Rudebusch (2014) study the ability of
term-structure models to fit conditional volatilities of yields.

7See e.g. Gorovoi and Linetsky (2004), Ueno, Baba, and Sakurai (2006), Ichiue and Ueno (2007), Kim and
Singleton (2012), Christensen and Rudebusch (2013), Kim and Priebsch (2013), Krippner (2013).
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Non-negative affine processes with zero lower bound spells

Singleton (2012), Krippner (2012, 2013), Bauer and Rudebusch (2013), Christensen and Rudebusch

(2013), Kim and Priebsch (2013) and Wu and Xia (2013)). In this model, the short-term rate is

defined as the maximum between zero and the so-called shadow rate and ZLB periods occur when

the latter turns negative. Typically, if the shadow rate follows a Gaussian process, the model can

generate prolonged periods of ZLB, making it consistent with features (i) and (iii). However, there

are no closed-form formulas available for bond prices (this inadequately adresses point (ii)) and

one has to resort to simulation or approximation techniques to estimate the model (see Kim and

Priebsch (2013) or Wu and Xia (2013)). By contrast, QTSM and models based on square-root

processes provide closed-form bond pricing formulas and positive yields (seminal contributions are

those of Ahn, Dittmar, and Gallant (2002), Leippold and Wu (2002), Cox, Ingersoll, and Ross

(1985), Pearson and Sun (1994) and Dai and Singleton (2000)). Nevertheless, these models treat

the ZLB as a reflecting barrier. In that case, the probability of having an unchanged short-term

rate for two subsequent periods is zero, which makes them inconsistent with feature (iii).8

The remainder of the paper is organized as follows. Section 2 introduces the non-negative ARG0

process and highlights its ability to stay at zero. Section 3 presents the associated affine term-

structure model and derives tractable lift-off probability formulas. Section 4 describes the esti-

mation strategy and presents the empirical results. Section 5 examines the distributions of future

lift-off dates. Section 6 concludes and an Appendix gathers proofs and technical results.

2 Non-negative affine processes with zero lower bound spells

In this section we introduce the univariate Gamma-zero distribution and extend it to the dynamic

case with a new class of processes that we call Autoregressive Gamma-Zero (see Section 2.1). A

multivariate generalization will be considered in Section 3. Like the continuous-time Cox, Ingersoll,

and Ross (1985) process – or its discrete-time counterpart, the Autoregressive Gamma process of

Gourieroux and Jasiak (2006) – it cannot take negative values. However, the Autoregressive

Gamma-zero can reach the zero value with a strictly positive probability, stay at this lower bound

for an extended period of time and become positive again. We present its main properties in

Section 2.2 and a generalization to the Extended Autoregressive Gamma process is developed in

Section 2.3.

2.1 The ARG0 process and the zero lower bound

Let us first recall that a Gamma distribution γν(µ) is a positive distribution defined by a shape (or

degree of freedom) parameter ν > 0 and a scale parameter µ > 0. Its probability density function

(p.d.f.) is given by:

fX(x ; ν, µ) =
exp(−x/µ)xν−1

Γ(ν)µν
1{x>0} .

8More precisely, in the case of the CIR process, zero is either a reflecting barrier or an absorbing state [see Karlin
and Taylor (1981) and Francis (1989)].
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Note that γν(µ) converges in distribution to the Dirac distribution at zero when ν goes to zero.

A non-central Gamma distribution can be defined as an extension of the gamma distribution.

Consider a Poisson random variable Z of positive parameter λ, the non-central Gamma distribution

γν(λ, µ) is a mixture of γν+Z(µ) distributions (Z being the mixing variable), defined on the set of

strictly positive real numbers (denoted by R++), where ν, λ and µ are strictly positive. Remarkably,

although its p.d.f. is complicated, its Laplace transform is extremely simple. Indeed, if X ∼

γν(λ, µ), we have:

ϕX(u) = E[exp(uX)] = exp
[
−ν log(1− uµ) + λ

uµ

1− uµ

]
, for u <

1
µ
.

This distribution can be adapted to the case ν = 0 if γ0(µ) is considered as the Dirac distribution

at zero. We thus obtain, by definition, a Gamma-zero distribution featuring a point mass at zero.

Definition 2.1 Let X be a non-negative random variable. We say that X follows a Gamma-zero

distribution with parameters λ > 0 and µ > 0, denoted X ∼ γ0(λ, µ), if its conditional distribution

given Z ∼ P(λ) is:

X |Z ∼ γZ(µ) . (1)

The p.d.f. and the Laplace transform of X, respectively fX(x ; λ, µ) and ϕX(u ; λ, µ), are given by:

fX(x ; λ, µ) =
+∞∑
z=1

[
exp(−x/µ)xz−1

(z − 1)!µz
× exp(−λ)λz

z !

]
1{x>0} + exp(−λ)1{x=0} (2)

ϕX(u ; λ, µ) = exp
[
λ

uµ

(1− uµ)

]
for u <

1
µ
.

(Note that the p.d.f. is with respect to the sum of the Lebesgue measure on R++ and the unit mass

at zero.)

Again, despite the complexity of the density function of Equation (2), the Laplace transform of the

Gamma-zero distribution is very easy to manipulate. Also, Equation (2) sheds light on a key feature

of the Gamma-zero distribution: it has a point-mass located at x = 0, and P(X = 0) = exp(−λ).

It is extremely easy to simulate in γ0(λ, µ) by first simulating Z in P(λ) and then X in γz(µ),

where z is the result of the first simulation. As Z equals zero with a strictly positive probability,

X also equals zero with a strictly positive probability.9

We now turn to the dynamic case, where (Xt) is a discrete-time random process that we call

Autoregressive Gamma-zero (ARG-Zero) process, denoted by ARG0(α, β, µ) (where α ≥ 0, β ≥ 0,

µ > 0).

9Observe also that γ0(λ, µ) is an infinitely divisible dsintribution given that ϕX(u;λ, µ) = [ϕX(u;λ/n, µ)]n (see
Filipovic and Zabczyk (2002)).
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Definition 2.2 The random process (Xt) is a ARG0(α, β, µ) process of order one if the conditional

distribution of Xt+1, given Xt = (Xt, Xt−1, . . .), is the Gamma-zero distribution:

(Xt+1|Xt) ∼ γ0(α+ βXt, µ) for α ≥ 0, µ > 0, β > 0 .

The conditional probability density function f (Xt+1 |Xt;α, β, µ) and the conditional Laplace trans-

form ϕX,t(u ; α, β, µ) of the ARG0(α, β, µ) process are respectively given by:

f (Xt+1 |Xt;α, β, µ) =
+∞∑
z=1

[
exp(−Xt+1/µ)Xz−1

t+1

(z − 1)!µz
× exp[−(α+ β Xt)] (α+ β Xt)z

z !

]
1{Xt+1>0}

+ exp(−α− β Xt)1{Xt+1=0} ; (3)

ϕX,t(u ; α, β, µ) := E
[
exp (uXt+1) |Xt

]
= exp

[
uµ

1− uµ
(α+ β Xt)

]
, for u <

1
µ
. (4)

As for the static Gamma-zero distribution, the second element of Equation (3) emphasizes the

zero-point mass of the ARG0 process. The conditional probability of the process reaching zero at

date t+ 1 is time-varying and given by exp(−α− β Xt). Note that there are two main differences

between this family of processes and the ARG processes introduced in Gourieroux and Jasiak

(2006). First, in our case we take the shape parameter equal to 0, which allows the presence of the

zero-point mass. Second, we introduce a positive intercept α in the Poisson intensity parameter,

preventing the zero lower bound from being an absorbing state. Indeed, when Xt = 0, the value

Xt+1 equals zero with probability P (Xt+1 = 0 |Xt = 0) = exp(−α) < 1. (In the multivariate case,

this probability will depend on the information available at date t).

