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Abstract

A conversion of standard ordinary least-squares results into inference which
is robust under endogeneity of some regressors has been put forward in Ashley
and Parmeter, Economics Letters, 137 (2015) 70-74. However, their conversion is
based on an incorrect (though by accident conservative) asymptotic approxima-
tion and entails a neglected but avoidable randomness. By a very basic example
it is illustrated why a much more sophisticated asymptotic expansion under a
stricter set of assumptions is required than used by these authors. Next, particu-
lar aspects of their consequently �awed sensitivity analysis for an empirical growth
model are replaced by results based on a proper limiting distribution for a feasi-
ble inconsistency corrected least-squares estimator. Finally we provide references
to literature where relevant asymptotic approximations have been derived which
should enable to produce similar endogeneity robust inference for more general
models and hypotheses than currently available.

1. Introduction

An attempt is made in Ashley and Parmeter (2015a), henceforth APLS, to convert

ordinary least-squares (OLS) inference such that it becomes robust in some sense with

respect to simultaneity. The methods used in APLS are basically a specialization of an

approach put forward in Ashley and Parmeter (2015b), henceforth APIV, which aims to

robustify instrumental variables (IV) inference for the situation where instruments are
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in fact endogenous. The APLS results are obtained by simply adopting in the APIV

approach the regressors as instruments.

In Kiviet (2013), henceforth KLS, we pursued similar goals as APLS by developing an

asymptotically valid inference method on the basis of inconsistent OLS results, through

achieving identi�cation by making an assumption on a nonzero moment condition, in-

stead of the habitual zero moment conditions exploited by consistent IV. APLS use a

di¤erent conversion of OLS inference than put forward in KLS, but both approaches

depart from the same starting point, namely an assessment of the limiting distribution

of an unfeasible estimator which corrects OLS for its inconsistency. In this paper we will

focus on the results in APLS and show that its asymptotic analysis is much too naive,

and that their approach unnecessarily leads to an assessment of robustness over a set of

possible degrees of endogeneity which is random instead of deterministic as in KLS.

By analyzing in all detail a very simple case we will show in Section 2 that obtaining

the required asymptotic results is much more involved than suggested in APLS, and that

feasible asymptotically valid OLS-based inference can be produced over an arbitrary

chosen range of degrees of simultaneity. However, a valid operational technique has yet

only been achieved in KLS for the case where just one regressor is endogenous. For that

particular situation we produce in Section 3 robust and asymptotically valid inference

for the growth data analyzed also in APLS. In the concluding Section 4 we put the

foregoing into perspective, and indicate some literature that seems useful for achieving

the goals of robustifying OLS and IV with respect to invalid orthogonality conditions

for models with possibly more than just one endogenous regressor.

2. Examination of a simple case

Consider the very simple linear regression model with just one regressor and zero mean

serially uncorrelated and homoskedastic disturbances, hence

y = x� + " with " � (0; �2"I); (2.1)

where both y and x are n� 1 observed data vectors. Regressor x could be endogenous,
therefore we suppose that

x = �x + �"; (2.2)

where �x = E(x) is an arbitrary nonrandom n � 1 vector. For � = 0 regressor x

is exogenous and for � 6= 0 endogenous. We make standard regularity assumptions,

involving that the unknown scalars �; � and �" are �nite, and so are all elements of �x.

Supposing �x 6= 0; we have x0x > 0; and the ordinary least-squares estimator for � is

b = x0y=x0x = � + x0"=x0x: (2.3)

We shall examine its limiting behavior for n!1:
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2.1. Preparations

From E(x0x) = �0x�x + �
2n�2" and by denoting v = "

0"� n�2" we obtain

n1=2(b� �) = (x0x=n)�1x0"=n1=2 (2.4)

= (�0x�x=n+ 2��
0
x"=n+ �

2"0"=n)�1(�0x"=n
1=2 + �"0"=n1=2)

= [E(x0x)=n+ 2��0x"=n+ �
2v=n]�1[�0x"=n

1=2 + �v=n1=2 + n1=2��2"]:

This is the ratio of two factors and each factor has three scalar terms. Some of these are

nonrandom and the others are random with zero mean. We can determine their order

(of probability). For E(x0x)=n = �0x�x=n + �
2�2" we �nd that it will be deterministic

and �nite, irrespective of the magnitude of n: This is indicated as E(x0x)=n = O(1)

or O(n0): From �0x" � (0; �2"�
0
x�x) where �

2
"�
0
x�x = O(n) we �nd �0x" = Op(n

1=2) thus

2��0x"=n = Op(n
�1=2) whereas �0x"=n

1=2 = Op(1) has a so-called �nite distribution. From

v = "0"�n�2" � (0; �n�4"); where the kurtosis � would be 2 if " where multivariate normal,
we obtain v = Op(n1=2); assuming that the regularity also includes that � is �nite. Thus,

