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Abstract

This paper presents a simple reformulation of the restricted Cieslak
and Povala (2010) return-predicting factor which retains by construction
exactly the same (impressive) explanatory power as the original one, but
affords an alternative and attractive interpretation. What determines the
future returns, the new factor shows, is a function of the distance of the
yield-curve level and the slope not from a fixed reference level, but from
a conditional one, determined by a function of the long-term inflation.

The decomposition also allows a clear attribution of the predictive
power of the Cieslak and Povala factor between the conditional level and
slope deviations.

Finally, the new reformulation shows that once the conditionality is
taken into account, level deviations are important predictors of excess
returns. (Hardly any predictability was found in earlier studies for the
unconditional level.)

1 Background1

Before the work by Cochrane and Piazzesi (2004, 2008), the conventional wisdom
about bond excess returns was that the time-varying risk premium should be
related to the slope of the yield curve, or some of its proxies. See, eg, Fama and
Bliss (1987), Campbell and Shiller (1991).

In their well-known 2004 paper, Cochrane and Piazzesi (2004) showed that
five forward rates, arranged in the shape of a ‘tent’, provide a more powerful
return-predicting factor. It has been shown that the precise tent shape is not
really essential (see Rebonato (2014)), but the finding that as many yield-curve-
based factors as five have a greater predictive power than the slope (however
defined), has been confirmed by several studies (see, eg, Hellerstein (2011),
Adrian Moench and Crump (2013)).

1 It is a pleasure to acknowledge the contribution provided by Dr Pottinton with discussions
and calculations.
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In a parallel strand of work, Ludvigson and Ng (2009) show that yield-curve
variables do not fully span the uncertainty in the risk premium, and that adding
some skillfully constructed macroeconomic variables significantly increases the
predictive power of yield-curve-only-based return-predicting factors. Their con-
clusions are that ‘by rendering most popular predictors insignificant, our fore-
casting factor aggregates a variety of macro-finance risks into a single quantity’.

Cieslak and Povala (2010) then presented an approach (briefly described in
Section 2) that attempts to combine the yield-curve-based return-predicting-
factors (such as the tent or the slope), and the macroeconomic predictors (such
as the linear combinations of economic indicators in Ludvigson and Ng (2009).
They describe the dynamics of the yield curve in terms of two cycles of very
different frequencies, and produce an intuitively appealing and financially moti-
vated return-predicting-factor that mixes yield-curve-based and macroeconomic
factors and that performs significantly better than the Cochrane tent, and even
better than the combination of the Cochrane tent and the Ludvigson and Ng
factors.

In this paper we present a very simple reformulation of the restricted version
of the Cieslak and Povala return-predicting factor. This formulation affords
a very natural — and, we find, illuminating — alternative interpretation, and
qualifies some well-known findings, such as the supposedly little explanatory
power of the level of yields.

The simple insight our interpretation affords it that it is not the absolute
(unconditional) slope or the level that matter in order to assess the magnitude
of the expected excess return, but where the slope and the level of the yield
curve stand with respect to where they ‘should be’ — where ‘should be’ refers to
the state-dependent values determined by the macroeconomic quantity (a long-
term proxy for inflation) that controls the low-frequency behaviour of the yield
curve. So, the decomposition shows clearly that it is the conditional values of
level and slope that matter, not their absolute values.

Since the conditioning depends on a macroeconomic variable (in the case
of the Cieslak and Povala model on a proxy for the long-term inflation), the
interpretation is consistent with the Ludvigson and Ng observation that yield-
curve variables by themselves do not contain all the available information about
excess returns, and helps achieving the Cieslak and Povala’s goal of combining
the two predictive strands.

Our simple decomposition also allows us to answer the question: is it the
deviation of the slope or of the level from where they ‘should be’ that better ex-
plains excess returns? We find that both the ‘conditional distance’ of level and
slope from their long-term-inflation prediction are important, with the level de-
viation explaining excess returns more at the short end, and the slope deviation
at the long end. This should be contrasted with traditional findings that the
unconditional level has very little (if any) explanatory power for excess returns.

The paper is organized as follows.
To help the reader following the argument and to establish the notation,

we first give in Section 2 a very brief summary of those results in Cieslak and
Povala necessary for our analysis. We give special emphasis to the restricted
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version of their return-predicting factor in Section 3. Then in Section 4 we
present our equivalent decomposition and provide its interpretation. Finally,
we carry out the attribution analysis mentioned above in Section 5. We present
our conclusions in Section 6.