It is also readily seen from relation (4) that (Xt) is a discrete-time affine, or Car(1), process (see

Darolles, Gourieroux, and Jasiak (2006)) since ϕX,t(u;α, β, µ) is exponential-affine in Xt. This

class of processes is particularly useful for building term structure models of interest rates, allowing

for simple computation of moments and closed-form or tractable pricing formulas. In particular,

we use in the next sections the fact that recursive formulas are available for the computation of

multi-horizon Laplace transforms defined as:

ϕt,h(u1, . . . , uh) = Et [exp(u1Xt+1 + . . .+ uhXt+h)] .

We illustrate the aforementioned properties of the ARG0(α, β, µ) process and its relevance for

interest rate modeling in a ZLB setting with a simple simulation exercise. Let us denote by rt the

risk-free rate between t and t+ 1 (known in t) and let us assume that its dynamics is given by the

following univariate ARG0 process:

(rt | rt−1) ∼ γ0(α+ βrt−1, µ) , (5)
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where α and β are positive scalars. A model for the short-term rate dynamics described by relation

(5) can accommodate both protracted periods of zero short-term rates and periods of fluctuations.

We simulate this process for 500 periods with parameters calibrated as α = 0.1, β = 990 and

µ = 0.001. These parameters are such that the marginal mean and standard deviation of process

(rt) are about 0.01 and 0.001, respectively. For such parameters, the conditional probability of

staying at the zero lower bound is around 0.9. Figure (1) presents the simulated trajectory (left

panel) and the computation of the marginal cumulative distribution function (right panel).

As expected, several episodes of prolonged zero lower bound are observed among the 500 simulated

values. The grey-shaded areas emphasize the large persistence of the process, which hardly takes

off from zero for the first 150 periods. Over the sample, the simulated process hits zero for about

250 periods, that is half of the sample length. The right panel of Figure (1) shows that the

unconditional probability of the process to be at zero is 0.6. When it is not at zero, the process

experiences persistent spikes of between 100 to 150 periods. This behavior of the ARG0 process

appears particularly appealing to model the dynamics of short-term interest rates in a zero lower

bound environment.

Figure 1: Simulation of an ARG0 process: a short-term rate with zero lower bound spells
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Notes: This figure displays on the left panel the simulated path of a short-term rate dynamics defined by the
following conditional distribution: rt|rt−1 ∼ γ0(0.1 + 990rt−1, 0.001). The grey zones correspond to periods where
the simulated short rate hits zero. On the right panel we have the associated marginal cumulative distribution
function.

2.2 Moments, stationarity and lift-off probablities of ARG0 processes

The exponential-affine form of the Laplace transform given in Equation (4) allows for an easy

derivation of the properties of ARG0(α, β, µ) processes. In this subsection, we show that ARG0

processes possess simple closed-form formulas for conditional and unconditional moments, station-

arity conditions, and especially for calculating conditional probabilities of reaching zero, staying

at zero or leaving zero (lift-off).

First, note that the affine property of the ARG0 process implies that all conditional cumulants are
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affine functions of the lagged value of the process. Their derivation is made simple by the use of the

log-Laplace transform. Proposition (2.1) and associated corollaries derive the first two conditional

and unconditional moments of an ARG0 process.

Proposition 2.1 Let (Xt) be an ARG0(α, β, µ) process. We use the notation ρ := β µ. The

conditional mean Et(Xt+1) and variance Vt(Xt+1) of Xt+1 given its past are respectively given by:

Et(Xt+1) = αµ+ ρXt and Vt(Xt+1) = 2µ2α+ 2µρXt = 2µEt(Xt+1) . (6)

Corollary 2.1.1 (Xt) has the following weak AR(1) representation:

Xt+1 = αµ+ ρXt + εt+1 , (7)

where (εt) is a conditionally heteroskedastic martingale difference, whose conditional variance is

V(εt+1 | εt) = 2µ2α+ 2µρXt.

Corollary 2.1.2 (Xt) is stationary if and only if ρ < 1 and, in this case, its unconditional mean

and variance are respectively given by:

E(Xt) =
αµ

1− ρ
and V(Xt) =

2αµ2

(1− ρ)(1− ρ2)
. (8)

Proof See Appendix A.1. �

In particular, from the conditional moments given in Proposition 2.1, we derive simple expressions

for a weak AR(1) representation that helps calculating the unconditional first-two moments of the

process. Two key features of the ARG0 are worth noticing. First, the time-varying conditional

variance is proportional to the conditional mean and, thus, it linearly shrinks with the level of Xt.

This implies that, in a low-level environment, the ARG0 process shows low conditional volatility, a

typical feature of interest-rates during zero lower bound periods (see Filipovic, Larsson, and Trolle

(2014)). Note also that the conditional variance of the ARG0 process is bounded from below by

2µ2α when Xt reaches zero. Second, the closed-from availability of the first-two conditional and

unconditional moments implies that simple estimation procedures can be used such as the gener-

alized method of moments, or pseudo-maximum likelihood techniques.

We concentrate now on conditional probabilities of an ARG0 process to reach zero, to stay at zero

for more than a certain number of periods, or to lift-off in exactly h periods. To investigate this

sojourn in state zero and the associated lift-off probability, the following lemma proves useful.

Lemma 2.1 Let Z be a random variable valued in R+ and ϕZ(u) is its Laplace transform. Then,

we have:

PZ{0} = lim
u→−∞

ϕZ(u) . (9)

Proof See Appendix A.2. �
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This Lemma makes the computation of the conditional probabilities of hitting zero very simple.

The main formulas are presented in the following proposition.

Proposition 2.2 Let (Xt) be an ARG0(α, β, µ) process and let us denote by ϕt,h(u1, . . . , uh) =

Et[exp (u1Xt+1 + . . .+ uhXt+h)] its multi-horizon conditional Laplace transform. Then, the fol-

lowing properties hold:

(i) P(Xt+h = 0 |Xt) = lim
u→−∞

ϕt,h(0, . . . , 0, u)

= exp

{
−(1− ρ)

[
ρh

µ(1− ρh)
Xt + α

h−1∑
k=0

ρk

1− ρk+1

]}
,

(ii) P
[
Xt+1 = 0, . . . , Xt+h = 0

∣∣Xt

]
= lim
u→−∞

ϕt,h(u, . . . , u)

= exp(−αh− β Xt) ,

(iii) P
[
Xt+1 = 0, . . . , Xt+h = 0, Xt+h+1 > 0

∣∣Xt)
]

= exp [−αh− β Xt] [1− exp(−α)] .

Proof See Appendix A.2. �

Corollary 2.2.1 If Xt = 0, the probability to stay in state 0 for the next (h− 1) periods only is

(1− p)ph−1 with p = exp(−α), and the average sojourn time in zero is given by:

(1− p)
+∞∑
h=1

hph−1 =
1

1− p
= [1− exp(−α)]−1 .

When α = 0, this average sojourn time is +∞ and the zero lower bound becomes an absorbing

state.

Proposition 2.2 is key for calculating lift-off probabilities in economic applications. Corollary 2.2.1

stresses the role of the α parameter: the average sojourn time in zero is entirely controlled by α

for univariate ARG0 processes. From an economic point of view, if the short-term interest rate is

modeled by an ARG0 process, α quantifies the average persistence of zero lower bound regimes.

2.3 The Extended ARGν(α, β, µ) process

The ARG0(α, β, µ) process described in the previous section and the ARGν(β, µ) process of

Gourieroux and Jasiak (2006) are nested in a general class of Extended ARGν(α, β, µ) processes

characterized by a degree of freedom parameter ν ≥ 0 and a parameter α ≥ 0. Combining the

definitions of Sections 2.1 and 2.2, we obtain the following:

Definition 2.3 The univariate random process (Xt) is an Extended ARGν(α, β, µ) process of order

one if the conditional distribution of Xt+1, given Xt = (Xt, Xt−1, . . .), is a non-centered Gamma

distribution such that:

(Xt+1|Xt) ∼ γν(α+ βXt, µ) , for α ≥ 0, ν ≥ 0, µ > 0, β > 0 .

