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Motivation

The emerging popularity of DSGE forecasting calls for performance
evaluation.

The small existing DSGE forecast evaluation literature focuses
mostly on point forecasts and suggests that:

I DSGE point forecasts are as good as VAR’s.

Well, OK, but...

Typically, models in the DSGE forecast evaluation literature are
analyzed with:

I Linearized solutions

I Gaussian shocks

I Constant volatility
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Road Map

Small-scale DSGE model for GDP growth, inflation, and the policy
rate

I Linearized state transition equation
(Constant vol, stochastic vol, deterministic vol)

I Bayesian estimation and forecasting
(Totally standard)

I Measurement equation and U.S. data, 1964-2011

I Evaluation of point, interval, and density forecasts,
1992-2011
(Real-time, expanding-sample, vintage data)
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DSGE Model and Implied Transition

Builds on Del Negro and Schorfheide (2013)

I Euler equation, new-Keynesian Phillips curve, monetary policy
rule, time-varying target inflation rate

I 4 exogenous shocks: technology, government spending,
monetary policy, target inflation rate (zt , gt ,mt , π

∗
t )

State transition equation:

st = Φ(st−1, εt ; θ)

where

st = [yt , yt−1, ct , πt ,Rt , zt , gt ,mt , π
∗
t ]′

εt are innovations

θ are parameters
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Constant Volatility
Linearized Transition

Linearization-based solution methods produce linear/Gaussian
state space representations with transition equation

st = H(θ)st−1 + R(θ)εt

εt ∼ iidN (0,Q(θ))

Q(θ) = diag [σ2z , σ
2
g , σ

2
m, σ

2
π∗ ]

regardless of whether the original model shocks have stochastic
volatility

I Could adopt higher-order solution methods

I Could simply add stochastic volatility to the linearized transition, as
in Justiniano and Primiceri (2008)
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Stochastic Volatility
Linearized Transition

st = H(θ)st−1 + R(θ)εt

εt ∼ N (0,Qt(θ))

where
Qt(θ) = diag [e2hz,t , e2hg,t , e2hm,t , σ2π∗ ]

hi ,t = ρσihi ,t−1 + νi ,t

νi ,t ∼ iidN (0, s2i ),

for i = z , g ,m

I Conditionally linear / Gaussian system

I We consider two cases:
I “SV-AR”: ρσi ∈ (−1, 1) for i = z , g ,m
I “SV-RW”: ρσi = 1 for i = z , g ,m
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Deterministic Volatility / Structural Break
Linearized Transition

st = H(θ)st−1 + R(θ)εt

εt ∼ N (0,Qt(θ))

where

Qt(θ) = diag [σ2z,t , σ
2
g ,t , σ

2
m,t , σ

2
π∗ ]

σi ,t =

{
σi ,0 if t ≤ 1984Q4

σi ,1 if t > 1984Q4

for i = z , g ,m

“DV-SB”
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Estimation and Forecasting

Estimation: MCMC posterior simulator

Forecasting: Draw repeatedly from the posterior predictive pdf:

p(YT+1:T+h|Y1:T )

I Point forecasts – posterior mean

I Interval forecasts – shortest length connected posterior interval

I Density forecasts – full posterior
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Measurement and Data

Measurement equation:
∆GDPt

INFt
FFRt

INF e
t

 = D(θ) + Z (θ) st

I GDP growth, inflation, federal funds rate, 10-year survey
inflation expectations

I Vintage data set constructed by Del Negro and Schorfheide
(2013) and Edge and Gürkaynak (2010)

I Expanding-sample estimation; each vintage starts 1964Q2,
final vintage ends in 2011.Q2 (“actuals”)

I Forecasts generated for January, April, July, and October,
starting for 1991Q4
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Posterior Mean Structural Shock Volatilities,
Based on Final Data Vintage,
Constant vs. SV-RW vs. DV-SB

I Constant volatility

I Stochastic volatility with 80 percent credible band (SV-RW)

I Deterministic volatility (structural break) (DV-SB)
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Results: Point Prediction
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Relative Point Forecast Evaluation:
RMSEs
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Results: Interval Prediction
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Relative Interval Forecast Evaluation:
Coverage Rates of 70% Interval Forecasts, h = 1, ..., 8
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Relative Interval Forecast Evaluation:
Lengths of 70% Interval Forecasts, h = 1

I Red: Constant

I Yellow: SV-RW
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Absolute Interval Forecast Evaluation:
The Hit Sequence (Christoffersen)

H
(1−α)
i ,t+h,t =


1 if yi ,t+h ∈ I 1−αt+h,t(yi )

0 otherwise

Under correct conditional calibration of the interval forecast,

H
(1−α)
i ,t+1,t ∼ iid Bernoulli(1− α)
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Absolute Interval Forecast Evaluation:
H Tests, Nominal 70% Intervals, h = 1

Coverage Independence Joint

Output Growth

Const. 15.1 (0.00) 3.50 (0.06) 18.9 (0.00)
DV-SB 1.23 (0.27) 0.62 (0.43) 2.42 (0.30)
SV-AR 2.66 (0.10) 0.26 (0.61) 3.41 (0.18)
SV-RW 1.23 (0.27) 0.04 (0.85) 1.83 (0.40)

Inflation

Const. 12.9 (0.00) 0.10 (0.76) 13.2 (0.00)
DV-SB 0.73 (0.40) 1.10 (0.29) 2.42 (0.30)
SV-AR 1.23 (0.27) 6.43 (0.01) 8.23 (0.02)
SV-RW 1.23 (0.27) 1.90 (0.17) 3.69 (0.16)
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Results: Density Prediction
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Relative Density Forecast Evaluation:
Log Predictive Scores, h = 1
Joint Across All Variables

(
Recall LPS t+h,t =

∑
log pt+h,t(yt+h)

)

Const. -6.41

DV-SB -7.22

SV-AR -6.36

SV-RW -6.22
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Relative Density Forecast Evaluation:
Log Predictive Scores, h = 1,
Variable-by-Variable

Output Growth Inflation

Const. -1.11 -1.88
DV-SB -0.99 -1.71
SV-AR -1.04 -1.63
SV-RW -1.02 -1.62
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Absolute Density Forecast Evaluation:
The Probability Integral Transform (Diebold-Gunther-Tay)

PITi ,t+h,t =

∫ yi,t+h

−∞
pi ,t+h,t(y) dy

Under correct conditional calibration of the density forecast,

PITi ,t+1,t ∼ iid U(0, 1)
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Absolute Density Forecast Evaluation:
PIT Histograms, h = 1

Constant Volatility

SV-RW
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Absolute Density Forecast Evaluation:
PIT Correlograms, h = 1

Constant Volatility

SV-RW
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Conclusion

I SV actually helps a bit for point forecasting...

I SV looks good for interval forecasts in both relative and
absolute terms

I SV looks good for density forecasts in relative terms, but it’s
still below the bar in absolute terms
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