Discussion of Yang Liu: Government Debt and Risk Premia

Francis X. Diebold University of Pennsylvania

June 22, 2017

Preliminaries - Thanks

Nice work on a fascinating question

Preliminaries – Think About Small-Sample Inference Issues

DRAWING INFERENCES FROM STATISTICS BASED ON MULTIYEAR ASSET RETURNS*

Matthew RICHARDSON

University of Pennsylvania, Philadelphia, PA 19104, USA

James H. STOCK

Harvard University, Cambridge, MA 02138, USA

(Journal of Financial Economics, 1989)

- Is this paper immune?
- Overlapping returns always reduce effective sample size
 - Or do they? Same number of business cycles!

Preliminaries – Think about Existing Policy Uncertainty Measures

EDITOR'S CHOICE

Measuring Economic Policy Uncertainty* •

Scott R. Baker, Nicholas Bloom, Steven J. Davis

Q J Econ (2016) 131 (4): 1593-1636. **DOI:** https://doi.org/10.1093/qje/qjw024

Published: 11 July 2016

 Wiews ▼
 Image: PDF
 66 Cite
 Permissions
 Share ▼

Abstract

We develop a new index of economic policy uncertainty (EPU) based on

Measurement and Theory

Measurement (Getting the facts straight; reduced form)

One key thing to do:

- Include the key missing control

Theory Nice job

Measurement (Assessing theory; structural)

One key thing to do:

- Do it

Calibration fine (and desirable) for "Theory"
 but does not pass muster for serious measurement

Measurement (Getting the Facts Straight)

Q. What should drive the equity premium?

The classic insight:

A. Expected future real activity

Fama and French,

"Stock Returns, Expected Returns, and Real Activity," J. Finance

First-wave empirics (financial-flavored proxies): Term premium, default premium, dividend yield

Second-wave empirics (real-flavored): CAY (Lettau-Ludvigson JF) Expected real growth (Campbell-Diebold JBES)

Debt/GDP (Liu - this paper)

Expected Business Conditions are Crucially Important They Must be Controlled For...

	(1)	(7)
g_t^e	-0.22	-0.20
-	(80.0)	(0.10)
DP_t	_	0.12
		(0.11)
DEF_t	_	0.00
		(0.09)
$TERM_t$	_	0.11
		(0.09)
CAY_t	_	0.15
		(0.10)

