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1 Introduction

Connectedness is central to modern financial risk measurement and management. It features

prominently in key aspects of market risk (return connectedness and portfolio concentration),

credit risk (default connectedness), counter-party and gridlock risk (bilateral and multilateral

contractual connectedness), and not least, systemic risk (systemwide connectedness). It is

also central to understanding underlying fundamental macroeconomic risks, in particular

business cycle risk (e.g., intra- and inter-country real activity connectedness).

Recent theoretical work has therefore emphasized network connectedness in financial and

industry contexts, as in Jackson (2008), Easley & Kleinberg (2010), Acemoglu et al. (2012),

and Babus (2016). Related empirical work, which sometimes includes banking contexts, has

begun to appear; see for example, Diebold & Yilmaz (2009), Acharya et al. (2017), Billio

et al. (2012), L. Allen et al. (2012), Acharya et al. (2012), Barigozzi & Brownlees (2013),

Diebold & Yilmaz (2014), Brownlees & Engle (2015), Bianchi et al. (2015), Giglio et al.

(2016), and Adrian & Brunnermeier (2016).

There is, however, little empirical research on global bank connectedness. This is par-

ticularly unfortunate given the role of financial institutions in the Great Recession of 2007-

2009, and given the many channels that potentially produce linkages among banks, such as

counter-party relationships associated with asset/liability positions, contractual relationships

associated with services provided to clients and other institutions, and correlated exposures,

as well linkages via asset-price and liquidity channels.1

A key reason for the lack of empirical work on global bank connectedness is the high

dimensionality of bank networks. There are simply very many important banks globally,

which renders unrestricted vector-autoregressive (VAR) and related analyses intractable.

Hence, for example, Diebold & Yilmaz (2014) were forced to limit their analysis to a small

number of purely-U.S. institutions. Although a useful first step, such an analysis is clearly

incomplete, given the global nature of the financial services industry.

In this paper we progress on both the methodological and substantive fronts. On the

methodological side, we confront the dimensionality problem while nevertheless remaining

squarely in the Diebold-Yilmaz connectedness measurement tradition, focusing on the de-

gree distribution and the mean degree. We do so by estimating the network using LASSO

methods, which facilitates high dimensionality by selecting and shrinking in optimal ways.

We also maintain our intentionally reduced-form approach: Our goal is to provide a credible

1See, among others, the classic work of Shleifer & Vishny (1992), F. Allen & Gale (1994), F. Allen &
Gale (2000), Cifuentes et al. (2005), Acharya & Yorulmazer (2007), and Gorton (2015).



framework for “getting the facts straight”, regardless of the underlying structural mecha-

nism(s), particularly given the many mechanisms that may be operative, per the discussion

above.

On the substantive side, no longer constrained by the dimensionality problem, we perform

a truly global bank connectedness analysis. In particular, we characterize the static and

dynamic high-frequency stock-return volatility connectedness of all publicly-traded banks

among the world’s top 150, 2004-2014.

We proceed as follows. In section 2, we briefly summarize the Diebold-Yilmaz connectedness-

measurement framework. In section 3, we introduce “LASSOed” large VAR’s as empirical

approximating models in the Diebold-Yilmaz framework. In sections 4 and 5, respectively,

we provide static and dynamic characterizations of the global bank network, and we conclude

in section 6.

2 Population Network Connectedness

Here we discuss our connectedness framework and measures, in population. (We discuss

estimation later, in section 3.) The discussion is brief, as we use connectedness measures

based on variance decompositions, as proposed and developed in a series of earlier papers

that includes Diebold & Yilmaz (2009), Diebold & Yilmaz (2012), and Diebold & Yilmaz

(2014).

2.1 Variance Decompositions for Connectedness Measurement

Connectedness measures based on variance decompositions are appealing for several reasons.

First, they make obvious intuitive sense, answering a key question, which at the most granular

pairwise level is “How much of entity i’s future uncertainty (at horizon H) is due to shocks

arising not with entity i, but rather with entity j?”

Second, they allow for different connectedness at different horizons, facilitating examina-

tion of a variety of horizons and selection of a preferred horizon if desired. This is important

because, for example, 1-day connectedness may be very different from 10- or 30-day connect-

edness.

Finally, they are closely linked to modern network theory, in particular the degree dis-

tribution and mean degree, and they are also closely linked to recently-proposed measures

of various types of systemic risk, such as marginal expected shortfall (Acharya et al. (2017))
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and CoVaR (Adrian & Brunnermeier (2016)).2

2.2 Vector Autoregressive Approximating Models

We base our variance decomposition on an N -variable VAR(p), xt =
∑p

i=1 Φixt−i + εt,

where εt ∼ (0,Σ). The moving average representation is xt =
∑∞

i=0Aiεt−i, where the N xN

coefficient matrices Ai obey the recursion Ai = Φ1Ai−1 + Φ2Ai−2 + . . .+ ΦpAi−p, with A0 an

N xN identity matrix and Ai = 0 for i < 0.