2 The Approach by Cieslak and Povala

Cieslak and Povala (2010) start from the definition of yields as the P-measure
(real-world) expectation of the future path of the short rate plus a risk premium
component. In discrete time this means:

y
(n)
t =

1

n
EP

�
n−1�

i=0

rt+i

�

� �� �
expectation

+ rpy
(n)
t� �� �

risk premium

(1)

In keeping with their two-frequency description of the economy, the Authors
then posit that the short rate should evolve as the sum of a highly-persistent
(actually, unit-root) component, τ t, and a quickly-mean-reverting AR(1) com-
ponent, xt, with autoregression coefficient φx:

rt = ρ0 +

two factors differing in persistence� �� �
ρττ t����

unit-root part

+ ρxxt���� (2)

Given the value of the short rate at time t, one can easily write the expression
both for the value of the short rate i periods ahead:

rt+i = ρ0 + ρττ t+i + ρxxt+i (3)

and for the quickly-mean-reverting part

xt+1 = µx + φxxt + σxǫ
x
t+1. (4)

By iterating and by direct substitution into Equation (1) one gets

y
(n)
t = b

(n)
0 + b(n)τ τ t + b

(n)
x xt� �� �

expectation

+ rpy
(n)
t� �� �

risk premium

(5)

y
(n)
t = b

(n)
0 + b(n)τ τ t� �� �

persistent component

+ b(n)x xt + rpy
(n)
t� �� �

transitory component

(6)

with
b(n)τ = ρτ (7)

and

b(n)x =
1

n
ρx
φnx − 1

φx − 1
. (8)
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Cieslak and Povala therefore define as the maturity-dependent cycle the quantity
�ct (n), given by

�c(n)t ≡ b(n)x xt + rpy
(n)
t . (9)

It is important to note that the contributions to the cycle from the risk premium
and the expectation components vary with maturity. So, for instance, the risk
premium for n = 1 is, of course, 0, and the cycles purely captures changes in
short-rate expectations. However, as the maturity increase, because of its fast

mean-reversion, the contribution from the AR(1) process, ie, the coefficient b
(n)
x ,

becomes smaller and smaller, expectations become less and less important and
risk premia contribute more and more.

As for the persistent component, it is linked by Cieslak and Povala to the
time series of inflation, CPIt, which is assumed to follow

CPIt = τ
CPI
t +CPIct , (10)

where CPIct denotes a cyclical contribution to inflation, and τCPIt a persistent
(no-mean-reversion) inflation time-varying endpoint:

τCPIt = τCPIt−1 + ǫ
τ
t . (11)

A proxy for this persistent endpoint, τCPIt , can be created as weighted moving
average of past inflation data:

τCPIt =

	t−1
i=0 v

iCPIt−i	t−1
i=0 v

i
. (12)

In Equation (12) the weight parameter, v, is set to 0.9872 , and the sum runs
over 120 monthly observations.3

Operationally, the cycles are therefore obtained as follows. First yields are
regressed against the contemporaneous persistent component calculated as per
Equation (12):

y
(n)
t = b

(n)
0 + b(n)τ τ t + ǫ

(n)
t . (13)

Looking at Equations (6) and (9), it is clear that what has been ‘left over’ in

the regression (13) is just the cycle, c
(n)
t . Therefore the cycle is calculated as

the ‘residual’4

c
(n)
t = y

(n)
t −



b
(n)
0 + b(n)τ τ t

�
=

2 It can be shown that the estimator (12) is optimal and maximally robust when one wants
to estimate a parameter, but is uncertain about the true data-generating process, and wants
to make sure that the estimator is robust across different models. (See, in this respect, Evans,
Honkapohja and Williams (2010) for a precise discussion, or Evans and Honkapohja (2009)
for a more general account.)

3We appended a superscipt ‘CPI’ to indicate the the persistent component was estimated
using inflation data. A parallel treatment can be carried out using as macroeconomic variable
the savings rate. Cieslak and Povala show that the final results are little changed by the
precise choice of the persistent variable.