8
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The conditional probability density function f (Xt+1 |Xt; ν, α, β, µ) and the conditional Laplace

transform ϕX,t(u ; ν, α, β, µ) of the Extended ARGν(α, β, µ) process are respectively given by:

f (Xt+1 |Xt; ν, α, β, µ) =
+∞∑
z=1

[
exp(−Xt+1/µ)Xν+z−1

t+1

Γ(ν + z)µν+z
× exp[−(α+ β Xt)] (α+ β Xt)z

z !

]
1{Xt+1>0}

+ exp(−α− β Xt)1{Xt+1=0, ν=0} ,

ϕX,t(u ; ν, α, β, µ) := E
[
exp (uXt+1) |Xt

]
= exp

[
uµ

1− uµ
β Xt + α

uµ

1− uµ
− ν log(1− uµ)

]
, for u <

1
µ
. (10)

Note that the difference with the ARG0 process, in terms of conditional Laplace transform, is

the additional term [−ν log(1− uµ)] in the exponential. However, a process with Extended ARG

dynamics and ν > 0 does not experience prolonged periods of zero. In line with Proposition 2.1,

and following the same steps as in Appendix A.1, we derive the conditional and unconditional first

two moments of an Extended ARG process.

Proposition 2.3 Let (Xt) be an Extended ARGν(α, β, µ) process and ρ := βµ. The conditional

mean and variance of Xt+1 are respectively given by:

Et(Xt+1) = µ (ν + α) + ρXt and Vt(Xt+1) = µ2(ν + 2α) + 2µρXt . (11)

Corollary 2.3.1 (Xt) is stationary if and only if ρ < 1 and, in this case, its unconditional mean

and variance are respectively given by:

E(Xt) =
(α+ ν)µ

1− ρ
and V(Xt) =

2αµ2 + µ2ν(1 + ρ)
(1− ρ)(1− ρ2)

.

Setting ν = 0, we get the ARG0(α, β, µ) family presented in Section 2.1 and, assuming α = 0

with ν > 0, we obtain the classical ARGν(β, µ) family. It is also worth noting from relation (10)

that, using the extension to random coefficients models, in particular regime-switching models (see

Gourieroux, Monfort, Pegoraro, and Renne (2014)), it would be possible to make the parameters

α and ν exogenously random and affine, or linearly dependent on Xt, while staying in the class of

affine processes for the augmented process.

In the following sections, we use the previous univariate distributions to construct our multivariate

non-negative affine term-structure model where the state vector is composed (under both the

risk-neutral and historical probability) of conditionally independent factors with Gamma-zero and

Extended Gamma distributions. This assumption of conditional independence characterizing the

so-called Vector Autoregressive Gamma process (VARG, say) makes the zero-coupon bond pricing

model specification simple while guaranteeing at the same time enough flexibility to match relevant

ZLB-linked interest rates stylized facts (see Section 4).10

10A general specification of the VARG process with conditional dependence is proposed in Monfort, Pegoraro,
Renne, and Roussellet (2014).
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3 The Non-Negative Affine Term Structure Model

3.1 The VARG risk-neutral state dynamics and the affine yield curve

formula

In this section we introduce the multivariate non-negative affine term-structure model (NATSM)

by directly specifying the risk-neutral (Q) dynamics of the n-dimensional latent state vector Xt =(
X

(1)′

t , X
(2)′

t

)′
, where dim

(
X

(1)
t

)
= n1, dim

(
X

(2)
t

)
= n2, and n = n1 + n2. We also denote by

rt the unobservable short-term rate between t and t + 1, known at date t. More specifically, we

assume that the risk-neutral dynamics of Xt is a Vector ARG (or VARG) process.

Assumption 1 The risk-neutral distribution of Xt+1, conditionally on Xt, is given by the product

of the following conditional distributions:

(Xj,t+1 |Xt)
Q∼ γνj

(
αQ
j + βQ′

j Xt, µ
Q
j

)
, j ∈ {1, . . . , n} , (12)

where νj = 0 for any j ∈ {1, . . . , n1}, while νj ≥ 0 if j ∈ {n1 + 1, . . . , n}; αQ
j ≥ 0, µQ

j > 0 and βQ
j

is an n-dimensional vector of positive components.

In other words, conditionally on Xt, the n1 components of X(1)
t+1 follow independent Gamma-zero

distributions, while the n2 components of X(2)
t+1 follow independent Non-central Gamma distribu-

tions.

Given the conditional (on Xt) independence between the scalar components in Xt+1, the risk-

neutral conditional Laplace transform of Xt+1 given Xt is immediately obtained:

Proposition 3.1 The risk-neutral Laplace transform of Xt+1, conditionally on Xt, is given by:

ϕQ
t (u) = EQ

exp

 n∑
j=1

Xj,t+1

 ∣∣∣∣Xt

 = exp

 n∑
j=1

aQ
j (uj)′Xt + bQ

j (uj)

 (13)

where, for any j ∈ {1, . . . , n}, we have:

aQ
j (uj) =

uj µ
Q
j

1− uj µQ
j

βQ
j and bQ

j (uj) =
uj µ

Q
j

1− uj µQ
j

αQ
j − νj log(1− uj µ

Q
j ) . (14)

The process (Xt) is therefore a discrete-time affine (Car(1)) process.

Corollary 3.1.1 The process (Xt) is Q-stationary if and only if, for all j ∈ {1, . . . , n}, we have

ρQ
j = βQ

j,j µ
Q
j < 1.

Proof See Monfort, Pegoraro, Renne, and Roussellet (2014). �

Assumption 2 The nominal short rate process (rt) is given by the linear combination of the first

10
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n1 components of Xt only, that is:

rt =
n1∑
j=1

δjXj,t = δ′Xt , (15)

where δ = [(δj)′j={1,...,n1}, 0n2 ]′ has the first n1 entries strictly positive, the remaining ones being

equal to zero.11

It is straightforward to see that the short-term interest rate still possesses the zero-point mass

property given that it is a linear combination of conditionally independent variables following

Gamma-zero distributions. Besides, observe that a non-zero short rate lower bound is allowed

(as, for instance, in Priebsch (2013)) by simply adding rmin 6= 0 (say) on the right hand side of

Equation (15).

In matrix form, the conditional Laplace transform presented in Proposition 3.1, can be written as:

ϕQ
t (u) = exp

[
ãQ(u)′Xt + b̃Q(u)

]
,

where:

ãQ(u) = βQ
(

u� µQ

1− u� µQ

)
b̃Q(u) = αQ′

(
u� µQ

1− u� µQ

)
− ν′ log

(
1− u� µQ)

µQ = (µQ
1 , . . . , µ

Q
n)′ , βQ = (βQ

1 , . . . , β
Q
n ) ,

αQ = (αQ
1 , . . . , α

Q
n)′ , ν = (0, . . . , 0, νn1+1, . . . , νn)′ ,

and where � denotes the element-by-element product and where, with abuse of notations, the

division and log operators work element-by-element when applied to vectors.

Given the exponential-affine form of the risk-neutral conditional Laplace transform of (Xt), it is

easy to obtain the following explicit zero-coupon bond pricing formula (see Appendix A.3 for a

proof):

Proposition 3.2 If the n-dimensional state vector (Xt) has a risk-neutral dynamics defined by

Equation (13) and if the short-term interest rate is defined as in Assumption 2, then the price at

date t of the zero-coupon bond with residual maturity h, denoted by Pt(h), is given by:

Pt(h) = exp
(
A

′

hXt +Bh

)
, (16)

11Note that δj and µj cannot be both identified. In the application, we impose that µQ
j = 1 for all j to ensure

identification constraints.

11
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where Ah and Bh satisfy the following recursive equations:

Ah = −δ + ãQ(Ah−1)

= −δ + βQ
(

Ah−1 � µQ

1−Ah−1 � µQ

)
(17)

Bh = Bh−1 + b̃Q(Ah−1)

= Bh−1 + αQ′
(

Ah−1 � µQ

1−Ah−1 � µQ

)
− ν′ log

(
1−Ah−1 � µQ) , (18)

with starting conditions A0 = 0 and B0 = 0. The date t continuously-compounded yield associated

with a zero-coupon bond maturing in h periods is therefore given by the following non-negative

affine function of Xt:

Rt(h) = A
′
hXt +Bh ,

Ah = − 1
h
Ah , and Bh = − 1

h
Bh , h ≥ 1 .