Identification becomes challenging in the high-dimensional situations that will concern

us. Standard approaches such as Cholesky factorization depend on the ordering of the

variables, which raises significant complications. Hence we follow Diebold & Yilmaz (2012)

in using the “generalized identification” framework of Koop et al. (1996) and Pesaran & Shin

(1998), which produces variance decompositions invariant to ordering. Instead of attempting

to orthogonalize shocks, the generalized approach allows for correlated shocks but accounts

appropriately for the correlation.

2.3 Connectedness Measures

We now introduce our connectedness measures. We start with highly-granular pairwise

directional connectedness, and proceed with total directional connectedness to reach highly-

aggregative systemwide connectedness.

Firm j ’s contribution to firm i ’s H -step-ahead generalized forecast error variance, θgij(H),

is

θgij(H) =
σ−1jj

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iAhΣA

′
hei)

, H = 1, 2, ..., (1)

where Σ is the covariance matrix of the disturbance vector ε, σjj is the standard deviation of

the disturbance of the jth equation, and ei is the selection vector with one as the ith element

and zeros otherwise.

Because we work in the Koop-Pesaran-Potter-Shin generalized VAR framework, the vari-

ance shares do not necessarily add to 1; that is, in general
∑N

j=1 θ
g
ij(H)6=1. Hence, we

normalize each entry of the generalized variance decomposition matrix (1) by the row sum

to obtain pairwise directional connectedness from firm j to firm i:

θ̃gij(H) =
θgij(H)∑N
j=1 θ

g
ij(H)

. (2)

2See Diebold & Yilmaz (2014) for a detailed discussion.
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Now by construction
∑N

j=1 θ̃
g
ij(H) = 1 and

∑N
i,j=1 θ̃

g
ij(H) = N .

As a matter of notation, we now convert from θ̃gij(H) to CH
i←j (C is of course for connect-

edness), which is less cumbersome and more directly informative.

After obtaining the pairwise directional connectedness measure, CH
i←j, we can move to

total directional connectedness measures. Total directional connectedness to firm i from all

other firms j is:

CH
i←• =

∑N
j=1
j 6=i

θ̃gij(H)∑N
i,j=1 θ̃

g
ij(H)

=

∑N
j=1
j 6=i

θ̃gij(H)

N
. (3)

Similarly, total directional connectedness from firm i to all other firms j is

CH
•←i =

∑N
j=1
j 6=i

θ̃gji(H)∑N
i,j=1 θ̃

g
ji(H)

=

∑N
j=1
j 6=i

θ̃gji(H)

N
. (4)

Finally, we obtain systemwide connectedness measure. Using the normalized entries of the

generalized variance decomposition matrix (2), we measure total directional connectedness

as

CH =

∑N
i,j=1
i 6=j

θ̃gij(H)∑N
i,j=1 θ̃

g
ij(H)

=

∑N
i,j=1
i 6=j

θ̃gij(H)

N
. (5)

We call this total connectedness systemwide connectedness. It is simply the sum of total

directional connectedness whether “to” or “from.” (It doesn’t matter which way, because

“exports” must equal “imports” at the “global” level.)

3 Sample Bank Network Connectedness

Thus far we have discussed population network connectedness measurement. Now we discuss

sample connectedness measurement, specialized, moreover, to the context of global banking,

which we study in detail in sections 4 and 5.

3.1 Banks, Sample Period, and Stock Return Volatilities

We study 96 banks from 29 developed and emerging economies, downloaded from Thomson-

Reuters, from September 12, 2003 through February 7, 2014. Our 96 banks are those in

the world’s top 150 (by assets) that were publicly traded throughout our sample. They

are largely banks from developed countries: 82 are from 23 developed economies, and the
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remaining 14 are from 6 emerging economies.3 They include all those designated as “globally

systemically important banks” (“GSIB’s”, as designated by the Basel Committee on Banking

Supervision), except for three Chinese banks (Agricultural Bank of China, Bank of China,

and Industrial and Commercial Bank of China) and one French bank (Group BCPE), which

we exclude because they were not publicly traded as of September 2003.

We focus on connectedness in the global bank stock return volatility network, which does

not require high-frequency balance sheet and related information, which is unavailable in real

time. Instead we need only high-frequency stock return data, which are readily available.

Stock market valuations are of course imperfect – like all valuations – but equity analysts

devote massive time and resources to uncovering and interpreting connectedness information

as relevant for valuation.

Volatility connectedness is of direct interest in financial markets. If volatility tracks

investor fear (e.g., the VIX is often touted as an “investor fear gauge”), then volatility

connectedness is fear connectedness. Hence volatility connectedness is of special interest from

the perspective of real-time crisis monitoring, as volatilities tend to lurch and move together

only in crises, whereas returns often move closely together in both crises and upswings.