4To be precise, one should distinguish between the ‘true’ (and unknown) coefficients a and

b in the regression y = a + bx + ǫ, and their estimated counterparts, �a and �b. To keep the
notation light we will not make this distinction.
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y
(n)
t −

�
b
(n)
0 + b(n)τ

�	t−1
i=0 v

iCPIt−i	t−1
i=0 v

i

�
. (14)

Cycles are important because, in the Authors’ model, they are highly sig-
nificant predictors of yield changes. To show that this is indeed the case, the
Authors carry another regression, this time using as left-hand variable the time-

t change in the n-maturity yield, ∆y
(n)
t , against the previous-time values of the

cycle, c
(n)
t−∆t, of the persistent component, τ t−∆t, and of the the yield change,

∆y
(n)
t−∆t,

∆y
(n)
t = a0 + acc

(n)
t−∆t + ay∆y

(n)
t−∆t + aττ t−∆t + ǫt+1. (15)

When they do so, they find that the (negative) coefficient ac associated with
the cycles is highly significant.5 It is the statistical significance of the negative
coefficient that suggests the interpretation offered by Cieslak and Povala that a
higher value of the cycle at time t−∆t is associated with a lower value for the
yield at time t, and hence to a higher excess return.

This intuition is made precise with the following analysis of excess returns.
After estimating the cycles using Equation (14), these are now ‘known quanti-
ties’. As we have seen, cycles are maturity-dependent. Six of these maturity-
dependent cycles (ie, those associated with maturities of 1, 2, 5, 7, 10 and 20
years) are then used as regressors to explain excess returns:

rx
(n)
t+1 = δ0 +

�

i=1,6

δic
(i)
t + ǫ

(n)
t+1. (16)

To establish a fair horse race against the Cochrane and Piazzesi return-predicting
factor, Cieslak and Povala also use the six forward rates of maturities of 1, 2,
5, 7, 10 and 20 years as alternative regressors. This is therefore an extended
Cochrane-Piazzesi model.

They find that in all samples ‘and across all maturities, cycles give much
stronger evidence of predictability than do forward rates’,6 a conclusion that
is not changed by choosing different maturities, or increasing the number of
forward rates. More precisely, the R2 obtained using cycles varies from 0.43 to
almost 0.60 for the whole-sample studies, to be contrasted with an R2 ranging
from (approximately) 0.20 to 0.30 when forward rates are used.

To illustrate the approach, Fig (1) shows a time series of inflation, of the
ten yields of maturities from 1 to 10 years, of the proxy for the secular inflation
(the variable τ) and of the results of the regression of the yields on the secular
inflation proxy (the curves labelled ‘predyieldn’).

The cycles (not shown) are then the differences between the jagged and
the smooth lines (ie, between the yields and their predictions by the secular
inflation).

5The regression in Equation (14) is carried out against the same-time values of the presitent
component, τ t. The predictive regression in Equation (15) links changes in yields at time t
to cyles (and changes in yields, and changes in the persitstent varibale, τ) at time t−∆t.

6page 13.
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Figure 1: A time series of inflation, of the ten yields of maturities from 1 to 10
years, of the proxy for the secular inflation (the variable τ) and of the results
of the regression of the yields on the secular inflation proxy (the curves labelled
‘predyieldn’).
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The reported R2 statistics (closely reproduced in our analysis using a dif-
ferent data source) are so impressive that they prompt an obvious question:
why does the Cieslak and Povala return-predicting factor perform so much bet-
ter than the best forward-rate-base one (taking the Cochrane-and-Piazzesi’s
extended tent as the yield-curve based benchmark to beat)?

3 The Restricted RPF

In order to answer the question as clearly as possible by focussing on the essence
of the approach, it pays to look at the Cieslak and Povala restricted cycle-based
return-predicting factor, and compare it with the Cochrane-Piazzesi restricted
factor.

The Cieslak and Povala restricted return-predicting forecasting factor,�cf , is
built as follows. They start from the definition of the maturity-dependent cycle
in Equation (9):

�c(n)t ≡ b(n)x xt + rpy
(n)
t . (17)

Recall that the ‘composition of’ (the information conveyed by) the cycle depends
on its maturity, with the cycle for n = 1 containing no information about risk

premia (because rpy
(1)
t = 0), and a lot of information about expectations. As a

consequence �c(1)t “captures variation[s] in short rate expectations (b
(1)
x xt), but

not in premia.7 [...] Therefore a natural way to decompose the transitory
variation in the yield curve into the expectations part and the premium part is
by estimating8 :

rx
(n)
t+1 = α0 + α

(n)
1 c

(1)
t + α

(n)
2 c

(n)
t + ǫ

(n)
t+1 n ≥ 2.” (18)