�2v=n = Op(n
�1=2) and �v=n1=2 = Op(1); and of course n1=2��2" = O(n

1=2):

Note that in the factor of (2.4) that has to be inverted we have one O(1) term

and two Op(n�1=2) terms. Let us indicate them by c = E(x0x)=n = O(1) and d =

2��0x"=n+ �
2v=n = Op(n

�1=2) and consider the following expansion and approximation

(which uses c > 0)

(c+ d)�1 = c�1(1 + d=c)�1

= c�1(1� d=c+ d2=c2 � d3=c3 + ::::)
= c�1 � dc�2 +Op(n�1): (2.5)

Hence, this takes for granted that all the omitted terms, which are of decreasing order,

have a sum of the same order as the �rst and largest omitted term, which is d2=c3 =

Op(n
�1):

The other factor of (2.4) has two Op(1) terms and one O(n1=2): Let us indicate them

by f = �0x"=n
1=2 + �v=n1=2 = Op(1) and g = n1=2��2" = O(n

1=2): Now employing (2.5)

we obtain for (2.4)

(c+ d)�1(f + g) = (c�1 � dc�2)(f + g) +Op(n�1=2) (2.6)

= g=c+ f=c� dg=c2 +Op(n�1=2):

Since df=c2 = Op(n�1=2) it can be absorbed into the remainder term which is of the same

order, because it follows from multiplying the remainder term of (2.5) by the largest of

f and g; which is g: Note that g=c = O(n1=2) is deterministic, whereas the two terms

f=c = Op(1) and dg=c2 = Op(1) are of similar stochastic order. It is this latter term

which is not respected by APLS in their formula (7).
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Substituting (2.6) into (2.4) yields n1=2(b��)�g=c = f=c�dg=c2+Op(n�1=2):When
writing E(x0x=n) = qxx > 0 this gives

n1=2(b� � � ��2"=qxx) = [�0x"=n
1=2 + �v=n1=2]=qxx

���2"[2��0x"=n1=2 + �2v=n1=2]=q2xx +Op(n�1=2):

Also writing E(x0"=n) = qx" = ��2" and � = qx"=(�
2
"qxx)

1=2 this can be expressed as

n1=2(b� � � qx"=qxx) = (1� 2�2)q�1xx �0x"=n1=2

+�(1� �2)(�2"qxx)�1=2v=n1=2 +Op(n�1=2): (2.7)

2.2. Limiting distributions

Obviously, the expectation of the two Op(1) terms of (2.7) is zero. To �nd the variance

of their sum the third and fourth moments of the disturbances are required. Assuming

that the disturbances are normal, this gives E(v") = 0 and E(v2) = 2�4": Substituting

�0x�x=n = qxx � �2�2" = qxx � q2x"=�2" = (1 � �2)qxx; a neat expression for this variance
can be found and, under all the assumptions made, a Central Limit Theorem can be

invoked yielding the limiting distribution

n1=2(b� � � qx"=qxx)
d! N (0; (1� �2)(1� 2�2 + 2�4)�2"q�1xx ): (2.8)

APLS use in their formula (7) the same infeasible inconsistency expression qx"=qxx for

the correction of the OLS estimator. However, the naively chosen (standard) expression

�2"q
�1
xx for the variance of its limiting distribution is too conservative, as (1 � �2)(1 �

2�2 + 2�4) � 1 for j�j < 1.
In KLS it is highlighted that limiting distribution (2.8) is obtained by conditioning

on �x: In an unconditional setting (assuming �x; like "; to be random and normal, and

also independent from ") the limiting distribution of the same infeasible estimator has

a larger variance and is given by

n1=2(b� � � qx"=qxx)
d! N (0; (1� �2)�2"q�1xx ): (2.9)

For that case it has also been derived in KLS that for the feasible consistent estimator

b��; which is obtained by correcting b using an assumed value of �; one has

n1=2(b�� � �)
d! N (0; �2"q�1xx ); (2.10)

where

b�� = b� n1=2�(1� �2)�1=2se(b); with (2.11)

se(b) = s=(x0x)1=2 and s2 = (y � xb)0(y � xb)=(n� k):
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Here se(b) is just the expression for the usual OLS standard error estimate of b as pro-

duced under assumed exogeneity of x: In the present special model k = 1 but for the

asymptotic result to hold a degrees of freedom correction is irrelevant, of course. Esti-

mator b�� is consistent for �; because qx"=qxx = �(�
2
"=qxx)

1=2 whereas x0x=n is consistent

for qxx and s2=(1� �2) is a consistent estimator of �2": Note that n1=2se(b) = Op(1) and
therefore the inconsistency correction term in b�� is �nite too and vanishes only for � = 0:

One may perhaps �nd it inappropriate that estimator b�� is addressed as a feasible

estimator, whereas in practice the value of � is commonly unknown. A not unreasonable

response to that is: OLS/IV estimators are usually not labelled as unfeasible either,

whereas their underlying just identifying orthogonality conditions simply adopt the value

zero for �; for which it is equally di¢ cult or sheer impossible to �nd statistical evidence,

see Kiviet (2015).