Volatility is latent and must therefore be estimated. Many approaches to volatility esti-

mation have received attention, including GARCH, stochastic volatility, realized volatility,

and implied volatility.4 We use daily range-based realized volatility. That is, following

Garman & Klass (1980), we estimate daily bank stock return volatility as

σ̃2
it = 0.511(Hit − Lit)2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)

−2(Hit −Oit)(Lit −Oit)]− 0.383(Cit −Oit)
2, (6)

where Hit, Lit, Oit and Cit are, respectively, the logs of daily high, low, opening and clos-

ing prices for bank stock i on day t. Range-based realized volatility is nearly as efficient

as realized volatility based on high-frequency intra-day sampling, yet it requires only four

readily-available inputs per day, and it is robust to certain forms of microstructure noise

(Alizadeh et al. (2002)).

Finally, we note that our bank stock price data come from markets located in different

time zones. Although this could potentially influence the empirical results, the use of return

3See the appendices for details regarding market capitalization, bank code, and Reuters ticker, by bank
assets (Appendix A) and by country (Appendix B). Our bank codes are easier to interpret than the Reuters
tickers, particularly as regards identifying banks’ countries, so we use them in our subsequent empirical work.

4For a survey see Andersen et al. (2013).
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volatilities rather than returns, and the use of a VAR approximating model, are likely to

minimize the potential impact. In particular, our use of volatility in the connectedness

analysis helps to identify the origins of shocks, as volatility jumps more during crises, as

does our use of a vector autoregressive approximating model, to which we now turn.

3.2 Estimation of High-Dimensionsal VAR’s

In applications we base connectedness assessment on an estimated VAR approximating

model. For compelling applications, we need the VAR to be estimable in high dimensions,

somehow recovering degrees of freedom.5 One can do so by pure shrinkage (as with tra-

ditional informative-prior Bayesian analyses, or ridge regression) or pure selection (as with

traditional criteria like AIC and SIC), but blending shrinkage and selection, using variants

of the LASSO, proves particularly appealing.

To understand the LASSO, consider least-squares estimation,6

β̂ = arg min
β

T∑
t=1

(
yt −

∑
i

βixit

)2

, (7)

subject to the constraint:
K∑
i=1

|βi|q ≤ c.

Equivalently, consider the penalized estimation problem:

β̂ = arg min
β

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

|βi|q
 . (8)

Concave penalty functions non-differentiable at the origin produce selection, whereas smooth

convex penalties (e.g., q = 2, the ridge regression estimator) produce shrinkage. Hence pe-

nalized estimation nests and can blend selection and shrinkage. The LASSO (short for “least

absolute shrinkage and selection operator”), introduced in the seminal work of Tibshirani

(1996), solves the penalized regression problem with q = 1. Hence it shrinks and selects.

5In what follows we refer to estimators that achieve this as “regularized,” and associated environments
as involving “regularization.”

6We present LASSO for a generic regression equation y → X, to maximize notational transparency. In
our subsequent equation-by-equation VAR estimation, the right-hand-side variables in each equation are of
course p lags of each of the N variables.
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Moreover it requires only one minimization, and it uses the smallest q for which the mini-

mization problem is convex.

A simple extension of the LASSO, the so-called adaptive elastic net (Zou & Zhang (2009)),

not only shrinks and selects, but also has the oracle property, meaning (roughly) that the

selected model is consistent for the best Kullback-Liebler approximation to the true DGP.

In our implementation of the adaptive elastic net, we solve

β̂AEnet = arg min
β

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

wi

(
1

2
|βi|+

1

2
β2
i

) , (9)

where wi = 1/|β̂i,OLS| and λ is selected equation-by-equation by 10-fold cross validation.

Note that the adaptive elastic net penalty averages the “LASSO penalty” with a “ridge

penalty”, and moreover that it weights the average by inverse OLS parameter estimates,

thereby shrinking the “smallest” OLS-estimated coefficients most heavily toward zero.7

Before ending this section, we’d like to address two issues related to our empirical esti-

mation approach. First, we want to encourage sparsity in our approximating model, but we

do not necessarily want to impose sparsity in the implied bank network. Our approach of

shrinking and selecting on the approximating VAR, as opposed to shrinking and selecting on

the variance decomposition network directly, achieves that goal. The approximating VAR

is intentionally shrunken and made sparse by the LASSO, but the variance decomposition

matrix that drives our connectedness measures is a non-linear transformation of the VAR

coefficients and is therefore generally not sparse.8

Second, we regularize the estimated VAR autoregressive coefficient matrices, but presently

we do not pursue regularization of the shock covariance matrix, in large part because we

are not necessarily comfortable with the standard “statistical” shrinkage directions (e.g., to-

ward zero). Instead one might want to shrink and select in other directions, such as toward

equicorrelation or reduced-rank structure, but we leave covariance matrix regularization to

future research.