Next Cieslak and Povala look at the average excess returns, rxt+1, (averaged
over maturities), and use as regressors to predict the average excess returns i)

the expectation-only-related factor, c
(1)
t , and ii) the average, ct, of the maturity-

dependent cycle factors, c
(i)
t , i = 2, 3,..., n:

rxt+1 = γ0 + γ1c
(1)
t + γ2ct + ǫt+1. (19)

Their single (restricted) forecasting factor, �cf t is therefore given by:

�cf t ≡ γ0 + γ1c(1)t + γ2ct. (20)

Cieslak-and-Povala then pit their single forecasting factor against the re-
stricted single-tent factor built by Cochrane and Piazzesi. When they do so,

once again, they find that the cycle-based factor, �cf , explains a lot more than
the restricted tent factor. (The R2 coefficients they find range from a minimum
of 0.41 (2-year maturity) to a maximum of 0.56 (15-year maturity).)

7page 8.
8page 14.
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4 Interpretation of the Cieslak-Povala RPF

Let’s look in some detail at the restricted Cieslak and Povala return-predicting
factor:

rxt+1 = γ0 + γ1c
(1)
t + γ2ct + ǫ

(n)
t+1 (21)

It is important for the future discussion to note that, when the regression is
carried out on US$ data, the coefficient γ1 (ie, the loading onto the short cycle)
turns out to be significantly negative, the coefficient γ2 (ie, the loading onto the
average cycle) is significantly positive, and |γ2| > |γ1|. For reasons that will
become apparent in a few lines, we prefer to work with positive coefficients and
we introduce γ3:

γ3 = −γ1 (22)

With some foresight we also choose to write

γ2 = γ3 +∆γ (23)

with ∆γ > 0 because |γ2| > |γ1|.
With these two definitions we therefore have

rxt+1 = γ0 − γ3c
(1)
t + (γ3 +∆γ) ct + ǫ

(n)
t+1. (24)

Next, recall that we defined for the two cycles to be given by the residuals of
the regression of the 1-year yield and average yield against the slowly moving
inflation proxy, τ t:

c
(1)
t = y

(1)
t −



b
(1)
0 + b(1)τ τ t

�
(25)

and
ct = yt −



�b0 +�bττ t

�
, (26)

respectively.
Substituting these expressions into Equation (24) gives

rxt+1 =

γ3





�
yt − y

(1)
t

�

� �� �
actual slope

−



�
�b0 +�bττ t

�
−
�
b
(1)
0 + b(1)τ τ t

�

� �� �
regression-predicted slope







+

∆γ


yt� �� �
actual level

−
�
�b0 +�bττ t

�

� �� �
regression-predicted level


+

ǫ
(n)
t+1. (27)

Let’s pause on the various terms for a moment, beginning from the quantities
in curly brackets.
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The first,
�
yt − y

(1)
t

�
, is just a reasonable proxy for the observed yield-

curve slope at time t. Then the terms
�
�b0 +�bττ t

�
and

�
b
(1)
0 + b

(1)
τ τ t

�
are the

CPI-regression-based predictions of the average yield and the one-year yield,

respectively. Therefore the difference
�
�b0 +�bττ t

�
−
�
b
(1)
0 + b

(1)
τ τ t

�
is just the

regression-predicted slope. This means that the quantity in curly brackets is
the difference between the actual slope and the regression-predicted slope.

Moving to the term in square brackets that multiplies ∆γ, yt is an obvious

proxy for the level of the yield curve, and the quantity
�
�b0 +�bττ t

�
is, by defin-

ition, the regression-based prediction of the same quantity. The square bracket
in the third line of Equation (27) therefore contains the difference between the
actual yield-curve level and the level prediction by the regression. We call in the
following the distances of level and slope from their local regression-predicted
values the ‘conditional’ distances.

This simple rearrangement therefore shows that in the Cieslak and Povala re-
stricted factor there is no single ‘typical’ slope or typical ‘level’ of the yield curve:
there are instead conditional ‘typical’ levels and slopes of the yield curve asso-
ciated with different values of the slow-moving inflation proxy, τ t. Indeed, from
Equation (27) we see that, if the long-term expected inflation, τ t, is high, then

the level of the yield curve should be high — as shown by the term
�
�b0 +�bττ t

�
.

Then, if we re-write
�
�b0 +�bττ t

�
−
�
b
(1)
0 + b

(1)
τ τ t

�
as
�
�b0 − b(1)0

�
+
�
�bτ − b(1)τ

�
τ t,

and we remember that �bτ − b(1)τ is negative, we see just as easily that the re-
gression predicts that the slope should be low when the long-term inflation is
high.