(19)

The non-negativeness of our NATSM can be easily established from the usual no-arbitrage formula

Rt(h) = − 1
h log EQ

t [exp (−rt − . . .− rt−h+1)] since the short-term rate is a positive combination of

the Xi,t’s which are all positive.

3.2 The VARG historical state dynamics

We have defined the risk-neutral dynamics of Xt in Assumption 1. Let us now determine the

historical (P) dynamics of the state vector (Xt). For this, we assume that the one-period stochas-

tic discount factor is based on an exponential-affine change of probability measure
dPt,t+1

dQt,t+1
=

exp
[
θ′Xt+1 − ψQ

t (θ)
]
, where ψQ

t (u) = logϕQ
t (u) denotes the risk-neutral conditional log-Laplace

transform of (Xt), and θ = (θ1, . . . , θn)′ denotes the n-dimensional vector of market prices of risk

factors. Then, we have:

Proposition 3.3 The historical distribution of Xt+1, conditionally on Xt, is given by the product

of the conditional distributions:

(Xj,t+1 |Xt)
P∼ γνj

(
αP
j + βP′

j Xt, µ
P
j

)
, for j ∈ {1, . . . , n} , (20)

where αP
j ≥ 0, µP

j > 0, and βP
j is an n-dimensional vector of strictly positive components and the

historical Laplace transform of Xt+1, conditionally to Xt, is given by:

ϕP
t (u) = exp

 n∑
j=1

aP
j (uj)

′Xt + bP
j (uj)

 (21)

12
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where, for any j ∈ {1, . . . , n}, we have:

aP
j (uj) =

uj µ
P
j

1− uj µP
j

βP
j and bP

j (uj) =
uj µ

P
j

1− uj µP
j

αP
j − νj log(1− uj µ

P
j ) ,

with αP
j =

αQ
j

1− θj µQ
j

, βP
j =

1
1− θj µQ

j

βQ
j and µP

j =
µQ
j

1− θj µQ
j

.

(22)

Proof See Appendix A.4. �

Note that the νj ’s are the same in the risk-neutral and the historical worlds. In particular, if

νj = 0 in the risk-neutral dynamics, it is also true in the historical one, as implied by the fact

that the negligible sets must be the same in both conditional distributions in order to guarantee

the equivalence of the associated probabilities. In line with the notation adopted in the previous

section, this historical conditional Laplace transform can be represented in matrix form:

ϕP
t (u) = exp

[
ãP(u)′Xt + b̃P(u)

]
where:

ãP(u) = βP
(

u� µP

1− u� µP

)
b̃P(u) = αP′

(
u� µP

1− u� µP

)
− ν′ log

(
1− u� µP)

µP = (µP
1, . . . , µ

P
n)′ , βP = (βP

1 , . . . , β
P
n) , and αP = (αP

1, . . . , α
P
n)′ .

3.3 Lift-off Probabilities

Let us move now to the problem of investigating the sojourn in state zero of the short rate process

(rt), and the associated lift-off probability. As we have seen in the previous sections, our mul-

tivariate non-negative yield curve model has the convenient property of being affine under both

the risk-neutral and historical dynamics. Consequently, our model allows to easily compute multi-

horizon Laplace transforms in both worlds and, thus, to explicitly calculate lift-off probabilities.

Let us first remember that, given the exponential-affine nature of the conditional historical Laplace

transform of (Xt) (see relation (23)), its multi-horizon Laplace transform until t+ k is given by:

ϕP
t,k(u1, . . . , uk) = EP

[
exp

(
u

′

1Xt+1 + . . .+ u
′

kXt+k

) ∣∣∣∣Xt

]
= exp

[
A′

kXt + Bk
] (23)

where, for any i ∈ {1, . . . , k}, ui is an n-dimensional vector. The Ak and Bk loadings are obtained

13
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as the final values Ak = A(k)
k , Bk = B(k)

k of the k-step recursion:



A(k)
0 = 0 and B(k)

0 = 0 ,

A(k)
i = ãP

(
uk+1−i +A(k)

i−1

)
= βP


(
uk+1−i +A(k)

i−1

)
� µP

1−
(
uk+1−i +A(k)

i−1

)
� µP

 ,

B(k)
i = b̃P

(
uk+1−i +A(k)

i−1

)
+ B(k)

i−1

= αP′


(
uk+1−i +A(k)

i−1

)
� µP

1−
(
uk+1−i +A(k)

i−1

)
� µP

− ν′ log
[
1−

(
uk+1−i +A(k)

i−1

)
� µP

]
+ B(k)

i−1 .

(24)

Proof See Proposition 3 in Gourieroux, Monfort, Pegoraro, and Renne (2014). �

Given that the yield Rt(h) is an affine function of Xt, it is easily seen that, for any k-dimensional

vector v:

ϕ
(h)P
R,t,k(v) := ϕ

(h)P
R,t,k(v1, . . . , vk) = E [exp (v1Rt+1(h) + . . .+ vk Rt+k(h)) |Xt]

= ϕP
t,k(v1Ah, . . . , vk Ah) exp

Bh k∑
j=1

vj

 ,

(25)

where v1, . . . , vk are the scalar entries composing v. Therefore, Equation (23) can be used to

calculate the yields’ multi-horizon conditional Laplace transform. Now, in order to determine

lift-off probability formulas, let us introduce the following lemma, generalizing Lemma 2.1 to the

multivariate framework.

Lemma 3.1 If Z is an n-dimensional random variable valued in Rn+ and ϕZ(u1, . . . , un) is its

Laplace transform, we have:

PZ{0, . . . , 0} = lim
u→−∞

ϕZ(u, . . . , u) .

Proof Straightforward generalization of the proof of Lemma 2.1 using the fact that, here, Z = 0

is equivalent to e′Z = 0 (with e = (1, . . . , 1)′). �

Then, as far as the lift-off probabilities for the short rate are concerned, we have the following

proposition:

Proposition 3.4 Let us consider the short rate process (rt). The following properties hold:

(i) P [rt+k = 0 |Xt] = lim
u→−∞

ϕ
(1)P
R,t,k(0, . . . , 0, u) ;

(ii) P [rt+1 = 0, . . . , rt+k = 0 |Xt] = lim
u→−∞

ϕ
(1)P
R,t,k(u, . . . , u) = pr,t,k (say) ;

(iii) P [rt+1 = 0, . . . , rt+k−1 = 0, rt+k > 0 |Xt] = pr,t,k−1 − pr,t,k ,

where pr,t,0 = 1.
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The last relation gives the distribution of the first lift-off date. The average sojourn time in state

zero is then given by:

∞∑
k=1

h (pr,t,k−1 − pr,t,k) .

In the previous proposition we have introduced explicit formulas concerning the probability of lift-

off from the zero lower bound for the short rate process. Using the formula for truncated Laplace

transform in the case of affine processes (see Duffie, Pan, and Singleton (2000) for details), it is

possible to provide some tractable formulas if the zero lower bound is replaced by a positive floor

λ > 0 (e.g. λ = 10 bps). Besides, such formulas are available for interest rates of any maturity.

More precisely:

Proposition 3.5 Let us consider the yield process (Rt(h)) of maturity h with the multi-horizon

conditional Laplace transform given in Equation (25). The following properties hold:

(i) p̃
(h)
t,k (v, λ) := P

[
v′R

(t+k)
t+1 (h) > λ |Xt

]
=

1
2

+
1
π

∫ +∞

0

Im
[
ϕ

(h)P
R,t,k(i v x) exp(−i λ x)

]
x

dx ;

(ii) P [Rt+k(h) > λ |Xt] = p̃
(h)
t,k (ek, λ) ;

(iii) P
(
Rt+k−m+1(h) +Rt+k−m+2(h) + . . .+Rt+k(h)

m
> λ |Xt

)
= p̃

(h)
t,k

(
1
m
e
(k)
k−m+1, λ

)
,

where R(t+k)
t+1 (h) = (Rt+1(h), . . . , Rt+k(h))′ and v = (v1, . . . , vk)′ ; ek is the kth column of the (k, k)

identity matrix and e(k)k−m+1 = ( 0, . . . , 0︸ ︷︷ ︸
k−m times

, 1, . . . , 1︸ ︷︷ ︸
m times

)′ denotes here a k-dimensional vector of zeros

for the first k −m components and ones for the m others.