7The weighting by inverse estimates is responsible for the oracle property.
8Alternative frameworks that attempt to characterize network connectedness directly from a fitted sparse

VAR(1) coefficient matrix (e.g., Bonaldi et al. (2015)) force sparse networks, by construction. Moreover,
they also provide incomplete connectedness characterizations, because VAR connectedness arises not only
through cross-lag linkages, but also through the disturbance covariance matrix. Network connectedness
measures based on Granger-causal patterns (e.g. Billio et al. (2012)) also ignore the disturbance covariance
matrix and hence are similarly incomplete.

7



3.3 Network Visualization of High-Dimensional Variance Decom-

positions

The issue of how best to display results takes on great importance in high-dimensional net-

work modeling. In our subsequent empirical work, for example, we will estimate networks

with approximately 100 nodes, and presenting and examining 100× 100 = 10, 000 estimated

pairwise variance decompositions would be thoroughly uninformative. Hence we characterize

the estimated networks graphically using five devices: node naming convention, node size,

node color, node location, and link arrow sizes (two per link, because the network is di-

rected). Throughout, we use the open-source Gephi software (https://gephi.github.io/)

for network visualization.

Node Naming Convention Indicates Bank and Country

The node naming convention is bank.country, where “bank” is our bank code and “country”

is our country code. For example, JP Morgan is jpm.us.9

Node Size Indicates Asset Size

We make node size a linear function of bank asset size.10 We assign the sizes of the largest and

smallest nodes, and then assign the rest linearly. We emphasize assets rather than market

capitalization for two reasons. First, market capitalization is subject to abrupt changes

due to fluctuations in stock price. Second, cross-country differences in financial system

characteristics and ownership structure of publicly traded companies have direct effects on

market capitalization levels, thereby producing persistent differences in cross-country market

capitalizations.

Node color Indicates Total Directional Connectedness “To Others”

The node color indicates total directional connectedness to others, ranging from 3DFA02

(bright green, the weakest), to E6DF22 (luminous vivid yellow), to CF9C5B (whiskey sour),

to FC1C0D (bright red), to B81113 (dark red, the strongest). We show the color range in

Figure 1.

Node Location Indicates Average Pairwise Directional Connectedness11

9The other bank and country codes are similarly self-evident; see the appendices for a complete listing.
10Note well that we make node size and asset size linearly related, but not directly proportional. Huge

asset-size differences between the largest and smallest banks in our sample make directly-proportional rep-
resentation impossible.

11Link thickness also indicates average pairwise directional connectedness.

8

https://gephi.github.io/


We determine node location using the ForceAtlas2 algorithm of Jacomy et al. (2014) as

implemented in Gephi. The algorithm finds a steady state in which repelling and attracting

forces exactly balance, where nodes repel each other like similar poles of two magnets, while

links, like springs, attract their nodes. Here the attracting force of a link is proportional to

average pairwise directional connectedness “to” and “from.” The steady state node locations

depend on initial node locations and hence are not unique. This is largely irrelevant, however,

as we are interested in relative, not absolute, node locations in equilibrium.

Link Arrow Sizes Indicate Pairwise Directional Connectedness “To” and “From”

Note that because the full set of link arrow sizes reveals the full set of pairwise directional

connectednesses, from which all else can be derived, most of the additional graphical devices

employed (in particular, node shading and location) are in principle redundant and therefore

unnecessary. In practice, however, those additional devices prove invaluable for describing

large network topologies.

4 Static Estimation of the Global Bank Network

We estimate logarithmic volatility VAR’s using the adaptive elastic net as described above.

Then we compute variance decompositions and corresponding connectedness measures at

horizon H = 10, using the estimated VAR parameters.

4.1 The Individual Bank Network

We show the full-sample global bank network graph in Figure 2. The main result is the

strong clustering, both within and across countries.12 The within-country bank clustering

is ubiquitous, ranging from countries with many banks in our sample (e.g., U.S., Canada,

Australia, China, Japan) to those with only two or three (e.g., Korea, Singapore, India,

Malaysia). The cross-country clustering is also obvious throughout the graph, whose left

side clearly tends to contain banks of eastern countries, and whose right side clearly tends

to contain banks of western countries. Moreover, the western side clearly breaks into a large

Anglo / European bank cluster and a smaller American / Canadian cluster, each of which

contains sub-clusters.

12A second interesting result is the high coherence between banks designated as GSIB’s and those that we
estimate and display as having high net total directional connectedness (“to” minus “from”, CH

•←i −CH
i←•).

When we sort banks by net connectedness, all of our top 15 banks are included in the GSIB list, as are 20
of our top 25.
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It is not obvious that region of origin would be the dominant factor driving network

connectedness. One might have thought, for example, that other factors, such as bank size,

might dominate, but such is not the case. Japan illustrates this clearly. Although the

majority of very large banks are located in the Anglo / American / European cluster, the

three very large Japanese banks (Mitsubishi UFJ, Mizuho Financial, and Sumitomo Mitsui

Financial) are located not in the Anglo / American / European cluster, but rather in the

Japanese cluster.

