VAR Network Methods for Summarizing and Visualizing High-Dimensional Connectedness

Discussion of Basu, Das, Michailidis, and Purnanandam:

"A System-Wide Approach to Measure Connectivity in the Financial Sector"

Francis X. Diebold University of Pennsylvania

July 10, 2017

Vector Autoregressions (VAR's)

N-dimensional VAR(p) environment:

$$\Phi(L)x_t = \varepsilon_t$$
$$\varepsilon_t \sim (0, \Sigma)$$

e.g., 2-dimensional VAR(1):

$$\begin{pmatrix} x_{1t} \\ x_{2t} \end{pmatrix} = \begin{pmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{pmatrix} \begin{pmatrix} x_{1t-1} \\ x_{2t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}$$

$$\begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix} \sim WN \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} \end{pmatrix}$$

Understanding Connectedness: Variance Decompositions (Diebold-Yilmaz Tradition)

[Diebold, F.X. and K. Yilmaz (2014), "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," *J. Econometrics*, 182, 119-134]

 v_{ij} answers a key question:

What fraction of the future uncertainty faced by variable i is due to shocks from variable j?

		V		
	<i>x</i> ₁	<i>x</i> ₂		<i>X</i> 5
<i>x</i> ₁	$v_{1,1}$	<i>v</i> _{1,2}		<i>v</i> _{1,5}
<i>x</i> ₂	$v_{2,1}$	<i>V</i> 2,2	• • •	<i>V</i> 2,5
:	÷	:	٠	:
<i>X</i> ₅	<i>v</i> _{5,1}	<i>v</i> _{5,2}	• • •	<i>v</i> _{5,5}

Financial Connectedness

- Old days:
$$dim(x) = 5$$

- Now:
$$dim(x) = 50$$
, or 500, or 5,000, or ...

- Standard estimation methods are now totally unworkable (Must regularize with shrinkage, selection, hybrid, ...)
 - Standard interpretive tools are now totally unworkable (Must summarize and visualize.)

		V		
	<i>x</i> ₁	<i>x</i> ₂		<i>X</i> 5000
<i>x</i> ₁	$v_{1,1}$	<i>v</i> _{1,2}		$v_{1,5000}$
<i>x</i> ₂	$v_{2,1}$	<i>V</i> 2,2	• • •	<i>V</i> 2,5000
:	÷	:	٠	:
<i>X</i> 5000	$v_{5,1}$	<i>V</i> _{5,2}		$v_{5,5000}$

Variance Decomposition Summarization Via the Network Degree Distribution

			V		
	<i>x</i> ₁	<i>X</i> ₂		XN	From Others
<i>x</i> ₁	V ₁₁	<i>v</i> ₁₂		v_{1N}	$\sum_{j\neq 1} v_{1j}$
<i>x</i> ₂	<i>v</i> ₂₁	V ₂₂	• • •	v_{2N}	$\sum_{j eq 1} v_{1j} \ \sum_{j eq 2} v_{2j}$
:	:	:	٠	:	:
XN	v_{N1}	v_{N2}	• • •	V _{NN}	$\sum_{j\neq N} v_{Nj}$
То					
Others	$\sum_{i\neq 1} v_{i1}$	$\sum_{i\neq 2} v_{i2}$	• • •	$\sum_{i\neq N} v_{iN}$	$\sum_{i eq j} v_{ij}$

"pairwise connectedness"

"total connectedness from all others (similar to S-Risk)"

"total connectedness to all others (similar to CoVaR)"

"system-wide connectedness"

Variance Decomposition Visualization Via the Network Graph

Understanding Connectedness: Granger-Sims Causality (Billio et al. Tradition, Including BDMP)

[Billio M., M. Getmansky, A.W. Lo, and L. Pelizzon (2012), "Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors," *J. Financial Economics*, 104, 535-559.]

 g_{ij} answers a key question:

Is the history of x_j useful for predicting x_i , over and above the history of x_i ?

		G		
	<i>x</i> ₁	<i>x</i> ₂		<i>X</i> 5
x_1	g 1,1	g 1,2		g 1,5
x_2	$g_{2,1}$	$g_{2,2}$	• • •	$g_{2,5}$
÷	:	:	٠	:
<i>X</i> 5	g 5,1	$v_{g,2}$	• • •	g 5,5

Thoughts on BDMP

- 1. BDMP Improve Importantly on Billio et al.
 - Full VAR rather than many bivariate VAR's
 - Control false discovery rate
 - ▶ Network methods for understanding *G*
- 2. There are Many Interesting BDMP Issues/Extensions
 - Are returns interesting? Basically serially uncorrelated...
 - What is the relevant causality horizon? Single-step or multi-step?
 - Related, what is the relevant observational frequency?
 - Examine (big) block causality...

Moving Forward (And Backward) I: Going beyond 0-1 *G* matrix to account for "full" VAR

$$\Phi(L)x_t = \varepsilon_t$$

Account for all of Φ

Bonaldi, Hortacsu, and Kastl (2013), "An Empirical Analysis of Funding Cost Spillovers in the EURO-Zone With Application to Systemic Risk," Manuscript, Chicago and Princeton.

Moving Forward (And Backward) II: Incorporating Σ

$$\Phi(L)x_t=arepsilon_t$$
 $arepsilon_t\sim(0,\Sigma)$ – Account for all of Φ *and* Σ

Diebold and Yilmaz (2014), "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," *J. Econometrics*, 182, 119-134

-
$$G$$
 accounts only for Φ ($G = f(\Phi)$)
- V accounts for both Φ and Σ ($V = f(\Phi, \Sigma)$)