Observe that these formulas do not determine the probability that t+ k be the first date (between

t and t + k) at which Rt+k(h) > λ. Nevertheless, this latter information can always be obtained

by simulation.

4 Empirical analysis of NATSMs

4.1 Data and stylized facts

As in Kim and Singleton (2012) and Christensen and Rudebusch (2013), we concentrate on zero-

coupon Japanese Government Bond (JGB) yields. The data are weekly (Fridays) and cover the

period from June 16, 1995 to May 30, 2014, with residual maturities of six months and one, two,

four, seven and ten years.12 A graphical representation of the yields is provided on Figure 2 and

descriptive statistics are presented in Table 1.

12The data are extracted from Bloomberg, the tickers of the time series are F10506M, F10501Y, F10502Y,
F10504Y, F10507Y, F10510Y.

15



Empirical analysis of NATSMs

[ Insert Figure 2 about here. ]

During the first years of our sample, we observe a large decrease in the yields at all maturities.

From 1996 to 2001, the 6-month yield stabilizes around 40bps whereas other maturities continue to

decrease until 1999, and experience large fluctuations after. From 2001 to 2006, yields literally en-

ter the zero-lower-bound phase, with the 6-month rate stable at virtually zero.13 As already noted

in Kim and Singleton (2012), during this period, the longer-term yields continued showing large

variance. We examine more closely this behavior by computing three different measures of uni-

variate conditional variances. For each yield in the data, we fit a Garch(1,1) and a Egarch(1,1)

models and extract the associated fitted variances. We also compute a two-month rolling-window

variance measure on daily data. All those measures are normalized in the same fashion, taking

volatilities expressed in annualized terms. Standard descriptive statistics of those proxies are pre-

sented in Table 1, and they are represented in Figure 3 (for the 2-year and 10-year maturities).

This figure illustrates that, for a given maturity, the three variance proxies are close to each other.

We hence consider them to be coherent and credible proxies of conditional volatilities of interest

rates. This proximity is confirmed by Table 2, which presents the correlations between the level of

interest rates and the conditional volatility proxies. The correlations between the three volatility

proxies exceed 0.75 for all maturities.

[ Insert Figure 3, Table 1 and Table 2 about here. ]

Besides, we observe that the behavior of conditional volatility proxies differs substantially across

maturities. For the 2-year maturity (Figure 3, top panel), the conditional volatility proxies drop

very close to zero when the 6-month rate hits the zero lower bound in 2001. For the longest

maturity, the behavior of the three proxies does not show the same decreasing trend (from 1999

to 2004) as for the 2-year yield, even though they experience large spikes in 1995, 1999, and at the

end of 2003.

The previous observations allow us to exhibit three important stylized facts: short-term yields

can stay at zero for extended periods of time; longer-term yields show substantial variations even

in a ZLB period and proxies of conditional yield variances show different profiles across the ma-

turity spectrum. A well-specified term structure model should be able to replicate these empirical

features.

4.2 Estimation Strategy

Since our term-structure model is affine, a natural estimation technique is to use the linear Kalman

filter (as in Duan and Simonato (1999) and de Jong (2000)). The model can be easily represented

in a (linear) state-space form where the measurement equations are the yield formula (Equation
13Between May 2001 and February 2006, the 6-month yield has mean and standard deviations respectively equal

to 1.37bps and 1.42bps.
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(19)) and the transition equations are given by the factor dynamics. Moreover, the affine nature

of yields forecasts and of conditional variances naturally provided by our model opens the way to

easily introduce new affine measurement equations while preserving the linear specification of the

state-space model.

Our first kind of extra measurement equations relate the 2-year and the 10-year conditional variance

proxies to their model-implied counterparts (specifically, we retain the EGARCH-based proxy). Re-

cent papers in the term structure literature have highlighted that the estimations of term-structure

models based only on yield in levels fail to satisfyingly replicate fluctuations in conditional volatil-

ities (see for instance Jacobs and Karoui (2009) and Cieslak and Povala (2015)).

Second, we augment our state-space model with measurement equations relating the model-implied

yields forecasts and survey-based ones. This approach, introduced by Kim and Orphanides (2012),

is aimed at handling the persistence problem affecting the estimation of term-structure models

(see Kozicki and Tinsley (2001a), Kozicki and Tinsley (2001b) and Jardet, Monfort, and Pegoraro

(2013)). More precisely, we use three- and twelve-month-ahead forecasts of the ten-year yield com-

ing from the Consensus Forecasts by Consensus Economics. The latter forecasts are available only

from 1999 onward and at the monthly frequency. This missing-data issue is nevertheless easily

handled with the Kalman Filter.

In summary, directly fitting survey-based forecasts and conditional variances of yields help to es-

timate historical and risk-neutral parameters of the factor Xt. This contributes to get reliable

model-implied measures of long-horizon interest-rate forecasts and of lift-off probabilities under

both measures (P and Q).

Let us now detail the chosen specifications of the factor dynamics. Preliminary estimations have

suggested that the data call for the inclusion of a single factor in the specification of the short-term

rate and four factors seem necessary to get a satisfying fit for both the levels and the conditional

variances of yields. Accordingly, we present in the following the estimation of the model where

n1 = 1 and n2 = 3. However, since there are causal relationships between the four factors, longer-

term yields are combinations of both X(1)
t and X(2)

t , which allows them to vary even if X(1)
t and the

short rate are equal to zero. Moreover, we set ν at zero for all components; that is, the conditional

distributions of the four factors are γ0.

In the following, we formally present our state-space model. Using the multivariate adaptation of

Equation (11) and the historical dynamics given in Section 3.2, the transition equations can be
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expressed as follows:

Xt+1 = µP � αP + µP � βP′
Xt︸ ︷︷ ︸

Et(Xt+1)

+
{

diag
[
µP � µP �

(
2αP + 2βP′

Xt

)]}1/2

︸ ︷︷ ︸
Vt(Xt+1)1/2

εt+1

= m+MXt + Σ1/2
t εt+1 , (26)

where (εt) is a martingale difference with zero-mean and identity variance-covariance matrix.

The measurement equations describe the relationship between three types of observable vari-

ables and their model-implied (affine) counterparts: the JGB yields described previously, the

Egarch(1,1) conditional variance proxies for the two and ten-year maturities as well as the three

and twelve months-ahead surveys of professional forecasters of the ten-year yield. Observed vari-

ables are replicated by the model up to some measurement errors, that we assume to be mutually

independent and serially uncorrelated.

The vector of observed yields is denoted by Rt = [Rt(h)]h∈H , where H = {26, 52, 104, 208, 364, 520}

is the list of available maturities in weeks. Besides, Vt = [Vt(h)]h∈{104,520} denotes the conditional

variance proxies for yield of maturity h, St = [S(q)
t (h)]h=520,q∈{12,52} denotes the survey of pro-

fessional forecasters q-periods ahead for the h-maturity yield. The measurement equations for the

yields and the survey variables are directly derived from Equation (19):

Rt(h) = Bh +A
′
hXt + σRηR,h,t, h ∈ H (27)

S
(q)
t (h) = Bh +A

′
h EP

t (Xt+q) + σ
(q)
S,h η

(q)
S,h,t

= Bh +A
′
h

(
q−1∑
i=0

M im+MqXt

)
+ σ

(q)
S,h η

(q)
S,h,t, for


h = 520,

q ∈ {13, 52}
(28)

where σR is the same for all maturities h, and ηR,h,t and η
(q)
S,h,t are i.i.d. Gaussian white noises.