Given the clear regional clustering in the network graph, we show in Table 1 a six-region

network connectedness table. The main elements are the pairwise directional connected-

nesses defined in equation (2), the row sums labeled “from others” are the total directional

connectednesses from others defined in equation (3), the column sums labeled “to others” are

the total directional connectednesses to others defined in equation (4), and the lower right

element is the systemwide connectedness defined in equation (5). The table’s message is

clear: North America and Europe are large (and indeed the only) net transmitters of future

volatility uncertainty (“to others” - “from others”) to the rest of the world. Asia also has

noticeably large total directional connectedness – both large transmissions and large receipts

(i.e., total directional connectedness “to” and “from”) – but at this point it remains a clear

net receiver.

4.1.1 Including Sovereign Bonds

Thus far we analyzed the global network of bank equity return volatilities, but we can also

include other important financial asset volatilities. This is potentially interesting because,

although the U.S. financial crisis did not have a sovereign debt component, the ensuing

European crisis did.

Against this background, we now briefly include sovereign bond yield volatilities in the

analysis, in addition to bank stock volatilities. We include 10-year G-7 sovereigns (United

States, Germany, France, Japan, United Kingdom, Canada, and Italy), as well as those of

Spain, Greece and Australia. We start with government bond prices, and then we convert to

approximate yields using Pt = 1/(1 + rt)
10, where Pt is price and rt is 10-year yield. Then we

calculate daily range-based return volatilities using the Parkinson (1980) approach, which

requires only the daily highs and lows (as opposed to high, low, open, and close). That is,

we use σ̃2
it = 0.361(Hit−Lit)2, where Hit and Lit are, respectively, the logs of daily high and

low prices for bank stock i on day t.

We plot the estimated individual bank / sovereign bond network in Figure 3. Several
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observations are in order. First, the sovereigns cluster strongly. They appear in the upper

right of the graph, which is otherwise similar to Figure 2.13 Second, European bond nodes

are nevertheless closer to European bank nodes, U.S. and Canadian bond nodes are closer

to U.S. and Canadian bank nodes, and Japanese and Australian bond nodes are closer

to Japanese and Australian bank nodes. Third, although the bond nodes are pulled toward

their respective country bank nodes, they remain completely distinct and never appear inside

their national/regional banking clusters: bank stocks form regional/national clusters, and

sovereign bonds are not part of those clusters.

4.2 The Country Bank Network

In Figures 4 and 5 (without and with sovereign bonds included, respectively) we show the

country bank network obtained by aggregating the earlier-discussed individual bank net-

work.14 This serves two useful and distinct purposes.

First, examination of the country bank network is intrinsically interesting and a logical

next step. Our individual-bank analysis showed strong connectedness of banks both within

and across countries, so we now proceed to dig more deeply into the cross-country links.

Examination of the country bank network allows us to distinguish the relative strengths of

directional “to” and “from” connectedness of the most-connected country banking systems.

Second, the smaller number of links in the country bank network makes visual interpreta-

tion of connectedness simpler and more revealing. (29 countries produce only 292 = 841 links

in the country network, whereas 96 banks produce 962 = 9216 links in the bank network.)

The equity volatility network of Figure 4 reveals that the U.S. is massively connected.

The strongest U.S. links are with Canada, Great Britain, and Australia. It is not always

visible, but the arrows indicate greater connectedness from the U.S. to Canada, Australia

and Great Britain than conversely. The Anglo / European countries form a cluster just above

the U.S. Of the Anglo / European countries, Britain has the strongest links to and from the

U.S. The northern European countries are to the south-east of the cluster; Sweden has the

strongest connectedness with the U.S. Ireland, Portugal, Greece, Finland and Austria are

located on the perimeter of the cluster. Other countries are scattered farther away from the

European cluster. As noted previously for individual banks, moving leftward on the graph

generally takes one from western to eastern countries. Finally, the equity/bond volatility

13The country bond node naming convention is COUNTRY_b, where “COUNTRY” is our country code
(capitalized) and “b” denotes bond. For example, the U.S. government bond is USA_b. The other country
codes are generally similarly self-evident; see the appendices for a complete listing.

14We place country nodes at the centers of gravity of the corresponding country banks.
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network of Figure 5 reveals that, as in the individual bank analysis, the bonds cluster tightly,

regardless of geography.

5 Dynamic Estimation of the Global Bank Network

We now characterize the global banking network dynamically. We use rolling estimation

with a 150-day window, with repeated cross validation of the penalty parameter λ in each

window.15 We start with comparisons of estimated network graphs “before and after” ma-

jor crisis episodes, and then we proceed to examine the continuous real-time evolution of

systemwide connectedness.

5.1 Banks Pre- and Post-Lehman

The critical point in the financial crisis was Lehman’s bankruptcy, which was announced on

September 15, 2008. In Figure 6 we show the 96-bank network graphs on September 1, 2008

and on November 21, 2008. There is a clear difference between the individual bank network

graphs on the two dates.