Result (2.10) is quite remarkable, not because consistent feasible estimator b�� is found

to have (due to estimating qx"=qxx) a larger asymptotic variance than the unfeasible es-

timator b � qx"=qxx; but because this increment exactly leads to the same asymptotic
variance as b has when it is consistent. However, this equivalence only holds (uncondi-

tionally) under joint normality of x and "; it can be shown that the asymptotic variance

of b�� will be larger in case " has excess kurtosis.

2.3. Endogeneity robust OLS inference

To produce asymptotically valid inference based on (2.10) we use the asymptotic ap-

proximation b��
a� N (�; s2=[(1� �2)x0x]): Given the value of �; a con�dence interval for

� with asymptotic con�dence level (1� �)100% is given by

fb�� + z�=2s[(1� �2)x0x]�1=2; b�� + z1��=2s[(1� �2)x0x]�1=2g;

where zp denotes for 0 < p < 1 the pth quantile of the standard normal distribution.

After substitution of (2.11) this can also be expressed as

[b+ se(b)(z�=2 � n1=2�)(1� �2)�1=2; b+ se(b)(z1��=2 � n1=2�)(1� �2)�1=2]: (2.12)

Note that the interval is not symmetric around b; and that its width is equal to (z1��=2�
z�=2)(1 � �2)�1=2se(b): Hence, it will not only be wider for smaller � (as is always the
case) and for smaller n (because se(b) = Op(n�1=2)); but also for larger j�j ; and even be
in�nitely wide for j�j ! 1: The latter sheds doubts on the conclusion in APLS that they

did establish OLS inferences which were found to be robust to any degree of simultaneity.

The essential elements of the APLS approach in the context of the above sim-

ple one coe¢ cient model involves the following. Its focus is on hypothesis testing,

say H0 : � = �0 against H1 : � 6= �0 for known numerical value �0: Suppose for
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a particular data set one has found j(b� �0)=se(b)j > z1��=2; so H0 is rejected at

level �, presupposing exogeneity. Now the method seeks to establish the values �

for which H0 would still be rejected. This is pursued as follows. The set of values

for qx"; say S(qx"); is assessed (by a random search procedure) for which S(qx") =�
qx" 2 R : z�=2 < (b�qx" � �0)=se(b�qx") < z1��=2

	
; where

b�qx" = b� qx"=(x0x=n) with (2.13)

se(b�qx") = �̂qx"=(x
0x)1=2 and �̂2qx" = (y � xb

�
qx")

0(y � xb�qx")=n:

When the numerical problem to assess S(qx") has been solved, the corresponding set of
values for �̂ given by S(�̂) =

�
�̂ = qx"=[�̂

2
qx"(x

0x=n)]1=2 : qx" 2 S(qx")
	
is assessed, and

the conclusion is drawn that rejection of H0 is robust with respect to endogeneity for all

values � 2 S(�̂):
Hence, a crucial di¤erence with KLS is that a choice is made regarding qx" and

not with respect to � directly. The price for that is that APLS �nd a random set for

�; and omit to discuss the consequences of this randomness (which is not due to the

random search, but to the dependence of �̂ on �̂2qx" and on x
0x). Also, the relevant

limiting distribution for APLS is not that of b�� (which they employ), but that of b
�
qx" =

b� qx"=(x0x=n): However, comparing with (2.6), we �nd

n1=2(b�qx" � �) = n1=2[b� qx"=(x0x=n)� �]
= n1=2(x0"=n� qx")=(x0x=n)
= f=c� dg=c2 +Op(n�1=2);

thus it conforms to the limiting distribution of b � qx"=qxx given in (2.8) or (uncondi-
tionally) in (2.9). Since these have smaller asymptotic variance than b�� more powerful

APLS inference would be obtained by replacing se(b�qx") given in (2.13) by

se(b�qx") = �̂qx"f1� qx"=[�̂
2
qx"(x

0x=n)]1=2g1=2=(x0x)1=2

when invoking (2.9).

3. Empirical illustration

The methods developed in APLS have been applied to a particular empirical growth

model presented in Mankiw et al. (1992) where possible endogeneity of regressors has

not been taken into account. This model for 98 countries can be represented as yi =

�1 + �2xi2 + �3xi3 + �xi4 + "i; where yi is per capita output, xi2 is the rate of human

capital, xi3 is investment in physical capital and xi4 is the logarithm of the sum of the

population growth rate, the growth rate in technology and the depreciation rate. The
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focus in the APLS analysis is on testing �2 = 0 and �2+�3+�4 = 1 (constant returns to

scale). APLS �nd OLS results as given in their equation (8), which are slightly di¤erent

from those in Mankiw et al. (1992, p.420, Table II, �rst column). APLS perform a

sensitivity analysis for four di¤erent scenarios, which allow either xi2; or xi3 or xi4 to be

endogenous, or both xi2 and xi3 could be endogenous.

