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Point Forecast Accuracy Comparison

Realization and forecast:

y , ŷ

Error:

e = y − ŷ

Loss:

L(e)

L(0) = 0 and L(e) ≥ 0, ∀e
e.g. L(e) = e2 (squared-error loss), L(e) = |e| (absolute-error loss)

Accuracy comparison via expected loss:

E (L(e))

e.g., mean-squared error (MSE ), mean-absolute error (MAE )
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“The Big Three”

Squared-Error Loss: L(e) = e2

Absolute-error loss: L(e) = |e|

“Check”-error loss:

Lτ (e) =

{
(1− τ)|e|, e < 0

τ |e|, e ≥ 0

(Of course L.5(e) = |e|)
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Dealing with Loss Function Choice

Avoidance
(perhaps via stochastic dominance)

– But that’s special and rare...

Introspection in specific cases
(perhaps via firm-level engineering considerations)

– But that’s special and rare...

Introspection in general

– But that seems really hard...
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Introspection: A Loss Function Based on First Principles

Compare:

F (e) (c.d.f. of e)

vs.

F ∗(e) =

{
0, e < 0
1, e ≥ 0.
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Stochastic Error Distance (SED)

SED(F ,F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de

=

∫ 0

−∞
F (e) de +

∫ ∞
0

[1− F (e)] de

= SED(F ,F ∗)− + SED(F ,F ∗)+
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SED and Expected Absolute Loss

SED(F ,F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de

Proposition (Equivalence of SED and Expected Absolute Loss):

If e is a forecast error with cumulative distribution function F (e),
such that E (|e|) <∞, then SED equals expected absolute loss:

SED(F ,F ∗) = E (|e|).

SED accuracy evaluation is MAE accuracy evaluation!
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Weighted Stochastic Error Distance (WSED)
and Expected Check-Error Loss

WSED(F ,F ∗; τ) = (1−τ)SED(F ,F ∗)−+τSED(F ,F ∗)+, τ ∈ [0, 1]

Proposition
(Equivalence of WSED and Expected Check-Error Loss):

If e is a forecast error with cumulative distribution function F (e),
such that E (|e|) <∞, then WSED equals expected Check-error
loss:

WSED(F ,F ∗; τ) = E (Lτ (e)),

where Lτ (e) is the Check-error loss function

Lτ (e) =

{
(1− τ)|e|, e < 0

τ |e|, e ≥ 0.
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“The Big Three”, Redux

Squared-error loss

Absolute-error loss

Check-error loss
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Generalized Weighted Stochastic Error Distance (GWSED)

GWSED(F ,F ∗; p,w) =

∫
|F (e)− F ∗(e)|p w(e) de,

where p > 0.

SED and WSED are nested special cases:

I p = 1 and w(e) = 1 ∀ e produces SED.

I p = 1 and

w(e) =

{
2(1− τ), e < 0

2τ, e ≥ 0

produces WSED.

I Other choices of p and w(e)?
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GWSED and Expected Loss: A Complete Characterization

GWSED(F ,F ∗; p,w) =

∫
|F (e)− F ∗(e)|p w(e) de

Proposition

(Equivalence of GWSED
(
F ,F ∗; 1,

∣∣∣dL(e)de

∣∣∣) and E (L(e))):

Suppose that L(e) is piecewise differentiable with dL(e)/de > 0 for
e > 0 and dL(e)/de < 0 for e < 0, and suppose also that F (e)
and L(e) satisfy F (e)L(e)→ 0 as e → −∞ and
(1− F (e))L(e)→ 0 as e →∞. Then:∫ ∞

−∞
|F (e)− F ∗(e)|

∣∣∣∣dL(e)

de

∣∣∣∣ de = E (L(e)).
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Cramér Distance

GWSED(F ,F ∗; 2, 1) is Cramér distance:
(Mallows, Monge-Kantorovich, earth-movers, ...)

C (F , F ∗) =

∫ ∞
−∞

[
F (e)− F ∗(e)

]2
de

= SED(F ,F ∗)−
∫ ∞
−∞

F (e)(1− F (e)) de.
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Cramér-von Mises Divergence

GWSED(F ,F ∗; 2, f (e)) is Cramér-von Mises divergence:

CVM(F ∗,F ) =

∫
|F ∗(e)− F (e)|2 f (e) de

= −F (0)(1− F (0)) +
1

3

CVM(F ∗,F ) is minimized at F (0) = 1
2 .

That is, like SED(F ,F ∗),
CVM(F ∗,F ) is minimized by the conditional-median forecast.
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Kolmogorov-Smirnov Distance

KS(F ,F ∗) = sup
e

∣∣F (e)− F ∗(e)
∣∣ = max

(
F (0), 1− F (0)

)

KS(F ,F ∗) is minimized at F (0) = 1
2 ,

as is CVM(F ∗,F ).

That is, like SED(F ,F ∗),
KS(F ,F ∗) is minimized by the conditional-median forecast.
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“The Big Three”, Redux, Redux

Squared-error loss

Absolute-error loss

Check-error loss
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Practical Conclusions/Implications

– Use MAE for forecast accuracy rankings.

– Recognize that selection of a loss function is
selection of a GSED weighting function.

– Use the GSED loss representation to
make new progress on old questions.

(e.g., When will MSE and MAE accuracy rankings match?)
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Addendum: Ranking Forecasts Under MSE vs. MAE

General Gaussian environment
(
e ∼ N

(
µ, σ2

))
:

E (|e|) = σ
√

2/π exp

(
− µ2

2σ2

)
+ µ

[
1− 2Φ

(
−µ
σ

)]
So MAE and MSE rankings can diverge, even under normality.

– Very little is known, even under normality.

Unbiased Gaussian environment
(
e ∼ N

(
0, σ2

))
:

E (|e|) ∝ σ

So MAE and MSE rankings must be identical.
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MSE and MAE Divergence Regions (Black)

e1 ∼ N(0, 1), e2 ∼ N(µ2, σ
2
2)
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