In particular, connectedness of U.S. banks with others increased sharply after Lehman’s

collapse and the transformation of the U.S. financial crisis into a global one. Before the

Lehman collapse, the U.S. and European banks stood far apart around the Anglo / American

/ European cluster, with a visible gap in the network graph between the U.S. and European

banks. The Japanese and Chinese banks also stood apart. Once the Lehman shock hit global

markets, the entire individual bank network, perhaps with the exception of Chinese banks,

moved closer together, indicating the spread of volatility across bank stocks and countries.

It is important to stress that volatility data coming from stock markets operating in different

time zones does not prevent our framework from capturing the sharp increase in pairwise

directional connectedness after the collapse of Lehman Brothers.

A similar picture arises when we analyze the country bank network before and after

Lehman’s collapse. We show the country bank network graphs in Figure 7. Connectedness

was comparatively weak before the collapse, and much stronger afterward. Moreover, the

directional volatility connectedness from the U.S. to others increased substantially.

15For rolling estimation we switch from adaptive elastic net to elastic net, meaning that we use wi = 1
rather than wi = 1/|β̂i,OLS | in the estimator (9), because we found that the elastic net produces less noisy
estimates under rolling estimation.
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5.2 Banks, Bonds, and the European Debt Crisis

To see how the individual bank / sovereign bond network was transformed following the

European banking and sovereign bond crisis, we analyze the network graph once the Euro-

pean sovereign debt and banking crisis spread throughout the continent, affecting mostly the

periphery countries such as Greece, Portugal, Ireland, Italy and Spain. However, sovereign

bonds of the center countries such as Germany, France and the Great Britain could not

be isolated from the events unfolding in the periphery. As a result, on October 7, 2011

connectedness reached its highest level since the global financial crisis of late 2008.16

In Figure 8(a) we show the October 2011 individual bank / sovereign bond network, and

in Figure 8(b) we once again show the full-sample network for comparison. The graphs are

quite different. The October 2011 bond yield volatilities are no longer on the outskirts of

the regional / national banking clusters. Indeed, bond yield volatilities for the U.S., the UK,

Germany and France moved toward the center of the European / North American banking

cluster. Italy and Spain did not move to the center of the cluster, but they are still closer to

the center of Anglo / American / European cluster than they were in the full sample. Greek

bonds, on the other hand, are separated from other sovereign bonds (including the European

bonds) as well as individual banks.17 Australian bonds moved closer to the Japanese bonds.

Furthermore, the nodes for the Japanese and Chinese banks, as well as the ones from other

countries, moved closer to the Anglo / American / European cluster, indicating stronger

volatility connectedness in October 2011 compared to the full sample.

All told, Figure 8 clearly shows that the European banking and sovereign debt crises had

become intertwined as of October 2011. The U.S. banks are farther away from the center of

the Anglo / American / European cluster, and the European banks are at the center, close

to the government bond markets of the U.S., France, Germany, and the U.K.

5.3 Systemwide Connectedness

Now we consider systemwide connectedness. There are two interesting ways to display and

decompose it: trend vs. cycle and cross-country vs. within-country. We consider them in

turn.

16More precisely, systemwide connectedness peaked on October 7, 2011, as shown in Figure 9.
17We believe that this is a reflection of the declining exposure of the European banks to Greek sovereign

bonds from EUR 189 bn in the beginning of 2010 to EUR 104 bn at the end of 2011. (Sources: BIS Quarterly
Review, June 2010 and June 2012, Table 9B).
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5.3.1 Trend and Cycle

We first display and decompose dynamic systemwide connectedness into secular (trend) and

cyclical variation, as shown in Figure 9. As indicated by the superimposed piecewise linear

trend, systemwide connectedness broadly increased for roughly the first half of our sample,

peaking with the Lehman bankruptcy. It then decreased gradually, albeit with some major

bumps associated with the two waves of the European debt crisis, falling by almost twenty

percentage points relative to its peak by the end of the sample.

Let us first discuss aspects of the pre-Lehman episode. First, the connectedness of major

global bank stocks increased following the Fed’s unexpected decision to tighten monetary

policy in May and June 2006. However, there was no other major volatility shock across the

global banking system in 2006, so that estimated connectedness subsides as the observations

for May-June 2006 vanish from the rolling-window. Volatility connectedness was low in

early 2007. However, following the collapse of several mortgage originators in the U.S.,

connectedness increased sharply. This jump was followed by an even greater jump during

the liquidity crisis of August 2007, when it became apparent that along with the U.S. banks

the European banks also had to write off billions of dollars of losses due to their investments

in mortgage backed securities. By the end of 2007, it became apparent that the major U.S.

banks would end up writing of tens of billions of dollars in losses. Then in March 2008,

Bear Stearns, one of the top U.S. investment banks, was acquired by J.P. Morgan to avoid

bankruptcy.