The KLS results for regression models with just one explanatory variable that may

be endogenous can also serve the situation where the model has some further exogenous

regressors, which have all been partialled out. This means that only for the �rst scenario

of APLS (xi2 endogenous) we can produce KLS results relevant for testing �2: For these

access to the observations on the regressand and regressors is not required. The OLS

coe¢ cient estimates and standard errors presented in APLS equation (8) su¢ ce. Just

for illustrative purposes we also present in Table 1 results relevant on testing �3 allowing

xi3 to be endogenous and on �4 allowing xi4 to be endogenous.

Table 1: Asymptotic 95% KLS con�dence intervals

� �2 �3 �4
-0.3 0.72 1.01 0.83 1.36 -1.32 0.37
-0.2 0.65 0.93 0.69 1.21 -1.74 -0.10
-0.1 0.58 0.86 0.56 1.08 -2.15 -0.53
0.0 0.51 0.79 0.44 0.94 -2.55 -0.95
0.1 0.44 0.72 0.30 0.82 -2.97 -1.35
0.2 0.37 0.65 0.17 0.69 -3.40 -1.76
0.3 0.29 0.58 0.02 0.55 -3.87 -2.18
0.4 0.20 0.50 -0.15 0.41 -4.40 -2.64
0.5 0.09 0.41 -0.35 0.24 -5.02 -3.17
0.6 -0.04 0.30 -0.59 0.04 -5.80 -3.79

From the con�dence intervals for particular assumed values of � we see that for � =

0:6 coe¢ cient �2 is no longer signi�cantly di¤erent from zero. However, the statement

that �2 is signi�cantly positive at level 2.5% is robust with respect to simultaneity

provided � � 0:5 (further calculations revealed that it is actually for � � 0:57). The

parallel �nding in APLS is: rmin = 0:425 at 5%. One can also conclude from the �2
results that the interval 0:09 � �2 � 0:86 has a con�dence coe¢ cient of at least 95%

(asymptotically) assuming �0:1 � � � 0:5; and so on. Also note that under possible

endogeneity of xi3 its coe¢ cient is signi�cantly positive provided � � 0:3; whereas under
endogeneity of xi4 its coe¢ cient is signi�cantly negative provided � � �0:2:

4. How to tackle more general cases?

From the above it should be clear that the KLS approach has yet been developed for only

very few special simple cases, whereas the APLS approach has �aws in its asymptotic
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underpinnings. Though, even when employing sound asymptotics, the latter will lead

to �ndings which are hard to interpret because the resulting rmin vector is random and

obtaining an asymptotic approximation to its distribution to assess its accuracy seems

far from easy. On the other hand, further development of the KLS approach seems

possible, but requires an asymptotic analysis which certainly cannot be characterized as

in APLS (just above their section 2.2) as "easy" and "straightforward", because of the

following three reasons.

First, although the unfeasible estimator (6) in APLS is clearly consistent1, it is

not self-evident that it is asymptotically normal unless one has veri�ed whether the

conditions for invoking a central limit theorem are satis�ed. Doing so reveals that extra

conditions are required and that the resulting asymptotic variance involves extra terms.

Second, when a consistent estimator is biased, its bias usually being O(n�1); it can

be corrected by subtracting an Op(n�1) assessment of this bias, while this corrected

estimator retains the same limiting distribution as the uncorrected estimator, because

the correction just a¤ects higher-order asymptotic aspects. However, an inconsistent

estimator has a bias which is generally O(1); and hence any useful random assessment

of it will be Op(1) as well, and thus as a rule employing such a correction will a¤ect the

limiting distribution. Third, a further complicating issue is that whereas the limiting

distribution of standard consistent estimators is similar whether or not one conditions

on exogenous variables, this situation apparently changes when consistency is achieved

by correcting an inconsistent estimator.

Many aspects of these complications for regression models with an arbitrary number

of endogenous and exogenous regressors have already been addressed in Kiviet and

Niemczyk (2012) with respect to OLS estimation and in Kiviet and Niemczyk (2014)

with respect to IV estimation when invalid instruments may have been used. A next

step should be to obtain for these more general settings the limiting distributions of

inconsistency corrected estimators which are feasible in the sense as used in KLS, and

next exploit these to produce inference which is robust over a credible set of values for

relevant endogeneity correlations. Only after this has been achieved it seems justi�able

to provide an answer to the question when explanatory variable endogeneity may be

ignored in a regression model.
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