Assessing Point Forecast Accuracy by
Stochastic Error Distance

Francis X. Diebold
University of Pennsylvania
and
Minchul Shin
University of lllinois

June 29, 2017

& Penn

1/18



Point Forecast Accuracy Comparison

Realization and forecast:

A

Y,y

Error:

~

e=y—Yy

Loss:
L(e)
L(0) =0 and L(e) > 0, Ve
e.g. L(e) = e? (squared-error loss), L(e) = |e| (absolute-error loss)

Accuracy comparison via expected loss:
E(L(e))
e.g., mean-squared error (MSE), mean-absolute error (MAE)
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“The Big Three”

Squared-Error Loss: L(e) = €?
Absolute-error loss: L(e) = |e|

“Check’ -error loss:

L(e)— {(1 —7)lel, e<0

7le|, e>0

(Of course Ls(e) = |e|)
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Dealing with Loss Function Choice

Avoidance
(perhaps via stochastic dominance)

— But that's special and rare...
Introspection in specific cases
(perhaps via firm-level engineering considerations)

— But that's special and rare...

Introspection in general

— But that seems really hard...

& Penn

4/18



Introspection: A Loss Function Based on First Principles
Compare:

F(e) (c.d.f. of e)

* 0, e<O0
F(e){ 1, e>0

0.8}

0.6}

= 04} F(e\ _— F*(e)

0.2}
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Stochastic Error Distance (SED)

SED(F, F*) = /°°|(e) F*(e)| de

:/ de—l—/ [1— F(e)] de

— SED(F,F*)_ + SED(F, F*),

SED,(F, F*
0.8
0.6
2 ,
= 0.4f _— F*(e)
0.2
0
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SED and Expected Absolute Loss

SED(F, F*) = /_Oo IF(e) — F*(e)| de
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SED and Expected Absolute Loss

SED(F, F*) = /oo IF(e) — F*(e)| de

Proposition (Equivalence of SED and Expected Absolute Loss):

If e is a forecast error with cumulative distribution function F(e),
such that E(|e|) < oo, then SED equals expected absolute loss:

SED(F,F*) = E(le|).

SED accuracy evaluation is MAE accuracy evaluation!
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Weighted Stochastic Error Distance (WSED)
and Expected Check-Error Loss

WSED(F, F*;7) = (1—7)SED(F, F*)_+7SED(F,F*);, 7 € [0,1]




Weighted Stochastic Error Distance (WSED)
and Expected Check-Error Loss

WSED(F, F*;7) = (1—7)SED(F, F*)_+7SED(F,F*);, 7 € [0,1]

Proposition
(Equivalence of WSED and Expected Check-Error Loss):

If e is a forecast error with cumulative distribution function F(e),
such that E(|e|) < oo, then WSED equals expected Check-error
loss:

WSED(F, F*;7) = E(L-(e)),

where L.(e) is the Check-error loss function

L(e) = {(1 —7)lel, e<0

e, e>0.
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“The Big Three”, Redux

Squared-error loss

Absolute-error loss

Check-error loss
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Generalized Weighted Stochastic Error Distance (GWSED)

GWSED(F, F*: p, w /|F wie) de,
where p > 0.

SED and WSED are nested special cases:
» p=1and w(e) =1V e produces SED.

» p=1and

w(e) = {2(1—7), e<0

27, e>0
produces WSED.

» Other choices of p and w(e)?
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GWSED and Expected Loss: A Complete Characterization

GWSED(F, F*;p,w) = / |F(e) — F*(e)|P w(e) de




GWSED and Expected Loss: A Complete Characterization

GWSED(F, F*; p, W):/|F(e)—F*(e)\p w(e) de

Proposition
(Equivalence of GWSED (F, F*: 1, ‘db(ee)

) and E(L(e))):

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for
e > 0 and dL(e)/de < 0 for e < 0, and suppose also that F(e)
and L(e) satisfy F(e)L(e) — 0 as e — —oo and

(1—F(e))L(e) = 0 as e — co. Then:

| iFe - el 7

—0o0




Cramér Distance

GWSED(F, F*;2,1) is Cramér distance:
(Mallows, Monge-Kantorovich, earth-movers, ...)

C(F, F") :/OO [F(e) — F*(e)]? de

—00

_ SED(F,F*) — /Oo F(e)(1 — F(e)) de.

—00
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Cramér-von Mises Divergence
GWSED(F, F*;2,f(e)) is Cramér-von Mises divergence:

CVM(F*,F /|F* e)|? f(e) de
:—Hmu—Fw»+§
CVM(F*, F) is minimized at F(0) = 3.

That is, like SED(F, F*),
CVM(F*, F) is minimized by the conditional-median forecast.
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Kolmogorov-Smirnov Distance

KS(F,F*) = SL;p |F(e) — F*(e)‘ = max(F(O), 1-— F(O))

KS(F, F*) is minimized at F(0) = %
as is CVM(F*, F).

That is, like SED(F, F*),
KS(F, F*) is minimized by the conditional-median forecast.
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“The Big Three”, Redux, Redux

Squared-error loss

Absolute-error loss

Check-error loss
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Practical Conclusions/Implications

— Use MAE for forecast accuracy rankings.

— Recognize that selection of a loss function is
selection of a GSED weighting function.

— Use the GSED loss representation to
make new progress on old questions.

(e.g., When will MSE and MAE accuracy rankings match?)
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Addendum: Ranking Forecasts Under MSE vs. MAE

General Gaussian environment (e ~ N (,u, 02)):

E(le|]) = ov/2/mexp (—'U2> + [1 -2¢ <—H>}

202 o

So MAE and MSE rankings can diverge, even under normality.

— Very little is known, even under normality.

Unbiased Gaussian environment (e ~ N (0,02)):
E(le]) x o
So MAE and MSE rankings must be identical.
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MSE and MAE Divergence Regions (Black)
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