Now consider the post-Lehman episode. Systemwide connectedness reached its peak

following the Lehman bankruptcy on September 15, 2008, at which time the U.S. govern-

ment introduced a huge package of direct capital injection in major U.S. banks. As months

passed, the U.S. markets calmed, and systemwide connectedness started to trend downward.

However, in 2009 and 2010 the EU member countries were shocked by developments in the

banking and sovereign debt markets of some of its peripheral member countries, including

Greece, Ireland and Portugal. Then in 2011, Italy and Spain joined the countries with

stressed banking systems and sovereign bond markets. As a result, systemwide connected-

ness experienced two more significant jumps in May 2010 (due to delay in the rescue package

for Greece) and in July-August 2011 (due to spread of sovereign debt and banking sector

worries to Spain and Italy).

In closing this section, it may be useful to offer conjectures regarding not only aspects

of the connecteness increase during the 2007-2008 crisis, but also regarding the subsequent

connectedness decrease, and similarly for the various European debt crises. Connectedness
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could have increased more in the weeks after the Lehman collapse, had the U.S. government

decided not to rescue AIG. Moreover, connectedness decreased more quickly in the months

after Lehman’s collapse as the U.S. government used the USD 700 bn Troubled Asset Relief

Program (TARP) to inject capital into the major U.S. banks. That decision helped increase

confidence in the U.S. banking system and hence prevented a potential breakdown of the

global financial system. Finally, stress test results also indicated that U.S. banks were sound

and led to a significant decline in systemwide connectedness in 2009. As for subsequent crises,

in the Greek debt crisis of 2009-2010, the ECB/IMF/EC rescue package proved effective,

and in the European banking and sovereign debt crisis of 2011, the intervention of ECB

under the new president Mario Draghi eventually brought down systemwide connectedness,

as the ECB announced a three-year EUR 1 tr Long-term Refinancing Operation (LTRO)

package that provided liquidity to many of the banks that had difficulty in borrowing in the

overnight market.

5.3.2 Cross-Country and Within-Country

A second way to display and decompose dynamic systemwide connectedness involves cross-

country and within-country parts, as in Figure 10. Cross-country systemwide connectedness

is the sum of all pairwise connectedness across banks located in different countries. Within-

country systemwide connectedness is the sum of pairwise connectedness across banks in the

same country. By construction cross-country and within-country systemwide connectedness

must sum to systemwide connectedness. The decomposition is of interest because exploring

the country origins of volatility shocks and their temporal evolution may help us better

understand the dynamics of global bank connectedness.

The decomposition shows that most movements in systemwide connectedness are due

to movements in cross-country systemwide connectedness. Cross-country systemwide con-

nectedness is around 40% from 2004 to May 2006, but it then begins to fluctuate signif-

icantly. Following the Fed’s unexpected decision to further tighten U.S. monetary policy,

cross-country systemwide connectedness increases by around 15% in May-December 2006.

Following this episode, cross-country connectedness continues to vary throughout the sample.

It is interesting to note the decline in within-country connectedness in 2008 Q4.18 We

conjecture that there are at least two reasons. First, U.S. intervention following the Lehman

collapse likely increased confidence in the U.S. financial system and reduced within-U.S.

connectedness in 2008 Q4. As there are sixteen U.S. banks in our analysis, the decline in

18We thank a referee for pointing this out.
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within-U.S. connectedness induces a decline in the overall within-country connectedness. The

second reason follows from the simple aritmhmetic of connectedness. Systemwide connected-

ness is equal to the sum of cross-country and within-country connectedness. Once the U.S.

financial crisis was transformed into a global one in the last quarter of 2008, cross-country

connectedness increased sharply, with U.S. banks spreading shocks to European banks. At

that point the systemwide connectedness was already 88%, and we know that it bounded

above by 100. As it approaches 100 it takes smaller steps. Therefore, as the cross-country

connectedness increases sharply, the within-country connectedness becomes less important

and hence declines. A similar dynamic appears in 2010 and 2011 during the European

sovereign debt and banking crises.

5.4 Size and Eigenvector Centrality

One of the primary goals of network analysis is evaluating the relative importance of indi-

vidual network members. This is highly relevant for our global banking network, because,

as shown during the recent global financial crisis, an individual bank may be the source

of financial stress that can be transmitted to the whole system. Furthermore, from a pol-

icy viewpoint, detecting such systemically important financial institutions carries enormous

importance in preventing future crises.

In Diebold & Yilmaz (2014) and thus far in this paper, we emphasized total directional

connectedness to others for ranking systemically important institutions.19 But that captures

only 1-step links, whereas there may be multi-step links as well.20 To explore this, we calcu-

late the eigenvector centrality St, which measures the influence of a bank by incorporating

connectedness of its neighbors, for each bank in our sample. St satisfies

St = Ct St (10)

where St is the Nx1 vector of bank eigenvector centralities and Ct is the NxN network

connectedness (adjacency) matrix. The solution for St in equation (10) corresponds to

eigenvector associated with the largest eigenvalue of Ct. More intuitively, note that equation

(10) makes clear that the eigenvector centrality for a given bank is equal to the sum of the

centralities of the connected banks weighted by the sizes of the respective links.