Eventually, we introduce measurement equations for the volatility proxies based on the conditional

variance-covariance matrix of the latent process Xt. As already emphasized, the affine property of

the VARG distribution implies that the conditional variance-covariance matrix of Xt+1 given its

own past is affine in Xt. Specifically, the new measurement equations read:

Vt(h) = A
′
h

{
diag

[
µP � µP �

(
ν + 2αP + 2βP′

Xt

)]}
Ah + σV,h ηV,h,t

= (Ah �Ah)′
[
µP � µP �

(
ν + 2αP + 2βP′

Xt

)]
+ σV,h ηV,h,t , h ∈ {104, 520} , (29)

where ηV,h,t is a i.i.d. Gaussian white noise. We then denote the vector of observable variables

by Yt = [R′t, S
′
t, V

′
t ]′. Our vector of observables therefore contains 10 different variables (6 yields,
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2 conditional variance proxies and 2 survey-based forecast series). Stacking the transition and

measurement equations, we obtain the following state-space model representation:
Xt+1 = m+MXt + Σ1/2

t εt+1

Yt = Γ0 + Γ1Xt + Ω ηt

. (30)

where ηt = (η′R,t, η
′
S,t, η

′
V,t)
′ ∼ IIN (0, I), and Γ0 and Γ1 are based on Equations (27:29). To

estimate the model, we use pseudo-maximum likelihood where an approximation of the likelihood

function is derived from the linear Kalman filter. The latter is slightly modified to accommodate

the fact that the latent factor Xt is conditionally heteroskedastic. To do so, we run the Kalman

filter replacing the real – intractable – log-likelihood derived from conditional Gamma distributions

by that obtained from Gaussian distributions, i.e. we approximate εt+1 by a standard Gaussian

white noise. The availability of a linear state-space model makes the application of such a proce-

dure very easy. For identification purpose, we impose that µP = (1, . . . , 1)′. In addition, we take

a lower-triangular βP matrix, which implies that X(2)
t (that does not directly appear in the short-

term interest rate specification) Granger-causes X(1)
t ≡ X1,t (that does appear in the short-term

interest rate specification), but X(1)
t does not Granger-cause X(2)

t .

We estimate all risk-neutral parameters and the four market prices of risk in a single step.

Historical parameters are then deduced from the estimated parameters. We also estimate the

short-term interest rate loading δ1 (we have rt = δ1X
(1)
t ) and the measurement-noise standard

deviations of the yields. The computation of the parameters standard errors for a preliminary

fully-parameterized specification pointed to the non-statistical significativity of some parameters.

The latter were further constrained to zero and we eventually end up estimating 16 parameters in

an embedded specification. The estimation results are presented in Table 3.

4.3 Cross-sectional fit

Most of the parameter estimates are highly significantly different from zero. We observe that

most of the factors are highly persistent under both measures with the autocorrelation parameters

ρi = µiβi,i being close to one. We present a graphical representation of the filtered factors on

Figure 4.

[ Insert Table 3 about here. ]

[ Insert Figure 4 about here. ]

[ Insert Figure 5 about here. ]
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The first three factors experience long periods at zero, notably during those periods when the

6-month interest rate is at its lowest level (2001 to 2006). By contrast, Factor 4 experiences large

and persistent fluctuations during the whole sample. The interpretation of the factors is facilitated

by the analysis of the so-called factor loadings, that describe the affine relationships between the

levels and conditional variances of yields on the one hand and the factors on the other one. These

loadings are plotted in Figure 5. Panel (a) of this figure shows for instance that the first and

fourth factor are particularly important to account for the fluctuations of short-term and long-

term yields, respectively. The influence of the second factor is more evenly spread across the yield

curve. Moreover, Panel (b) suggests that changes in the second and third factors have more impor-

tant impacts on the conditional variances of medium- to long-term yields than the first two factors.

We now turn to the empirical performances of the VARG term-structure model. First, we observe

a remarkable cross-sectional fit of the JGB yields with the measurement-noise standard deviations

of yields being 4bps (see Figure 6).

[ Insert Figure 6 about here. ]

The top panel of Figure 7 presents the fit of the observable conditional variance proxies obtained

by our term structure model. This fit is satisfactory, the main periods of volatility spikes being

captured by the model. Also, these plots demonstrate the ability of the model to accommodate

different patterns in the volatilities of yields across maturities.

[ Insert Figure 7 about here. ]

The second panel of Figure 7 presents the fit obtained on the survey of professional forecasters

equations. For both the 3-month and 1-year horizons, model-implied forecasts of the 10-year yield

nicely reproduces the behavior of observed surveys. Note that the standard errors on the survey

measurement noise are parameterized with values that are commensurate with the disagreement

among forecasters, as measured by the average standard deviations of the professional forecasters

declarations (10bps).

On the whole, these results show a great flexibility of our VARG term-structure model, being able

not only to closely reproduce both the level and the conditional volatility behavior of yields across

maturities, but also to provide expectations under the historical measure that are coherent with

survey-based forecasts.

20



Lift-off probabilities

5 Lift-off probabilities

As described in previous sections, our specifications entail closed-form and semi closed-form for-

mulas for calculating the distribution of future yields. As an application, we compute the model-

implied probabilities that the short-term interest rate will remain low for a certain amount of time.

We can compute such probabilities under both P and Q measures. The discrepancies existing

between the P and Q probabilities stem from the risk aversion of investors.

We first consider the time-series behavior of such probabilities in Figure 8. Specifically, this exer-

cise is based on the probability formula of the short-rate hitting zero in k periods (rt+k = 0, see

Proposition 3.4, (i)). We apply the expression for 2- and 5-year-ahead forecasts (i.e. with k = 104

and k = 260) for both the historical and risk-neutral probabilities (resp. grey and black lines of

top panels of Figure 8). A second exercise exploits the Duffie, Pan, and Singleton (2000) formula

(see 3.5) to calculate the probabilities of the short-term interest rate being below 25 bps 2- and

5-years ahead, also for both measures (bottom panels of Figure 8).

[ Insert Figure 8 about here. ]

Let us focus first on the top-left panel, representing both Pt(rt+k = 0) and Qt(rt+k = 0) for a

2-year horizon. Until 1998, both probabilities are small and begin experiencing fluctuations from

that date on. In 1998, coherently with the low level of yields and of with the increase in yield

volatilities (see Figure 3), we obtain a dramatic increase in the probability to hit the ZLB. After

that volatility spike, the probability decreases until 2001. The ZLB period of 2001-2006 corre-

sponds to large increases in both probabilities, reaching levels highest than 75% during 2003. This

peak is coherent with a flattening of the yield curve at that date: as short rates stay low and

long-term rates begin to drop, agents expect a higher probability of the short rate staying at zero

for 2 years on. In some sense, those probabilities are a convenient way to represent information

contained in the yield curve. The probability to reach and/or stay at the ZLB increases again at

the end of the sample, amid the last financial crisis (from 2009 onwards).

We turn now to the same probabilities for a 5-year horizon (top-right plot of Figure 8). First

and unsurprisingly, the probabilities under both measures are on average lower than for the 2-year

horizon. Second, the differences between P and Q probabilities under the two measures are smaller

than for the previous horizon. This being said, the difference between P and Q probabilities are not

negligible. In particular, in 2007, in a context of rising short-term rates, Q probabilities are twice

lower than their physical counterparts. This implies that neglecting the existence of risk premia -

i.e. working in the risk-neutral world - results in a substantial underestimation of the persistence

of the ZLB regime. In other words, the short-term interest rate is expected to stay at zero for a

longer period under the physical measure. Third, it is interesting to note that over the last five

21



Lift-off probabilities

years of data, even if the observed short- to medium-term yields (up to 4 years) are fairly stable

(see Figure 6), the probability of the short-rate being at zero in years has substantially grown.

This phenomenon is consistent with the decrease in longer-term yields, which points to an increase

in the perceived expected length of the low-interest rate environment.

The bottom panels of Figure 8 help confirming the previous results. Since the threshold is now

different from 0 (25 bps), we observe higher probability values under both measures. For instance,

the historical and risk-neutral probabilities of going below 25 bps at the 2-year maturity (bottom-

left tile) are close to 1 in 2003, and fluctuates between 0.5 and 1 during the ZLB period. The

divergence between P and Q probabilities are larger than for the upper two plots: in many in-

stances, the physical probabilities of being in a low-rate environment are two to three times larger

than the risk-neutral ones.