This allows us to understand very clearly the Cieslak and Povala return-
predicting factor: we expected a high excess return (the return predicting factor
is high)

• when the actual slope of the yield curve is higher than what it ‘should be’
(given the regression prediction);

• when the actual level of the yield curve is higher than what it ‘should be’
(again, given the regression prediction).

This interpretation gives an interesting twist to the slope (and level) inter-
pretation and significance that has been the traditional wisdom since the study
by Fama and Bliss (1987). Taken together, the success of the Cieslak and Povala
predictions, and the interpretation just given, show that whether one can expect
to make money by engaging in the ‘carry’ trade does not depend on whether the
slope of the yield curve is higher or lower than a fixed reference level. Rather it
depends on whether it is higher or lower than the long-term-inflation-predicted
slope. And the same applies to the level — which by itself, as all statistical stud-
ies to date had shown, is either statistically insignificant or, when marginally
significant, a poor contributor to the explanation of excess returns.
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This simple decomposition explain very clearly why the Cieslak and Po-
vala return-predicting factor can perform so much better than the slope or the
Cochrane-Piazzesi factor: because it contains information about the conditional
slope and level that the yield-curve-based approaches do not have. It also gives
us a simple way to answer the question: are the level or the slope ‘deviations’
more important in explaining excess returns? We answer this question in the
next section.

5 Attribution of the Predictability

Equation (27) is an exact restatement of the Cieslak-Povala return-predictive
factor. As such, it affords exactly the same R2 as the original factor. The
decomposition below however allows for a very simple attribution study.

We first perform a bivariate regression of excess returns for investment hori-
zons from 2 to 15 years as in Equation (27).

We then perform two univariate regressions of the same excess returns, one
against the factor that multiplies γ3, the other against the factor that mul-
tiplies ∆γ. (After correcting for overlapping returns, all the coefficients were
significant.)

We report in Fig (2) the R2 statistics obtained for the bivariate regression
(curve labelled ‘R^2 Full’) and for the two univariate regressions (curve labelled
‘R^2 Slope’ and ‘R^2 Level’). The curve labelled ‘Sum Single R^2’ shows the
sum of the R2 statistics from the individual regressions.

We now see the importance of looking at the conditional level and slope. For
instance, it has been well known since the late 1980s that the absolute (uncon-
ditional) slope has a significant explanatory power for excess returns. In this
respect, therefore, the present decomposition merely qualifies and makes this
well-known result more precise. However, when it comes to the level, conven-
tional wisdom held that the level factor explains very little of excess returns.
This is no longer true if we look at the conditional level, whose stand-alone
explanatory power is similar to the stand-alone explanatory power of the con-
ditional slope, and actually dominates at the short end.

In general, we find that both the deviations of the instantaneous levels and
slopes from their respective conditional levels play an important explanatory
role. This makes intuitive sense. The actual and predicted slope are strongly
co-integrated, and so are the actual and predicted yield-curve levels. So, when
‘rates are higher than they should be’ they will, on average, come down, and
the ‘carry’ strategy will make money; and when the yield curve is ‘steeper than
it should be’, it will on average flatten, and this will also make money for the
fund-short, invest-long carry strategy.

Finally, we observe that the sum of the R2 statistics from the two separate
return predictive factors falls well short of adding up to the full explanatory
power of the bivariate regression. This suggests that the relative values of the
two conditional distances is important. Our decomposition still does not make
it obvious why this should be the case.

10



0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

2 3 4 5 6 7 8 9 10 11 12 13 14 15

R Squared for bivariate and univariate regressions

R^2 Full

R^2 Level

R^2 Slope

Sum Single R^2

Figure 2: The R2 statistics obtained for the bivariate regression (curve labelled
‘R^2 Full’) and for the two univariate regressions (curve labelled ‘R^2 Slope’
and ‘R^2 Level’) described in the text. The curve labelled ‘Sum Single R^2’
shows the sum of the R2 statistics from the individual regressions.
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6 Conclusions

We have presented a simple reformulation and decomposition of the restricted
Cieslak and Povala (2010) return-predicting factor. The new factor retains by
construction exactly the same explanatory power as the original one, but affords
an alternative and attractive interpretation: what matters for excess return, it
shows, it not whether the level or the slope of the yield curve are high or low in
absolute, but whether they are higher or lower than where the should be with
respect to where a long-term inflation proxy suggests they should be.

The decomposition also allows a clear attribution, which shows that both
the conditional deviations are important predictors of excess returns.
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