19In Diebold & Yilmaz (2014) we also noted the close relationship between CoVaR (Adrian & Brunnermeier
(2016))and total directional connectedness to others.

20For example, banks A and C may not be directly (1-step) linked, but A may be linked to B, and B to
C, so that A and C are indirectly linked (in this eample, 2-step linked).
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From our earlier-estimated time series of Ct, we can calculate the corresponding series

of estimated St, which then allows us to investigate the dynamic interaction between bank

market capitalization and centrality. Toward that objective, we estimate the cross-section

rank regression of bank centrality on market capitalization for each sub-sample window.21

Figure 11 presents the rank regression coefficient and its p-value over the rolling windows. In

line with expectations, bank eigenvector centrality is highly correlated with bank size, with

the regression coefficient fluctuating between 0.4 and 0.6 in 2004 and 2005. More importantly,

however, the relationship between centrality rank and size rank weakens during the global

financial crisis of 2008-2009. It even disappears completely during the second phase of the

European debt crisis in summer 2011 and late 2012, when the coefficient p-value moves well

above the 5% level.

On the basis of this evidence we can conclude that, whereas the largest banks are more

likely to be central in the global financial system in good times, smaller banks can also be-

come central during bad times and generate volatility connectedness that will have systemic

implications.

So far in this section we focused on the relationship between banks’ market capitalization

and eigenvector centrality in the volatility network. Alternatively, we can focus on the

relationship between banks’ GSIB status and eigenvector centrality. Towards that end, we

regress the eigenvector centrality rank of banks on a constant term along with a dummy

that indicates whether the bank is included in the GSIB list at the beginning of that year.

Figure 12 reports the evolution of the estimated coefficient and its p-value. The negative

coefficient estimate on the GSIB dummy indicates that GSIB’s are likely to be more central

(higher eigenvector centrality measure) than non-GSIB’s. Except for a short time in the

pre-crisis period (2004-2006), the central position of GSIB’s in the network tends to be

statistically significant. An average of -26 for the coefficient estimate from mid-2006 onward

indicates that, everything else equal, a GSIB is likely to be ranked 25 banks ahead of a

non-GSIB when ranked according to the eigenvector centrality measure.

6 Conclusion

We have used LASSO methods to shrink, select and estimate the high-dimensional network

linking the publicly-traded subset of the world’s top 150 banks, 2003-2014. We characterized

21The series we use in our rank regression analysis is measured at weekly frequency, rather than the
daily frequency used throughout the rest of the paper. For conversion we use end-of-week centralities and
capitalizations.
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static network connectedness using full-sample estimation and dynamic network connected-

ness using rolling-window estimation. Statically, we found that global bank equity connect-

edness has a strong geographic component, whereas country sovereign bond connectedness

does not. Dynamically, we found that equity connectedness increases during crises, with

clear peaks during the Great Financial Crisis and each wave of the subsequent European

Debt Crisis, and with movements coming mostly from changes in cross-country as opposed

to within-country bank linkages.
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Figures

Figure 1: Network Graph Color Spectrum

Figure 2: Individual Bank Network Graph, 2003-2014
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Figure 3: Individual Bank / Sovereign Bond Network, 2003-2014
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Figure 4: Country Bank Network, 2003-2014
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Figure 5: Country Bank / Sovereign Bond Network, 2003-2014
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(a) September 1, 2008 (b) November 21, 2008

Figure 6: Individual Bank Network Pre- and Post-Lehman

(a) September 1, 2008 (b) November 21, 2008

Figure 7: Country Bank Network Pre- and Post-Lehman
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(a) Rolling Estimation, 150-Day Window Ending October 7, 2011

(b) Full-Sample Estimation

Figure 8: Individual Bank / Sovereign Bond Network, Full-Sample vs. After the European
Crisis
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Figure 9: Systemwide Connectedness, With Superimposed Trend
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Figure 10: Systemwide Connectedness, Cross-Country and Within-Country
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Figure 11: Rank Regression of Eigenvector Centrality on Market Capitalization
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Figure 12: Regression of Eigenvector Centrality Rank on GSIB Dummy
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Tables

Table 1: Individual Bank Network Connectedness Table, Six-Group Aggregation, 2003-2014

Africa Asia Europe N. America Oceania S. America From Others
Africa 0.00 8.51 18.78 13.84 1.77 2.14 45.05
Asia 4.08 0.00 205.03 157.42 30.22 21.90 418.64
Europe 6.62 93.44 0.00 431.31 20.57 29.31 581.25
N. America 3.14 58.72 417.83 0.00 20.63 26.91 527.24
Oceania 2.00 39.67 68.08 74.44 0.00 5.27 189.46
S. America 1.38 14.29 48.41 48.34 2.63 0.00 115.06
To Others 17.20 214.65 758.13 725.35 75.84 85.53 312.78
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