[ Insert Figure 9 about here. ]

Figure 9 shows conditional P and Q probabilities of having low short rates over a richer spectrum

of horizons. We consider two dates, the first in late 2007 and the second at the end of the sample

(respectively black and grey lines, Figure 9). For each date, the forecast horizon varies between 6

months and 5 years. Our term-structure model generates different profiles of low-rate probabilities

with respect to the forecast horizon: for the earlier date, the horizon structure is globally increas-

ing whereas it is hump-shaped for the latest date of the sample. This illustrates the ability of the

model to generate flexible expected paths of future short-term interest rates.
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6 Conclusion

In this paper, we introduce a new class of Affine Term Structure Models able to provide at the

same time non-negative yields at any maturity and a short rate which can stay at zero for ex-

tended periods of time (the ZLB being a non-absorbing state) while the longer-term rates can

still vary. These characteristics are obtained by the introduction of a new univariate non-negative

affine process called Autoregressive Gamma-zero and its multivariate affine extension (VARG),

involving conditional distributions with zero-point masses. The affine nature of our model allows

for a great flexibility at the estimation stage. First, a Kalman-filter-based maximum likelihood

approach is allowed. Second, the estimation procedure is easily enhanced by explicitly taking into

account relevant information like interest rate survey-based forecasts, conditional yield variance

proxies. Third, explicit and quasi-explicit formulas are easily derived for calculating the physical

and risk-neutral probabilities of the short-term rate staying at –or close to– zero at different fore-

cast horizons.

We assess the model performances with an application to Japanese government bond yields. Our

four-latent-factors VARG term-structure model is able to fit both yield levels and conditional

volatilities of yields. We also compute time-varying probabilities of being at the ZLB in the future

under the historical and risk-neutral measures. Our results show that the differences between such

physical and risk-neutral probabilities can be substantial.
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A Appendix

A.1 Conditional moments of the ARG0(α, β, µ) process

The conditional cumulant-generating function is ψt(u) = log(ϕt(u)) =
uµ

1− uµ
β Xt +

uµ

1− uµ
α.

Deriving this function with respect to u gives us the conditional expectation and variance of Xt+1

given Xt:

d

du
ψt(0) =

ρ(1− uµ) + µ(uρ)
(1− uµ)2

Xt +
µα(1− uµ) + µ(uµα)

(1− uµ)2

∣∣∣∣∣
u=0

=
ρ

(1− uµ)2
Xt +

µα

(1− uµ)2

∣∣∣∣∣
u=0

= αµ+ ρXt

d

du2
ψt(0) =

2µρ
(1− uµ)3

Xt +
2µ2α

(1− uµ)3

∣∣∣∣∣
u=0

= 2µ2α+ 2µρXt

Let us introduce now the following notations: m1,t = E(Xt) and m2,t = V(Xt). It easily seen that

these unconditional moments are defined by the following system of difference equations:

m1,t = ρm1,t−1 + αµ

m2,t = 2µ2α+ 2µρm1,t−1 + ρ2m2,t−1

that can be represented in matrix form as: m1,t

m2,t

 =

 ρ 0

2µρ ρ2


 m1,t−1

m2,t−1

+

 µα

2µ2α

 . (31)

This system admits a stationary solution if and only if ρ < 1, and it is given by:

 m1

m2

 =


αµ

1− ρ
2αµ2

(1− ρ)(1− ρ2)

 . (32)

m1 and m2 are therefore the marginal mean and marginal variance of the stationary ARG0(α, β, µ)

process.
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A.2 Sojourn time and lift-off probability of the ARG0(α, β, µ) process

Proof of Lemma 2.1

ϕX(u) =
∫

R+
exp(ux) dPX(x) = PX{0}+

∫
x>0

exp(ux) dPX(x)

Since x > 0, exp(ux)→ 0 when u→ −∞, and, using Lebesgue theorem, the integral tends towards

0. �

Proof of Proposition 2.2

(i) Let us consider an ARG0(α, β, µ) process Xt and let us study, first, the limit of:

E [exp(uXt+h) |Xt] = exp

{
a◦h(u)Xt +

h−1∑
k=0

b[a◦k(u)]

}
,

when u→ −∞, in order to calculate P(Xt+h = 0 |Xt). It can be shown recursively that:

a◦h(u) =
ρhu

1− uµ
[

1− ρh

1− ρ

]
h−1∑
k=0

b[a◦k(u)] = (1− ρ)αuµ
h−1∑
k=0

ρk

1− ρ− uµ+ uµρk+1
,

and, when u→ −∞, we have:

P(Xt+h = 0 |Xt) = exp

− ρhXt

µ

(
1− ρh

1− ρ

) − (1− ρ)α
h−1∑
k=0

ρk

1− ρk+1


= exp

{
−(1− ρ)

[
ρhXt

µ (1− ρh)
+ α

h−1∑
k=0

ρk

1− ρk+1

]}
,

(33)

and the result is proved. �

(ii) From Definition 2.2 we know that, when Xt follows an ARG0(α, β, µ) process, P(Xt+1 =

0 |Xt) = exp(−α− β Xt). Then, if we denote by fh(Xt) = P(Xt+h = 0, . . . , Xt+1 = 0 |Xt), we can

always write:

fh(Xt) = P(Xt+h = 0, . . . , Xt+1 = 0 |Xt)

= P(Xt+h = 0 |Xt+h−1 = 0, . . . , Xt+1 = 0;Xt) fh−1(Xt)

= P(Xt+h = 0 |Xt+h−1 = 0) fh−1(Xt)

and the result is easily proved by recursion. �
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(iii)

P(Xt+h > 0, Xt+h−1 = 0, . . . , Xt+1 = 0 |Xt)

= P(Xt+h > 0 |Xt+h−1 = 0, . . . , Xt+1 = 0;Xt) P(Xt+h−1 = 0, . . . , Xt+1 = 0 |Xt)

= [1− P(Xt+h = 0 |Xt+h−1 = 0)] exp [−α(h− 1)− β Xt]

= [1− exp(−α)] exp [−α(h− 1)− β Xt] .

A.3 Risk-neutral conditional Laplace transform and yield-to-maturity

formula

Proof of Proposition 3.2

Given that, from Assumption 2, we have rt = δ′Xt, where the first n1 components are different

from zero and the remaining ones are equal to zero, we can write:

Pt(h) = exp
(
Ah +B

′

hXt

)
= EQ

t

[
exp(−rt) exp

(
Ah−1 +B

′

h−1Xt+1

)]
= exp (−rt +Ah−1) EQ

t

[
exp

(
B

′

h−1Xt+1

)]
= exp

Ah−1 +
n∑
j=1

bQ
j (Bj,h−1) +

 n∑
j=1

aQ
j (Bj,h−1)− δ

′Xt


and the result follows by identification. �

A.4 Historical conditional Laplace transform of the state vector

First of all, the following result holds:

Proposition A.1 Let us consider a scalar Extended ARGν(α, β, µ) process (Xt) with conditional

log-Laplace transform ψt(u) =
ρu

1− uµ
Xt +

uµ

1− uµ
α − ν log(1 − uµ), with ρ = β µ. The asso-

ciated conditional Esscher transform, with parameter θ ∈ R, generates the family of probability

distributions characterized by the following conditional log-Laplace transform:

ψ∗t (u) =
uρ∗

1− uµ∗
Xt +

uµ∗

1− uµ∗
α∗ − ν log(1− uµ∗) , (34)

which is the log-Laplace transform of an EARGν(α∗, β∗, µ∗) process with

ρ∗ =
ρ

(1− θµ)2
, µ∗ =

µ

1− θµ
, α∗ =

α

1− θµ
,

β∗ :=
ρ∗

µ∗
=

ρ

µ(1− θµ)
=

β

1− θµ
.

Proof of Proposition 3.3

If we consider our change of probability measure
dPt,t+1

dQt,t+1
= exp

[
θ′X̃t+1 − ψQ

t (θ)
]
, where Pt,t+1 is
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the conditionalEsscher transform of Qt,t+1 associated with θ, we have ψP
j,t(uj) = ψQ

j,t(uj + θj) −

ψQ
j,t(θj) for any j ∈ {1, . . . , n}, and applying Proposition A.1, Proposition 3.3 is easily proved. �
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Table 1: Mean and standard deviations of yields and volatility proxies

Maturity 6m 1y 2y 4y 7y 10y

Mean

Yields 0.2142 0.2581 0.3811 0.7091 1.2025 1.5850

Garch(1,1) 0.0019 0.0020 0.0029 0.0040 0.0052 0.0047

Egarch(1,1) 0.0020 0.0021 0.0030 0.0042 0.0052 0.0046

rolling-window 0.0022 0.0023 0.0028 0.0040 0.0055 0.0051

Std.

Yields 0.2082 0.2440 0.3347 0.5025 0.6799 0.6576

Garch(1,1) 0.0017 0.0019 0.0024 0.0025 0.0024 0.0022

Egarch(1,1) 0.0017 0.0019 0.0024 0.0025 0.0021 0.0020

rolling-window 0.0021 0.0021 0.0023 0.0027 0.0029 0.0026

Notes: Yields are expressed in annualized percentage points. Garch and Egarch models are computed on weekly
data whereas the rolling-window volatility is computed on a 60-day window of daily data and converted to the
weekly frequency keeping only Fridays data. Our volatility proxies are the square roots of the estimated
conditional variance proxies; they are normalized to make them homogeneous to annualized yields. ’Mean’ and
’Std.’ respectively present sample means and standard deviations of our proxies.

Table 2: Correlation between rates and volatility proxies

Maturity 6m 1y

yield volatility yield volatility

Garch Egarch Garch Egarch

Garch 0.63 1 0.68 1

Egarch 0.68 0.96 1 0.72 0.98 1

Rw 0.58 0.75 0.76 0.65 0.88 0.89

Maturity 2y 4y

Garch 0.74 1 0.72 1

Egarch 0.78 0.97 1 0.74 0.95 1

Rw 0.70 0.92 0.92 0.67 0.90 0.90

Maturity 7y 10y

Garch 0.54 1 0.31 1

Egarch 0.56 0.95 1 0.35 0.93 1

Rw 0.60 0.87 0.86 0.54 0.80 0.80

Notes: Yields are expressed in annualized percentage points. Garch and Egarch models are computed on weekly
data whereas the rolling-window volatility is computed on a 60-day window of weekly data.
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Table 3: Parameter estimates

P-parameters Q-parameters

Estimates Std. Estimates Std.

α4 3.2455 0.1118 3.2347 0.1113

β1,1 0.9663 0.0078 0.9794 0.0042

β2,2 0.9978 0.0005 0.9957 0.0006

β3,3 0.9486 0.0044 0.9705 0.0023

β4,4 0.9967 0.0005 0.9933 0.0003

β2,1 0.0308 0.0041 0.0308 0.0041

β3,2 0.1094 0.0059 0.1120 0.0061

β4,3 3.88·10−4 2.28·10−5 3.87·10−4 2.27·10−5

µ1 1 – 1.0135 0.0040

µ2 1 – 0.9980 0.0005

µ3 1 – 1.0231 0.0023

µ4 1 – 0.9967 0.0003

Other Parameters

δ1 0.0030 0.0003

θ1 -0.0133 0.0039 θ2 0.0020 0.0005

θ3 -0.0226 0.0022 θ4 0.0033 0.0003

σR 0.0407 0.0003

σV 3 · 10−3 − σS 0.15 −

Note: This table reports the estimated parameters of a four-factor model where rt = δ1X1,t. Standard deviations
(Std.) are calculated from the outer product of the log-likelihood gradient at the estimated parameter values. The
symbol ’−’ in the standard-deviation column indicates that the parameter has been calibrated. The σV ’s are set
to twice the standard deviations of the differences between the Garch, Egarch and rolling window variance
proxies. The σS ’s are set at the in-sample mean of standard-deviations of forecasts among the professional
forecasters. σS and σR are expressed in percentage points. Last, we impose that the unconditional mean of the
short-term interest rate is equal to 100bps.
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Figure 2: Japanese yields data
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Notes: Yields are weekly data from June 16, 1995 to May 30, 2014. Yields are expressed in annualized percentage
points figures, with maturity from 6 months (darkest line) to 10 years (lightest line).

Figure 3: Conditional volatility proxies
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Notes: Top and bottom panels respectively present the volatility proxies for the 2-year and the 10-year yields.
Garch and Egarch conditional volatility models are computed on weekly yield changes whereas the
rolling-window volatility is computed on a 2-month window of daily data. We take the square-root of estimated
proxies of conditional variance and obtain our conditional volatility proxies. We normalize them to be comparable
to annualized yields. We take estimated proxies and normalize them to be comparable to annualized yields.
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Figure 4: Estimated Factors
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Notes: Factors are filtered estimates from the linear Kalman filter on the full sample (June 1995 to May 2014).
The short-term rate rt is equal to δ1X1,t. For all j > i factor Xj,t Granger-causes factor Xi,t.
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Figure 5: Estimated Factors
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(b) Factor loadings of conditional variances
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Notes: This figure displays the factor loadings of the levels (Panel (a)) and the conditional variances (Panel (b)) of
yields. These levels and variances are affine in factors Xt. Panel (a) relate to Equation (27) and Panel (b) to
Equation (29). The loadings are divided by the sample standard deviations of the estimated factors, that is, using
the notations of Equation (30), the plotted loadings are of the form Γ1,i,j/

p
V ar(Xj,t), where Γ1,i,j is the entry

{i, j} of matrix Γ1.
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Figure 6: Observed and model-implied yields
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Notes: Yields are observed at the weekly frequency from June 16, 1995 to May 30, 2014. Yields are expressed in
annualized percentage points, with maturities from 6 months to 10 years. The black solid lines are the observed
yields and the grey dashed lines are the model-implied (or fitted) yields using the term structure framework of
Section 3 with 4 factors (n1 = 1 and n2 = 3).
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Figure 7: Fitted conditional variance proxies and surveys
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Notes: The top panel presents the two conditional variance proxies Vt(h) estimated with an Egarch(1,1) model
on 2- and 10-year yields (left and right tiles) of weekly data from June 30, 1995 to May 30, 2014. The black solid
lines are the observed variance proxies and the grey dotted lines are the model-implied (or fitted) equivalent. The
bottom panel presents the survey of professional forecasters for the 10-year yield, 3- and 12-months ahead.
Survey-based data are available at the monthly frequency from 1999 to the end of the sample. The black dots
correspond to the observed data, and the grey solid lines are the fitted equivalent.
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Figure 8: Time-series of ZLB probabilities: Pt(rt+k 6 λ) and Qt(rt+k 6 λ)
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Notes: Probabilities are computed with weekly data from June 16, 1995 to May 30, 2014. The top panels present
the probabilities of the short-rate hitting zero in two years (top-left panel) and 5 years (top-right panel). On
bottom panels, we represent the probabilities of the short-rate being below 25 bps in 2 years (bottom-left panel)
and 5 years (bottom-right panel). Black solid lines are the risk-neutral probabilities whereas grey dashed lines are
the historical ones; grey-shaded areas are the difference between the two probabilities.

Figure 9: Horizon structure of ZLB probabilities: Pt(rt+k 6 λ) and Qt(rt+k 6 λ).

lambda = 0 lambda = 25 bps

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 1 2 3 4 5
Forecast horizon

P
ro

ba
bi

lit
ie

s

2007−11−30 2014−05−30 Q probability P probability

Notes: X axis is the horizon k of the short rate rt+k being exactly 0 (left tile), or below 25 bps (right tile). Black
and grey curves distinguish the date at which these probabilities are evaluated, and respectively correspond to
November 30, 2007 and May 30, 2014. Solid and dashed lines represent respectively to Q and P-probabilities.
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